
FiGURe: Simple and Efficient Unsupervised Node
Representations with Filter Augmentations

Anonymous Author(s)
Affiliation
Address
email

Abstract

Unsupervised node representations learnt using contrastive learning-based methods1

have shown good performance on downstream tasks. However, these methods rely2

on augmentations that mimic low-pass filters, limiting their performance on tasks3

requiring different eigen-spectrum parts. This paper presents a simple filter-based4

augmentation method to capture different parts of the eigen-spectrum. We show5

significant improvements using these augmentations. Further, we show that sharing6

the same weights across these different filter augmentations is possible, reducing the7

computational load. In addition, previous works have shown that good performance8

on downstream tasks requires high dimensional representations. Working with high9

dimensions increases the computations, especially when multiple augmentations10

are involved. We mitigate this problem and recover good performance through11

lower dimensional embeddings using simple random Fourier feature projections.12

Our method, FiGURe, achieves an average gain of up to 4.4%, compared to the13

state-of-the-art unsupervised models, across all datasets in consideration, both14

homophilic and heterophilic.15

1 Introduction16

Contrastive learning is a powerful method for unsupervised graph representation learning, achieving17

notable success in various applications [35, 8]. However, these evaluations typically focus on tasks18

exhibiting homophily, where task labels strongly correlate with the graph’s structure. An existing19

edge suggests the connected nodes likely share similar labels in these scenarios. However, these20

representations often struggle when dealing with heterophilic tasks, where edges tend to connect21

nodes with different labels.22

Several papers [4, 10, 3, 20] have tackled the problem of heterophily by leveraging information from23

both low and high-frequency components. However, these methods operate in the semi-supervised24

setting, and the extension of these ideas in unsupervised learning still needs to be explored. Inspired25

by the insights in these papers, we propose a simple method incorporating these principles. Our26

approach introduces filter banks as additional views and learns separate representations for each filter27

bank. However, this approach faces two main challenges: Firstly, storing representations from each28

view can become prohibitively expensive for large graphs; secondly, contrastive learning methods29

typically demand high-dimensional representations, which increase both the computational cost of30

training and the storage burden.31

We employ a shared encoder for all filter banks to tackle the first challenge. Our results confirm32

that a shared encoder performs on par with independent encoders for each filter bank. This strategy33

enables us to reconstruct filter-specific representations as needed, drastically reducing the storage34

requirement.35

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

For the second challenge, we train our models with low-dimensional embeddings. Then, we use36

random Fourier feature projection [31] to lift these low-dimensional embeddings into a higher-37

dimensional space. Kernel tricks [15] were typically used in classical machine learning to project38

low-dimensional representation to high dimensions where the labels can become linearly separable.39

However, constructing and leveraging the kernels in large dataset scenarios could be expensive. To40

avoid this issue, several papers [31, 32, 13, 28, 18] proposed to approximate the map associated with41

the kernel. For our scenario, we use the map associated with Gaussian kernel [31]. We empirically42

demonstrate that using such a simple approach preserves high performance for downstream tasks,43

even in the contrastive learning setting. Consequently, our solution offers a more efficient approach44

to unsupervised graph representation learning in computation and storage, especially concerning45

heterophilic tasks.46

Our contributions in this work are, 1] We propose a simple scheme of using filter banks for learning47

representations that can cater to both heterophily and homophily tasks, 2] We address the computa-48

tional and storage burden associated with this simple strategy by sharing the encoder across these49

various filter views, 3] By learning a low-dimensional representation and later projecting it to high50

dimensions using random Fourier Features, we further reduce the burden, 4] We study the perfor-51

mance of our approach on four homophilic and seven heterophilic datasets. Our method achieves52

new SOTA performance in unsupervised representation learning on heterophilic datasets, achieving53

18% gains over prior methods, and in homophilic datasets [22], achieving ∼ 1.5% gains over prior54

methods. Our method also performs better than supervised methods such as GCN [17] on several55

heterophilic datasets and is competitive on homophilic datasets.56

2 Related Work57

Several unsupervised representation learning methods have been proposed in prior literature. Random58

walk-based methods like Node2Vec [7] and DeepWalk [29] preserve node proximity but tend to ne-59

glect structural information and node features. Contrastive methods, such as DEEP GRAPH INFOMAX60

(DGI) [35], maximize the mutual information (MI) between local and global representations while61

minimizing the MI between corrupted representations. Methods like MVGRL [8] and GRACE [36]62

expand on this, by integrating additional views into the MI maximization objective.63

However, most of these methods focus on the low frequency components, overlooking critical insights64

from other parts. Semi-supervised methods like GPRGNN [4], BERNNET [10], and PPGNN [20]65

address this by exploring the entire eigenspectrum, but these concepts are yet to be applied in the66

unsupervised domain.67

This work proposes the use of a filter bank to capture information across the full eigenspectrum68

while sharing an encoder across filters. Given the high-dimensional representation demand of69

contrastive learning methods, we propose using Random Fourier Features (RFF) to project lower-70

dimensional embeddings into higher-dimensional spaces, reducing computational load without71

sacrificing performance. The ensuing sections define our problem, describe filter banks and random72

feature maps, and explain our model and experimental results.73

3 Problem Setting74

In the domain of unsupervised representation learning, our focus lies on graph data, denoted as75

G = (V, E), where V is the set of vertices and E the set of edges (E ⊆ V × V). We associate an76

adjacency matrix with G, referred to as A : A ∈ {0, 1}n×n, where n = |V| corresponds to the77

number of nodes. Let X ∈ Rn×d be the feature matrix. We use AI to represent A+ I with I is the78

identity matrix, while DAI
signifies the degree matrix of AI. We also define An as D−1/2

AI
AID

−1/2
AI

.79

No additional information is provided during training. The goal is to learn a parameterized encoder,80

Eθ : Rn×n × Rn×d 7→ Rn×d′
, where d′ ≪ d. This encoder produces a set of node representations81

Eθ(X,An) = {h1, h2, ..., hn} where each hi ∈ Rd′
represents a rich representation for node i. The82

subsequent section will provide preliminary details about filter banks and random feature maps before83

we discuss the specifics of the proposed approach.84

2

4 Preliminaries85

Our proposed approach hinges on the critical components of filter banks and random feature maps. In86

this section, we delve into brief details about these two facets, setting the stage for a comprehensive87

description of our approach.88

4.1 Filter Banks89

Graph Fourier Transform (GFT) forms the basis of Graph Neural Networks (GNNs). A GFT is defined90

using a reference operator R which admits a spectral decomposition. Traditionally, in the case of91

GNNs, this reference operator has been the symmetric normalized laplacian Ln = I−An or the An92

as simplified in [17]. A graph filter is an operator that acts independently on the entire eigenspace of93

a diagonalisable and symmetric reference operator R, by modulating their corresponding eigenvalues.94

[34, 33]. Thus, a graph filter H is defined via the graph filter function g(.) operating on the reference95

operator as H = g(R) = Ug(Λ)UT . Here, Λ = diag([λ1, λ2, ..., λn]), where λi denotes the96

eigenvalues of the reference operator.97

We describe a filter bank as a set of filters, denoted as F = {F1,F2, ...,FK}. Both GPRGNN [4]98

and BERNNET [10] employ filter banks, comprising polynomial filters, and amalgamate the represen-99

tations from each filter bank to enhance the performance across heterophilic datasets. GPRGNN uses100

a filter bank defined as FGPRGNN = {I,An, ...,An
K−1}, while FBERNNET = {B0,B1, ...,BK−1}101

characterizes the filter bank utilized by BERNNET. Here, Bi =
1

2K−1

(
K−1

i

)
(2I− Ln)

K−i−1(Ln)
i.102

Each filter in these banks highlights different parts of the eigenspectrum. By tuning the combination103

on downstream tasks, it offers the choice to select and leverage the right spectrum to enhance perfor-104

mance. Notably, unlike traditional GNNs, which primarily emphasize low-frequency components,105

higher frequency components have proved useful for heterophily [3, 4, 10, 20]. Consequently, a106

vital takeaway is that for comprehensive representations, we must aggregate information from107

different parts of the eigenspectrum and fine-tune it for specific downstream tasks.108

4.2 Random Feature Maps for Kernel Approximations109

Before the emergence of deep learning models, the kernel trick was instrumental in learning non-linear110

models. A kernel function, k : Rd × Rd 7→ R, accepts two input features and returns a real-valued111

score. Given a positive-definite kernel, Mercer’s Theorem [23] assures the existence of a feature map112

ϕ(·), such that k(x, y) = ⟨ϕ(x), ϕ(y)⟩. Leveraging the kernel trick, researchers combined Mercer’s113

theorem with the representer theorem [15], enabling the construction of non-linear models that remain114

linear in k. These models created directly using k instead of the potentially complex ϕ, outperformed115

traditional linear models. The implicit maps linked with these kernels projected the features into a116

significantly high-dimensional space, where targets were presumed to be linearly separable. However,117

computational challenges arose when dealing with large datasets.118

Addressing these issues, subsequent works [32, 13, 28, 31] introduced approximations of the map119

associated with individual kernels through random projections into higher-dimensional spaces (ϕ′(.)).120

This approach ensures that ⟨ϕ′(x), ϕ′(y)⟩ ≈ k(x, y). These random feature maps are inexpensive to121

compute and affirm that simple projections to higher-dimensional spaces can achieve linear separa-122

bility. The critical insight is that computationally efficient random feature maps exist, capable123

of projecting lower-dimensional representations into higher dimensions. These projections124

enhance the adaptability of these representations for downstream tasks. Random Fourier125

features (RFF) [31] provide a prime example of such techniques.126

5 Proposed Approach127

The following section delineates the process of unsupervised representation learning. Post that, we128

give details on how the representations learned from each filter bank is used in downstream tasks129

using random feature maps.130

3

5.1 Unsupervised Representation Learning131

Our method FiGURe (Filter-based Graph Unsupervised Representation Learning) builds on concepts132

introduced in [11, 35], extending the maximization of mutual information between node and global133

filter representations for each filter in the filter bank F = {F1,F2, ...FK}. We construct an encoder134

for each filter to maximize the mutual information between the input data and encoder output. For135

the ith filter, we learn an encoder, Eθ : Xi → X ′
i , denoted by learnable parameters θ. In this136

context, Xi represents a set of examples, where each example [X̂ij , F̂ij] ∈ Xi consists of a filter137

Fi, its corresponding nodes and node features drawn from an empirical probability distribution Pi,138

which captures the joint distribution of features and node representations [X,Fi]. Xi defines the139

set of representations learnt by the encoder on utilizing feature information as well as topological140

information from the samples, sampled from the joint distribution Pi. The goal, aligned with141

[21, 11, 35], is to identify θ that maximizes mutual information between [X,Fi] and Eθ(X,Fi),142

or Ii([X,Fi], Eθ(X,Fi)). While exact mutual information (MI) computation is unfeasible due to143

unavailable exact data and learned representations distributions, we can estimate the MI using the144

Jensen-Shannon MI estimator [5, 25], defined as:145

IJSD
i,θ,ω([X,Fi], Eθ(X,Fi)) := EPi

[−sp(Tθ,ω([X̂ij , F̂ij], Eθ(X̂ij , F̂ij))]−

EPi×P̃i
[sp(Tθ,ω([X̃ij , F̃ij], Eθ(X̂ij , F̂ij))]

(1)

Here, Tω : Xi ×X ′
i → R represents a discriminator function with learnable parameters ω. Note that146

[X̃ij , F̃ij] is an input sampled from P̃i, which is a marginal of the joint distribution of the input data147

and the learned node representations. The function sp(.) corresponds to the softplus function [6].148

Additionally, Tθ,ω = Dw ◦ (R(Eθ(X̂ij , F̂ij)), Eθ(X̂ij , F̂ij)), where R denotes the readout function149

responsible for summarizing all node representations by aggregating and distilling information into a150

global filter representation.151

𝑭𝟏

Filtered Graph 1

𝑭𝒌

𝝈ሺ𝑭𝟏𝑿𝚯ሻ

x
3

x
5

x
6

x
7
 x

2

x
1

x
4

x
3

x
5

x
6

x
7
 x

2

x
1

x
4

x
3

x
5

x
6

x
7
 x

2

x
1

x
4

x
3

x
5

x
6

x
7
 x

2

x
1

x
4

𝝈ሺ𝑭𝒌𝑿𝚯ሻ

𝒉𝑭𝟏

𝚯

𝑰

Nodes with
self-edges

x
3

x
5

x
6

x
7

x
2

x
1

x
4

x
3

x
5

x
6

x
7

x
2

x
1

x
4

𝝈ሺ𝑰𝑿𝚯ሻ

Readout

𝒎𝒂𝒙 𝑴𝑰൫𝒉𝒊
𝑭𝟏 , 𝒉𝒈

𝑭𝟏൯

𝒉𝒈
𝑭𝟏

ℎ1
𝐹1

ℎ2
𝐹1

ℎ3
𝐹1

ℎ𝑛
𝐹1

𝒉𝑭𝟏
ℎ1

𝐹1

ℎ2
𝐹1

ℎ3
𝐹1

ℎ𝑛
𝐹1

𝒉𝑭𝒌
ℎ1

𝐹𝑘

ℎ2
𝐹𝑘

ℎ3
𝐹𝑘

ℎ𝑛
𝐹𝑘

𝒉𝑰
ℎ1

𝐼

ℎ2
𝐼

ℎ3
𝐼

ℎ𝑛
𝐼

Filter Banks
Shared
Encoding Shared Encoder

Weight Matrix

Mutual Information
Maximization

Node
Embeddings

Node
Embeddings

Graph
Embedding

Filtered Graph k

Readout

𝒎𝒂𝒙 𝑴𝑰൫𝒉𝒊
𝑭𝒌 , 𝒉𝒈

𝑭𝒌൯

𝒉𝒈
𝑭𝒌

Node
Embeddings

Graph
Embedding

𝒉𝑭𝒌
ℎ1

𝐹𝑘

ℎ2
𝐹𝑘

ℎ3
𝐹𝑘

ℎ𝑛
𝐹𝑘

Figure 1: Unsupervised learning of node embeddings by
maximizing mutual information between node and graph
representations over the graphs from the filter bank. Note
that the parameter Θ is shared across all the filters.

In our approach, we first obtain node152

representations by feeding the filter-153

specific topology and associated node154

features into the encoder: Hi =155

Eθ(Xi,Fi) = {hFi
1 , hFi

2 , ..., hFi
n }.156

To obtain global representations, we157

employ a readout function R :158

RN×d′ → Rd′
, which combines159

and distills information into a global160

representation hFi
g = R(Hi) =161

R(Eθ(X,Fi)). Instead of directly162

maximizing the mutual information163

between the local and global repre-164

sentations, we introduce a learnable165

discriminator Dω : Rd′ × Rd′ → R,166

where Dω(., .) represents the joint167

probability score between the global168

representation and the node-specific169

patch representation. This joint prob-170

ability score should be higher when171

considering global and local represen-172

tations obtained from the same filter,173

as opposed to the joint probability174

score between the global representa-175

tion from one filter and the local rep-176

resentation from an arbitrary filter.177

To generate negative samples for contrastive learning, we employ a corruption function C : RN×d ×178

RN×N → RM×d×RM×M , which yields corrupted samples denoted as [X̃ij , F̃ij] = C(X,Fi). The179

designed corruption function generates data decorrelated with the input data.180

4

In order to learn representations across all filters in the filter bank, we aim to maximise the average181

estimate of mutual information (MI) across all filters, considering K filters.182

IF =
1

K

K∑
i=1

IJSD
i,θ,ω ([X,Fi], Eθ(X,Fi)) (2)

Maximising the Jenson-Shannon MI estimator is equivalent to reducing the binary cross entropy loss183

defined between positive samples (sampled from the joint) and the negative samples (sampled from184

the product of marginals). Therefore, for each filter, we minimise the following objective:185

LFi
=

1

N +M

 N∑
j=1

E(X,Fi)[log(Dω(h
Fi
j , hFi

g))] +

M∑
j=1

E
(X̃,F̃i)

[log(Dω(h̃
Fi
j , hFi

g))]

 (3)

Therefore to learn meaningful representations across all filters the following objective is minimised:186

L =
1

K

K∑
i=1

LFi
(4)

However, managing the computational cost of training and storage for large graphs with separate node187

representations for each filter presents a significant challenge, exacerbated by the high dimensional188

requirements of contrastive learning methods. We implement parameter sharing to mitigate the first189

issue, borrowing the concept from studies such as [4, 10], thereby sharing the encoder’s parameters θ190

and the discriminator’s parameters ω across all filters. Instead of storing dense filter-specific node191

representations, we only store the parameters of the shared encoder and the first-hop neighbourhood192

information of each node per filter, which has a lower storage cost. For downstream tasks, we193

retrieve the embeddings by reconstructing filter-specific representations. To ensure quick and efficient194

reconstruction, we use a simple one-layer GNN. This on-demand reconstruction of filter-specific195

representations significantly reduces the computational and storage requirements associated with196

individual node representations. Fig 1 illustrates such a simple encoder’s mutual information-based197

learning process.198

Addressing the second issue, we initially train our models to generate low-dimensional embeddings.199

These encapsulate latent classes, as discussed in [2] as a superset of classes pertinent to downstream200

tasks. Although the low-dimensional embeddings harbour latent class information, they lack linear201

separability. Hence, we project these embeddings into a higher-dimensional space using random202

Fourier feature (RFF) projections, a strategy inspired by kernel methods (Section 4.2). Using this203

approach allows for improved linear separability of the latent classes. Our experimental findings (Sec-204

tion 6.2) affirm the effectiveness of projecting lower-dimensional embeddings into higher dimensions,205

confirming the retention of latent class information in these embeddings.206

5.2 Supervised Representation Learning207

After obtaining representations for each filter post the reconstruction of the node representations,208

learning an aggregation mechanism to combine information from representations that capture different209

parts of the eigenspectrum for the given task is necessary. We adopt learning schemes proposed in210

[4, 10, 20], where we learn a weighted combination of filter-specific representations. Therefore, the211

combined representations we learn for the downstream task are as follows (considering K filters from212

the filter bank F):213

Z =

K∑
i=1

αiϕ
′(Eθ(X,Fi)) (5)

The parameters αi’s are learnable. Additionally, the function ϕ(.)′ represents either the RFF pro-214

jection or an identity transformation, depending on whether Eθ(X,Fi) is low-dimensional or not.215

A classifier model (e.g. logistic regression) consumes these embeddings, where we train both the216

αi’s and the weights of the classifier. Fig 2 illustrates this process. The main distinction between217

semi-supervised methods such as [20, 4, 10] and our method is that the semi-supervised methods218

learn both the encoder and the combination coefficients based on labelled data. However, we pre-219

train the encoder in our method and subsequently learn a task-specific combination of filter-specific220

representations.221

5

𝒉𝑭𝟏
ℎ1
𝐹1

ℎ2
𝐹1

ℎ3
𝐹1

ℎ𝑛
𝐹1

𝒉𝑭𝒌
ℎ1
𝐹1

ℎ2
𝐹1

ℎ3
𝐹1

ℎ𝑛
𝐹1

𝒉𝑰
ℎ1
𝐼

ℎ2
𝐼

ℎ3
𝐼

ℎ𝑛
𝐼

𝒉𝑭𝟏
ℎ1
𝐹1

ℎ2
𝐹1

ℎ3
𝐹1

ℎ𝑛
𝐹1

𝒉𝑭𝒌
ℎ1
𝐹𝑘

ℎ2
𝐹𝑘

ℎ3
𝐹1

ℎ𝑛
𝐹1

𝒉𝑰
ℎ1
𝐼

ℎ2
𝐼

ℎ3
𝐼

ℎ𝑛
𝐼

Classifier

ℎ1
𝐹1

ℎ2
𝐹1

ℎ3
𝐹1

ℎ𝑛
𝐹1

Class-
probabilities

𝜶𝟎

𝜶𝟏

𝜶𝒌

𝝓ሺ𝒉𝑰ሻ

𝒄𝒐𝒔ሺ𝒘𝑻𝒉𝑰 + 𝝉ሻ

Projection

Recreated
Node
Embeddings

Projection to
Higer Dimension
via Random
Fourier Features

Embedding
Fusion

Node
Embeddings

𝝓ሺ𝒉𝑭𝟏ሻ

𝒄𝒐𝒔ሺ𝒘𝑻𝒉𝑭𝟏 + 𝝉ሻ

Projection

𝝓ሺ𝒉𝑭𝒌ሻ

𝒄𝒐𝒔ሺ𝒘𝑻𝒉𝑭𝒌 + 𝝉ሻ

Projection

𝑭𝟏

Filtered Graph 1

𝑭𝒌

𝝈ሺ𝑭𝟏𝑿𝚯ሻ

x
3

x
5

x
6

x
7
 x

2

x
1

x
4

x
3

x
5

x
6

x
7
 x

2

x
1

x
4

x
3

x
5

x
6

x
7
 x

2

x
1

x
4

x
3

x
5

x
6

x
7
 x

2

x
1

x
4

𝝈ሺ𝑭𝒌𝑿𝚯ሻ

𝚯

𝑰

Nodes with
self-edges

x
3

x
5

x
6

x
7

x
2

x
1

x
4

x
3

x
5

x
6

x
7

x
2

x
1

x
4

𝝈ሺ𝑰𝑿𝚯ሻ

Filter Banks
Encode from
Trained Θ

Filtered Graph k

Figure 2: Supervised Learning: Using the trained parameter Θ, we generate the node embeddings by
encoding the filtered graphs that get consumed in the classification task.

6 Experimental Results222

Training Details: We define a single-layer graph convolutional network (GCN) with shared weights223

(Θ) across all filters in the filter bank (F) as our encoder. Therefore, the encoder can be expressed224

as follows: Eθ(X,Fi) = σ(FiXΘ). It is important to note that Fi represents a normalized filter225

with self-loops, which ensures that its eigenvalues are within the range of [0, 2]. The non-linearity226

function σ refers to the parametric rectified linear unit (PReLU) [9]. As we work with a single graph,227

we obtain the positive samples by sampling nodes from the graph. Using these sampled nodes, we228

construct a new adjacency list that only includes the edges between these sampled nodes in filter229

Fi. On the other hand, the corruption function C operates on the same sampled nodes. However,230

it randomly shuffles the node features instead of perturbing the adjacency list. Similar to [35], we231

employ a straightforward readout function that involves averaging the representations across all nodes232

for a specific filter Fi: R(Hi) = σ
(

1
N

∑N
j=0 h

Fi
j

)
where σ denotes the sigmoid non-linearity. We233

utilize a bilinear scoring function, whose parameters are also shared across all filters:234

Dω(h
Fi
j , hFi

g) = σ(hFiT
j WhFi

g) (6)

We learn the encoder and discriminator parameters by optimising Eq. 4. While we could use various235

filter banks, we specifically employ the filter bank corresponding to GPRGNN (FGPRGNN) for all236

our experiments. However, we also conduct an ablation study (see 6.5) to compare the performance237

when using FGPRGNN versus FBERNNET. For more detailed training information, please refer to the238

supplementary material.239

We conducted a series of comprehensive experiments to evaluate the effectiveness and competitiveness240

of our proposed model compared to SOTA models and methods. These experiments address the241

following research questions: [RQ1] How does FiGURe, perform compared to SOTA unsupervised242

models? [RQ2] Can we perform satisfactorily even with lower dimensional representations using243

projections such as RFF? [RQ3] Does shared encoder decrease performance? [RQ4] What is the244

computational efficiency gained by using lower dimensional representations compared to methods245

that rely on higher dimensional representations? [RQ5] Can alternative filter banks be employed to246

recover good quality representations?247

Datasets and Setup: We evaluated our model on a diverse set of real-world datasets, which include248

both heterophilic and homophilic networks, to assess its effectiveness. Similar to previous works, we249

utilized the node classification task as a proxy to evaluate the quality of the learned representations.250

Please refer to the supplementary material for detailed information about the benchmark datasets.251

The heterophilic datasets used in our evaluation include CHAMELEON, SQUIRREL, ROMAN-252

EMPIRE, and MINESWEEPER. For CHAMELEON and SQUIRREL, we adopted the ten random253

splits (with 48%, 32%, and 20% of nodes allocated for the train, validation, and test sets, respectively)254

from [27]. For ROMAN-EMPIRE and MINESWEEPER, we used the ten random splits provided in255

[30]. Additionally, we evaluated our model on four homophilic datasets: CORA, CITESEER, and256

PUBMED, as borrowed from [14]. We report the mean and standard deviation of the test accuracy257

across different splits. Please refer to the supplementary material for detailed statistics of each dataset.258

6

Baselines: In our comparison against baselines, we considered common unsupervised approaches,259

such as DEEPWALK and NODE2VEC, and state-of-the-art mutual information-based methods, namely260

DGI, MVGRL, GRACE, and SUGRL. We also include the performance numbers of the widely used261

GCNfor reference. It is important to note that unless explicitly mentioned, we set the representation262

size to 512 dimensions for all reported results, consistent with previous work. Please refer to the263

supplementary material for detailed comparisons with other supervised methods and the link to our264

codebase.265

6.1 RQ1: FiGURe versus SOTA Methods266

Table 1: Contains node classification accuracy percentages on homophilic and heterophilic datasets.
FiGURe32 and FiGURe128 refer to FiGURe trained with 32 and 128 dimensional representations,
respectively, and then projected using RFF. The remaining models are trained at 512 dimensions.
Higher numbers indicate better performance. It is worth noting that FiGURe achieves superior
performance or remains competitive with the baseline methods in all cases. The rightmost column
Av. ∆gain represents the average accuracy % gain of FiGURe over the model in that row, averaged
across the different datasets. Blue, Red and Green represent the 1st, 2nd and 3rd best performing
models, for a particular dataset.

HETEROPHILIC DATASETS HOMOPHILIC DATASETS

SQUIRREL CHAMELEON ROMAN-EMPIRE MINESWEEPER CORA CITESEER PUBMED Av. ∆gain

DEEPWALK 38.66 (1.44) 53.42 (1.73) 13.08 (0.59) 79.96 (0.08) 83.64 (1.85) 63.66 (3.36) 80.85 (0.44) 16.35
NODE2VEC 42.60 (1.15) 54.23 (2.30) 12.12 (0.30) 80.00 (0.00) 78.19 (1.14) 57.45 (6.44) 73.24 (0.59) 18.56

DGI 39.61 (1.81) 59.28 (1.23) 47.54 (0.76) 82.51 (0.47) 84.57 (1.22) 73.96 (1.61) 86.57 (0.52) 7.67
MVGRL 39.90 (1.39) 54.61 (2.29) 68.50 (0.38) 85.60 (0.35) 86.22 (1.30) 75.02 (1.72) 87.12 (0.35) 4.39
GRACE 53.15 (1.10) 68.25 (1.77) 47.83 (0.53) 80.22 (0.45) 84.79 (1.51) 67.60 (2.01) 87.04 (0.43) 5.54
SUGRL 43.13 (1.36) 58.60 (2.04) 39.40 (0.49) 82.40 (0.58) 81.21 (2.07) 67.50 (1.62) 86.90 (0.54) 9.80

FiGURe32 48.89 (1.55) 65.66 (2.52) 67.67 (0.77) 85.28 (0.71) 82.56 (0.87) 71.25 (2.20) 84.18 (0.53) 3.18
FiGURe128 48.78 (2.48) 66.03 (2.19) 68.10 (1.09) 85.16 (0.58) 86.14 (1.13) 73.34 (1.91) 85.41 (0.52) 2.11

FiGURe 52.23 (1.19) 68.55 (1.87) 70.99 (0.52) 85.58 (0.49) 87.00 (1.24) 74.77 (2.00) 88.60 (0.44) 0.00

Table 2: Comparison of Node classification accuracy percentages with the widely used supervised
model GCN. Despite not having access to task specific labels, FiGURe learns good quality represen-
tations.

SQUIRREL CHAMELEON ROMAN-EMPIRE MINESWEEPER CORA CITESEER PUBMED

GCN 47.78 (2.13) 61.43 (2.70) 73.69 (0.74) 89.75 (0.52) 87.36 (0.91) 76.47 (1.34) 88.41 (0.46)
FiGURe 52.23 (1.19) 68.55 (1.87) 70.99 (0.52) 85.58 (0.49) 87.00 (1.24) 74.77 (2.00) 88.60 (0.44)

We analyzed the results in Table 1 and made important observations. Across homophilic and267

heterophilic datasets, FiGURe consistently outperforms several SOTA unsupervised models, except268

in a few cases where it achieves comparable performance. We want to emphasize the rightmost269

column of the table, which shows the average percentage gain in performance across all datasets.270

This metric compares the improvement that FiGURe provides over each baseline model for each271

dataset and averages these improvements. This metric highlights the performance consistency of272

FiGURe across diverse datasets. No other baseline model achieves the same consistent performance273

across all datasets as FiGURe. Even the recent state-of-the-art contrastive models GRACE and274

SUGRL experience average performance drops of approximately 5% and 10%, respectively. This275

result indicates that FiGURe learns representations that exhibit high generalization and task-agnostic276

capabilities. Another important observation is the effectiveness of RFF projections in improving lower277

dimensional representations. We compared FiGURe at different dimensions, including FiGURe32278

and FiGURe128, corresponding to learning 32 and 128-dimensional embeddings, respectively, in279

addition to the baseline representation size of 512 dimensions. Remarkably, even at lower dimensions,280

FiGURe with RFF projections demonstrates competitive performance across datasets, surpassing the281

512-dimensional baselines in several cases. This result highlights the effectiveness of RFF projections282

in enhancing the quality of lower dimensional representations. Section 6.2 discusses more insights283

about the effectiveness of RFF projections. Furthermore, we include the widely used supervised284

model, GCN, in Table 2 as a benchmark for comparison. Notably, FiGURe outperforms GCN on285

heterophilic datasets, except for ROMAN-EMPIRE and MINESWEEPER, while achieving competitive286

performance on homophilic datasets. Please refer to supplementary material for detailed comparisons287

with supervised methods.288

7

6.2 RQ2: RFF Projections on Lower Dimensional Representations289

Table 3: Node classification accuracy percentages with and without using Random Fourier Feature
projections (on 32 dimensions). A higher number means better performance. The performance is
improved by using RFF in almost all cases, indicating the usefulness of this transformation

RFF CORA CITESEER SQUIRREL CHAMELEON

DGI × 81.65 (1.90) 65.62 (2.39) 31.60 (2.19) 45.48 (3.02)
✓ 81.49 (1.96) 66.50 (2.44) 38.19 (1.52) 56.01 (2.66)

MVGRL × 78.81 (1.73) 70.36 (1.76) 29.58 (0.94) 46.56 (2.84)
✓ 80.14 (2.41) 70.57 (1.56) 37.83 (1.32) 55.57 (2.28)

SUGRL × 65.35 (2.41) 42.84 (2.57) 31.62 (1.47) 43.20 (1.79)
✓ 70.06 (1.24) 47.03 (3.02) 38.50 (2.19) 51.01 (2.26)

GRACE × 76.84 (1.09) 58.40 (3.05) 38.20 (1.38) 53.25 (1.58)
✓ 79.15 (1.44) 63.66 (2.96) 51.56 (1.39) 67.39 (2.23)

FiGURe × 82.88 (1.42) 70.32 (1.98) 39.38 (1.35) 53.27 (2.40)
✓ 82.56 (0.87) 71.25 (2.20) 48.89 (1.55) 65.66 (2.52)

In this section, we analyse the performance of unsupervised baselines using 32-dimensional embed-290

dings with and without RFF projections (see Table 3). Despite extensive hyperparameter tuning,291

we could not replicate the results reported by SUGRL, so we present the best results we obtained.292

Two noteworthy observations emerge from these tables. Firstly, it is evident that lower dimensional293

embeddings can yield meaningful and linearly separable representations when combined with simple294

RFF projections. Utilising RFF projections enhances performance in almost all cases, highlight-295

ing the value captured by MI-based methods even with lower-dimensional embeddings. Secondly,296

FiGURe consistently achieves superior or comparable performance to the baselines, even in lower297

dimensions. Notably, this includes SUGRL, purported to excel in such settings. However, there is a 2-298

3% performance gap between GRACE and our method for the SQUIRREL and CHAMELEON datasets.299

While GRACE handles heterophily well at lower dimensions, its performance deteriorates with300

homophilic graphs, unlike FiGURe which captures lower frequency information effectively. Ad-301

ditionally, our method exhibits computational efficiency advantages for specific datasets in lower302

dimensions. Please refer to the supplementary material for more details. Overall, these findings303

highlight the potential of RFF projections in extracting useful information from lower dimensional304

embeddings and reaffirm the competitiveness of FiGURe over the baselines.305

6.3 RQ3: Sharing Weights Across Filter Specific Encoders306

Table 4: A comparison of the performance on the downstream node classification task using indepen-
dently trained encoders and weight sharing across encoders is shown. The reported metric is accuracy.
In both cases, the embeddings are combined using the method described in 5.2

CORA CITESEER SQUIRREL CHAMELEON

INDEPENDENT 86.92 (1.10) % 75.03 (1.75) % 50.52 (1.51) % 66.86 (1.85) %
SHARED 87.00 (1.24) % 74.77 (2.00) % 52.23 (1.19) % 68.55 (1.87) %

Our method proposes to reduce the computational load by sharing the encoder weights across all307

filters. It stands to reason whether sharing these weights causes any degradation in performance. We308

present the results with shared and independent encoders across the filters in Table 4 to verify this.309

The findings indicate no significant decrease in performance when using shared weights, and in some310

cases, it even leads to improvements, validating the use of shared encoders.311

6.4 RQ4: Computational Efficiency312

To assess the computational efficiency of the different methods, we analyzed the computation time and313

summarized the results in Table 5. The key metric used in this analysis is the mean epoch time: the314

average time taken to complete one epoch of training. We compared our method with other MI based315

methods such as DGI and MVGRL. Due to the increase in the number of augmentation views,316

8

Table 5: Mean epoch time (in milliseconds) averaged across 20 trials with different hyperparameters.
A lower number means the method is faster. Even though our method is slower at 512 dimensions,
using 128 and 32 dimensional embeddings significantly reduces the mean epoch time. Using RFF as
described in 6.2 we are able to prevent the performance drops experienced by DGI and MVGRL.

DGI MVGRL FiGURe FiGURe128 FiGURe32
CORA 38.53 (0.77) 75.29 (0.56) 114.38 (0.51) 20.10 (0.46) 11.54 (0.34)

CITESEER 52.98 (1.15) 102.41 (0.99) 156.24 (0.56) 30.30 (0.60) 17.16 (0.51)
SQUIRREL 87.06 (2.07) 168.24 (2.08) 257.65 (0.76) 47.72 (1.40) 23.52 (1.14)

CHAMELEON 33.08 (0.49) 64.71 (1.05) 98.36 (0.64) 18.56 (0.39) 11.63 (0.48)

there is an expected increase in computation time from DGI to MVGRL to FiGURe. However,317

as demonstrated in 6.2, using RFF projections allows us to achieve competitive performance even318

at lower dimensions. Therefore, we also included comparisons with our method at 128 and 32319

dimensions in the table. It is evident from the results that our method, both at 128 and 32 dimensions,320

exhibits faster computation times compared to both DGI and MVGRL, which rely on higher-321

dimensional representations to achieve good performance. This result indicates that FiGURe is322

computationally efficient due to its ability to work with lower-dimensional representations. During323

training, our method, FiGURe32, is ∼ 3x faster than DGI and ∼ 6x times faster than MVGRL.324

Despite the faster computation, FiGURe32 also exhibits an average performance improvement of325

around 2% across the datasets over all methods considered in our experiments. Please refer to the326

supplementary material for additional comparisons to other unsupervised models.327

6.5 RQ5: Experiments on Other Filter Banks328

Table 6: Accuracy percentage results using other filter banks for FiGURe. F3
BERNNET refers to the

FBERNNET filter bank (Section 4.1) with K set to 3 and F11
BERNNET refers to K set to 11.

CORA CITESEER SQUIRREL CHAMELEON

F3
BERNNET 85.13 (1.26) 73.38 (1.81) 37.07 (1.29) 53.95 (2.78)

F11
BERNNET 86.62 (1.59) 73.97 (1.43) 43.48 (3.80) 62.13 (3.66)

FGPRGNN 87.00 (1.24) 74.77 (2.00) 52.23 (1.19) 68.55 (1.87)

To showcase the versatility of our proposed framework, we conducted an experiment using Bernstein329

filters, as detailed in Table 6. The results indicate that using FGPRGNN leads to better performance330

than Bernstein filters. We believe that the reason this is happening is due to the latent characteristics331

of the dataset. [10, 20] have shown that datasets like CHAMELEON and SQUIRREL need frequency332

response functions that give more prominence to the tail-end spectrum. FGPRGNN are more amenable333

to these needs, as demonstrated in [20]. However, datasets requiring frequency response similar to334

comb filters may be better approximated by FBERNNET as their basis gives uniform prominence on335

the entire spectrum. Please refer to the supplementary material, which shows the basis frequency336

responses of these two filter banks, with more clarification. Therefore, although FGPRGNN gives337

better performance for these datasets, there could be datasets where FBERNNET could do better. Hence,338

we proposed a general framework that can work with any filter bank.339

7 Conclusion and Future Work340

Our work demonstrates the benefits of enhancing contrastive learning methods with filter views and341

learning filter-specific representations to cater to diverse tasks from homophily to heterophily. We342

have effectively alleviated computational and storage burdens by sharing the encoder across these343

filters and focusing on low-dimensional embeddings that utilize high-dimensional projections, a344

technique inspired by random feature maps developed for kernel approximations. Future directions345

include extending the analysis in [2] to graph contrastive learning and explicitly exploring the linear346

separability in low dimensions. This analysis could solidify the connection with the proposed random347

feature maps approach.348

9

References349

[1] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyperpa-350

rameter optimization framework. In International conference on knowledge discovery & data351

mining (KDD), pages 2623–2631, 2019.352

[2] S. Arora, H. Khandeparkar, M. Khodak, O. Plevrakis, and N. Saunshi. A theoretical analysis353

of contrastive unsupervised representation learning. In International Conference on Machine354

Learning (ICML), 2019.355

[3] D. Bo, X. Wang, C. Shi, and H.-W. Shen. Beyond low-frequency information in graph con-356

volutional networks. In Association for the Advancement of Artificial Intelligence (AAAI),357

2021.358

[4] E. Chien, J. Peng, P. Li, and O. Milenkovic. Adaptive universal generalized pagerank graph359

neural network. In International Conference on Learning Representations (ICLR), 2021.360

[5] M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain markov process361

expectations for large time. In Communications on Pure and Applied Mathematics, 1975.362

[6] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia. Incorporating second-order functional363

knowledge for better option pricing. In Neural Information Processing Systems (NeurIPS),364

2000.365

[7] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In International366

Conference on Knowledge Discovery and Data Mining (KDD), 2016.367

[8] K. Hassani and A. H. Khasahmadi. Contrastive multi-view representation learning on graphs.368

In International Conference on Machine Learning (ICML), 2020.369

[9] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level370

performance on imagenet classification. In 2015 IEEE International Conference on Computer371

Vision (ICCV), 2015.372

[10] M. He, Z. Wei, Z. Huang, and H. Xu. Bernnet: Learning arbitrary graph spectral filters via373

bernstein approximation. In Neural Information Processing Systems (NeurIPS), 2022.374

[11] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler, and375

Y. Bengio. Learning deep representations by mutual information estimation and maximization.376

In International Conference on Learning Representations (ICLR), 2019.377

[12] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec. Open graph378

benchmark: Datasets for machine learning on graphs. In Neural Information Processing Systems379

(NeurIPS), 2020.380

[13] P. Kar and H. Karnick. Random feature maps for dot product kernels. In International381

Conference on Artificial Intelligence and Statistics (AISTATS), 2012.382

[14] D. Kim and A. Oh. How to find your friendly neighborhood: Graph attention design with383

self-supervision. In International Conference on Learning Representations (ICLR), 2021.384

[15] G. Kimeldorf and G. Wahba. Some results on tchebycheffian spline functions. Journal of385

Mathematical Analysis and Applications, 1971.386

[16] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International387

Conference on Learning Representations (ICLR), 2015.388

[17] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.389

In International Conference on Learning Representations (ICLR), 2017.390

[18] Z. Li, J.-F. Ton, D. Oglic, and D. Sejdinovic. Towards a unified analysis of random fourier391

features. Journal of Machine Learning Research (JMLR), 2021.392

[19] D. Lim, F. M. Hohne, X. Li, S. L. Huang, V. Gupta, O. P. Bhalerao, and S.-N. Lim. Large scale393

learning on non-homophilous graphs: New benchmarks and strong simple methods. In Neural394

Information Processing Systems (NeurIPS), 2021.395

10

[20] V. Lingam, C. Ekbote, M. Sharma, R. Ragesh, A. Iyer, and S. Sellamanickam. A piece-wise396

polynomial filtering approach for graph neural networks. In European Conference on Machine397

Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD),398

2022.399

[21] R. Linsker. Self-organization in a perceptual network. Computer, 1988.400

[22] M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in social401

networks. Annual Review of Sociology, 2001.402

[23] J. Mercer. Functions of positive and negative type, and their connection with the theory403

of integral equations. Philosophical Transactions of the Royal Society of London. Series A,404

Containing Papers of a Mathematical or Physical Character, 1909.405

[24] Y. Mo, L. Peng, J. Xu, X. Shi, and X. Zhu. Simple unsupervised graph representation learning.406

In Association for the Advancement of Artificial Intelligence (AAAI), 2022.407

[25] S. Nowozin, B. Cseke, and R. Tomioka. f-gan: Training generative neural samplers using408

variational divergence minimization. In Neural Information Processing Systems (NeurIPS),409

2016.410

[26] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,411

N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning412

library. In Neural Information Processing Systems (NeurIPS), 2019.413

[27] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang. Geom-gcn: Geometric graph convolutional414

networks. In International Conference on Learning Representations (ICLR), 2020.415

[28] J. Pennington, F. X. X. Yu, and S. Kumar. Spherical random features for polynomial kernels. In416

Neural Information Processing Systems (NeurIPS), 2015.417

[29] B. Perozzi, R. Al-Rfou, and S. Skiena. DeepWalk. In International Conference on Knowledge418

Discovery and Data Mining (KDD), 2014.419

[30] O. Platonov, D. Kuznedelev, M. Diskin, A. Babenko, and L. Prokhorenkova. A critical look at420

the evaluation of GNNs under heterophily: Are we really making progress? In International421

Conference on Learning Representations (ICLR), 2023.422

[31] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Neural Informa-423

tion Processing Systems (NeurIPS), 2007.424

[32] A. Rahimi and B. Recht. Weighted sums of random kitchen sinks: Replacing minimization with425

randomization in learning. In Neural Information Processing Systems (NeurIPS), 2008.426

[33] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field427

of signal processing on graphs: Extending high-dimensional data analysis to networks and other428

irregular domains. IEEE Signal Processing Magazine, 2013.429

[34] N. Tremblay, P. Gonçalves, and P. Borgnat. Design of graph filters and filterbanks. Cooperative430

and Graph Signal Processing, 2017.431

[35] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm. Deep graph432

infomax. In International Conference on Learning Representations (ICLR), 2019.433

[36] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang. Deep Graph Contrastive Representation434

Learning. In ICML Workshop on Graph Representation Learning and Beyond, 2020.435

11

8 Supplementary Material436

Contents437

1 Introduction 1438

2 Related Work 2439

3 Problem Setting 2440

4 Preliminaries 3441

4.1 Filter Banks . 3442

4.2 Random Feature Maps for Kernel Approximations 3443

5 Proposed Approach 3444

5.1 Unsupervised Representation Learning . 4445

5.2 Supervised Representation Learning . 5446

6 Experimental Results 6447

6.1 RQ1: FiGURe versus SOTA Methods . 7448

6.2 RQ2: RFF Projections on Lower Dimensional Representations 8449

6.3 RQ3: Sharing Weights Across Filter Specific Encoders 8450

6.4 RQ4: Computational Efficiency . 8451

6.5 RQ5: Experiments on Other Filter Banks . 9452

7 Conclusion and Future Work 9453

8 Supplementary Material 12454

8.1 Reproducibility . 12455

8.2 Datasets . 13456

8.3 Training Details . 13457

8.3.1 Unsupervised Training . 14458

8.3.2 Supervised Training . 14459

8.3.3 Negative Sampling for the Identity Filter 15460

8.4 Evaluation on large graphs . 15461

8.5 Comparison with other Supervised Methods . 15462

8.6 RFF Projections . 16463

8.7 Computational Comparisons with other Other Unsupervised Methods 16464

8.8 Choice of Filter Banks . 17465

8.9 Visualising RFF Behavior and Community Structure 18466

8.1 Reproducibility467

We strive to ensure the reproducibility of our research findings. To facilitate this, we provide the468

details of our experimental setup, including dataset sources, preprocessing steps, hyperparameters,469

12

and model configurations. We also make our code and the datasets used, publicly available at this470

LINK, enabling researchers to reproduce our results and build upon our work. We would like to471

emphasize that our code is built on top of the existing MVGRL codebase. For the datasets used472

in our evaluation, we provide references to their original sources and any specific data splits that473

we employed. This allows others to obtain the same datasets and perform their own analyses using474

consistent data. Additionally, we specify the versions of libraries and frameworks used in our475

experiments, in Section 8.3, and in the REQUIREMENTS file and the README file, in the codebase,476

enabling others to set up a compatible environment. We document any specific seed values or477

randomization procedures that may affect the results. By providing these details and resources,478

we aim to promote transparency and reproducibility in scientific research. We encourage fellow479

researchers to reach out to us if they have any questions or need further clarification on our methods480

or results.481

8.2 Datasets482

Homophilic Datasets: We evaluated our model (as well as baselines) on three homophilic datasets:483

CORA, CITESEER, and PUBMED as borrowed from [14]. All three are citation networks, where484

each node represents a research paper and the links represent citations. Pubmed consists of medical485

research papers. The task is to predict the category of the research paper. We follow the same dataset486

setup mentioned in [14] to create 10 random splits for each of these datasets.487

Heterophilic Datasets: In our evaluation, we included four heterophilic datasets: CHAMELEON,488

SQUIRREL, ROMAN-EMPIRE, and MINESWEEPER. For CHAMELEON and SQUIRREL, nodes represent489

Wikipedia web pages and edges capture mutual links between pages. We utilized the ten random490

splits provided in [27], where 48%, 32%, and 20% of the nodes were allocated for the train, validation,491

and test sets, respectively. In ROMAN-EMPIREeach node corresponds to a word in the Roman Empire492

Wikipedia article. Two words are connected with an edge if either these words follow each other493

in the text, or they are connected in the dependency tree of the sentence. The syntactic role of the494

word/node defines its class label. The MINESWEEPERgraph is a regular 100x100 grid where each495

node is connected to eight neighboring nodes, and the features are on-hot encoded representations496

of the number of neighboring mines. The task is to predict which nodes are mines. For both497

ROMAN-EMPIRE and MINESWEEPER, we used the ten random splits provided in [30].498

Large Datasets: We also evaluate our method on two large datasets OGBN-ARXIV (from [12])499

and ARXIV-YEAR (from [19]). Both these datasets are from the arxiv citation network. In OGBN-500

ARXIV, the task is to predict the category of the research paper, and in ARXIV-YEARthe task is501

to predict the year of publishing. We use the publicly available splits for OGBN-ARXIV [14] and502

follow the same dataset setup mentioned in [19] to generate 5 random splits for ARXIV-YEAR. Note503

that OGBN-ARXIV is a homophilic dataset while ARXIV-YEAR is a heterophilic datasets.504

The detailed dataset statistics can be found in Table 7.505

Table 7: Dataset Statistics. The table provides information on the following dataset characteristics:
number of nodes, number of edges, feature dimension, number of classes, as well as the count of
nodes used for training, validation, and testing.

HETEROPHILIC DATASETS HOMOPHILIC DATASETS
PROPERTIES SQUIRREL CHAMELEON ROMAN-EMPIRE MINESWEEPER ARXIV-YEAR OGBN-ARXIV CITESEER PUBMED CORA

#NODES 5201 2277 22662 10000 169343 169343 3327 19717 2708
#EDGES 222134 38328 32927 39402 1166243 1335586 12431 108365 13264

#FEATURES 2089 500 300 7 128 128 3703 500 1433
#CLASSES 5 5 18 2 5 40 6 3 7

#TRAIN 2496 1092 11331 5000 84671 90941 1596 9463 1192
#VAL 1664 729 5665 2500 42335 29799 1065 6310 796
#TEST 1041 456 5666 2500 42337 48603 666 3944 497

8.3 Training Details506

We conducted all experiments on a machine equipped with an Intel(R) Xeon(R) CPU E5-2690 v4 @507

2.60GHz processor, 440GB RAM, and a Tesla-P100 GPU with 16GB of memory. The experiments508

were executed using Python 3.9.12 and PyTorch 1.13.0 [26]. To optimize the hyperparameter search,509

we employed Optuna [1]. We utilized the Adam optimizer [16] for the optimization process.510

13

https://drive.google.com/drive/folders/1Jtpe4NVBJZKki99Apogkb-hdFnodczcz?usp=share_link

8.3.1 Unsupervised Training511

We conducted hyperparameter tuning for all unsupervised methods using 20 Optuna trials. The512

hyperparameter ranges and settings for each method are as follows:513

DEEPWALK: We set the learning rate to 0.01, number of epochs to 20 and the varied the random514

walk length over {8, 9, 10, 11, 12}. Additionally, we varied the context window size over {3, 4, 5}515

and the negative size (number of negative samples per positive sample) over {4, 5, 6}.516

NODE2VEC: For Node2Vec, we set the learning rate to 0.01 and number of epochs to 100. We varied517

the number of walks over {5, 10, 15} and the walk length over {40, 50, 60}. The p (return parameter)518

value was chosen from {0.1, 0.25, 0.5, 1} and q (in-out parameter) value was chosen from {3, 4, 5}.519

DGI: DGI [35] proposes a self-supervised learning framework for graph representation learning by520

maximizing the mutual information between local and global structural context of nodes, enabling521

unsupervised feature extraction in graph neural networks. We relied on the authors’ code1 and the522

prescribed hyperparameter ranges specific to the DGI model, for our experiments.523

MVGRL: MVGRL [8] proposes a method for learning unsupervised node representations by524

leveraging two views of the graph data, the graph diffusion view and adjacency graph view. We relied525

on the authors’ code2 and the prescribed hyperparameter ranges specific to the MVGRL model, for526

our experiments.527

GRACE: GRACE [36] proposes a technique where two different perspectives of the graph are528

created through corruption, and the learning process involves maximizing the consistency between529

the node representations obtained from these two views. We relied on the authors’ code3 and the530

prescribed hyperparameter ranges specific to the GRACE model, for our experiments.531

SUGRL: SUGRL [24] proposes a technique for learning unsupervised representations which capture532

node proximity, while also utilising node feature information. We relied on the authors’ code4 and533

the prescribed hyperparameter ranges specific to the SUGRL model, for our experiments.534

FiGURe: We followed the setting of the MVGRL model, setting the batch size to 2 and number of535

GCN layers to 1. We further tuned the learning rate over {0.00001, 0.0001, 0.001, 0.01, 0.1} and the536

sample size (number of nodes selected per batch) over {1500, 1750, 2000, 2250}.537

In each case, we selected the hyperparameters that resulted in the lowest unsupervised training loss.538

8.3.2 Supervised Training539

For all unsupervised methods, including the baselines and our method, we perform post-training540

supervised evaluation using logistic regression with 60 Optuna trials. We set the maximum number541

of epochs to 10000 and select the epoch and hyperparameters that yield the best validation accuracy.542

The learning rate is swept over the range {0.00001, 0.0001, 0.001, 0.0015, 0.01, 0.015, 0.1, 0.5, 1, 2},543

and the weight decay is varied over {10−5, 10−4, 10−3, 10−2, 10−1, 0, 0.5, 1, 3}.544

FiGURe: Along with the hyperparameters described above, following the approach described in [10],545

we also tune the combination coefficients (αi’s) with a separate learning rate. This separate learning546

rate is swept over the range {0.00001, 0.0001, 0.001, 0.0015, 0.01, 0.015, 0.1, 0.5, 1, 2}. In addition,547

we have a coefficient for masking the incoming embeddings from each filter, which is varied between548

0 and 1. Furthermore, these coefficients are passed through an activation layer, and we have two549

options: ‘none’ and ‘exp’. When ‘none’ is selected, the coefficients are used directly, while ‘exp’550

indicates that they are passed through an exponential function before being used.551

FiGURe with RFF: For the experiments involving Random Fourier Features (RFF), we use552

the same hyperparameter ranges as mentioned above. However, we also tune the gamma pa-553

rameter which is specific to RFF projections. The gamma parameter is tuned within the range554

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2}.555

1https://github.com/PetarV-/DGI.git
2https://github.com/kavehhassani/mvgrl.git
3https://github.com/CRIPAC-DIG/GRACE.git
4https://github.com/YujieMo/SUGRL.git

14

https://github.com/PetarV-/DGI.git
https://github.com/kavehhassani/mvgrl.git
https://github.com/CRIPAC-DIG/GRACE.git
https://github.com/YujieMo/SUGRL.git

8.3.3 Negative Sampling for the Identity Filter556

In our implementation of FGPRGNN or FBERNNET, we follow a specific procedure for handling the557

filters during training and evaluation. For all filters except the identity filter (I), we employ the558

negative sampling approach described in Section 6. However, the identity filter is treated differently.559

During training, we exclude the identity filter and only include it during evaluation.560

During negative sampling, the generation of the negative anchor involves shuffling the node features,561

followed by premultiplying the shuffled node feature matrix with the filter matrix and computing the562

mean. On the other hand, for the positive anchor, the same procedure is applied without shuffling the563

node features. This approach encourages the model to learn meaningful patterns and relationships in564

the data when the filter matrix is not the identity matrix.565

The decision to exclude the identity filter during training is based on the observation that it presents a566

special case where the positive and negative anchors become the same. As a result, the model would567

optimize and minimize the same quantity, potentially leading to trivial solutions. To prevent this, we568

exclude the identity filter during training.569

By excluding the identity filter during training, we ensure that the model focuses on the other filters in570

FGPRGNN or FBERNNET to capture and leverage the diverse information present in the graph. Including571

the identity filter only during evaluation allows us to evaluate its contribution to the final performance572

of the model. This approach helps prevent the model from learning trivial solutions and ensures that573

it learns meaningful representations by leveraging the other filters.574

8.4 Evaluation on large graphs575

Table 8: Contains node classification accuracy percentages on two large-scale datasets OGBN-
ARXIV and ARXIV-YEAR have been added. FiGURe32 and FiGURe128 refer to FiGURe trained
with 32 and 128 dimensional representations, respectively, and then projected using RFF. The
remaining models are trained at 512 dimensions. Higher numbers indicate better performance. Blue,
Red and Green represent the 1st, 2nd and 3rd best performing models, for a particular dataset.

HETEROPHILIC DATASETS HOMOPHILIC DATASETS

SQUIRREL CHAMELEON ROMAN-EMPIRE MINESWEEPER ARXIV-YEAR CORA CITESEER PUBMED OGBN-ARXIV Av. ∆gain

DGI 39.61 (1.81) 59.28 (1.23) 47.54 (0.76) 82.51 (0.47) 40.59 (0.09) 84.57 (1.22) 73.96 (1.61) 86.57 (0.52) 65.58 (0.00) 6.61
MVGRL 39.90 (1.39) 54.61 (2.29) 68.50 (0.38) 85.60 (0.35) OOM 86.22 (1.30) 75.02 (1.72) 87.12 (0.35) OOM 4.39
GRACE 53.15 (1.10) 68.25 (1.77) 47.83 (0.53) 80.22 (0.45) OOM 84.79 (1.51) 67.60 (2.01) 87.04 (0.43) OOM 5.54
SUGRL 43.13 (1.36) 58.60 (2.04) 39.40 (0.49) 82.40 (0.58) 36.96 (0.19) 81.21 (2.07) 67.50 (1.62) 86.90 (0.54) 65.80 (0.00) 8.64

FiGURe32 48.89 (1.55) 65.66 (2.52) 67.67 (0.77) 85.28 (0.71) 41.30 (0.21) 82.56 (0.87) 71.25 (2.20) 84.18 (0.53) 66.58 (0.00) 3.18
FiGURe128 48.78 (2.48) 66.03 (2.19) 68.10 (1.09) 85.16 (0.58) 41.94 (0.15) 86.14 (1.13) 73.34 (1.91) 85.41 (0.52) 69.11 (0.00) 2.11

FiGURe 52.23 (1.19) 68.55 (1.87) 70.99 (0.52) 85.58 (0.49) 42.26 (0.20) 87.00 (1.24) 74.77 (2.00) 88.60 (0.44) 69.69 (0.00) 0.00

Similar to Table 1, Table 8, provides a comparison with SOTA methods such as DGI, MVGRL,576

GRACE and SUGRL. However, in this table we also incorporate the large-scale datasets ARXIV-577

YEAR and OGBN-ARXIV. FiGURe shows good performance on these datasets as well, demonstrat-578

ing the scalability of our method. The last column, average percentage gain, is updated accordingly.579

Two baseline methods MVGRL and GRACE run into memory issues on the larger datasets and580

are accordingly reported OOM in the table. Even the lower-dimensional representations (with RFF581

projections) are able to beat the baselines on these large scale datasets. Overall, FiGURe is consis-582

tently able to provide gains over the baselines methods regardless of the kind of graph, homophilic,583

heterophilic or large-scale. This once again demonstrates the generalizability of FiGURe. It is584

noteworthy that computational efficiency gained by reducing the dimension size becomes significant585

with the scale of the dataset. On ARXIV-YEAR for example, 128 dimensional embeddings give 1.6x586

speedup and 32 dimensional embeddings give 1.7x speedup.587

8.5 Comparison with other Supervised Methods588

Table 9 presents a comparison with common supervised baselines. Specifically, we choose 3 models589

for comparison, representing hr three different kinds of supervised methods, standard aggregation590

models (GCN), spectral filter-based models (GPRGNN) and smart-aggregation models (H2GCN).591

There are two key observations from this table. Firstly, FiGURe is competitive with the supervised592

baselines, lagging behind only by a few percentage points in some cases. This suggests that much of593

the information that is required by the downstream tasks, captured by the supervised models, can be594

made available through unsupervised methods like FiGURe which uses filter banks. It is important595

15

to note that in FiGURe we only utilize logistic regression while evaluating on the downstream task.596

This is much more efficient that training a graph neural network end to end. Additionally it is possible597

that further gains may be obtained by utilizing a non-linear model like an MLP.598

Furthermore, as indicated by 9, we can gain further computational efficiency by utilizing lower599

dimensional representations like 32 and 128 (with RFF), and still not compromise significantly on600

the performance.601

Overall FiGURe manages to remain competitive despite not having access to task-specific labels and602

is computationally efficient as well.603

Table 9: Contains node classification accuracy percentages on heterophilic and homophilic datasets.
GCN, GPRGNN and H2GCN are supervised methods. FiGURe32 and FiGURe128 refer to
FiGURe trained with 32 and 128 dimensional representations, respectively, and then projected
using RFF. The remaining models are trained at 512 dimensions. Higher numbers indicate better
performance.

HETEROPHILIC DATASETS HOMOPHILIC DATASETS

SQUIRREL CHAMELEON ROMAN-EMPIRE MINESWEEPER ARXIV-YEAR OGBN-ARXIV CORA CITESEER PUBMED

GCN 47.78 (2.13) 62.83 (1.52) 73.69 (0.74) 89.75 (0.52) 46.02 (0.26) 69.37 (0.00) 87.36 (0.91) 76.47 (1.34) 88.41 (0.46)
GPRGNN 46.31 (2.46) 62.59 (2.04) 64.85 (0.27) 86.24 (0.61) 45.07 (0.21) 68.44 (0.00) 87.77 (1.31) 76.84 (1.69) 89.08 (0.39)
H2GCN 37.90 (2.02) 58.40 (2.77) 60.11 (0.52) 89.71 (0.31) 49.09 (0.10) OOM 87.81 (1.35) 77.07 (1.64) 89.59 (0.33)

FiGURe32 48.89 (1.55) 65.66 (2.52) 67.67 (0.77) 85.28 (0.71) 41.30 (0.21) 66.58 (0.00) 82.56 (0.87) 71.25 (2.20) 84.18 (0.53)
FiGURe128 48.78 (2.48) 66.03 (2.19) 68.10 (1.09) 85.16 (0.58) 41.94 (0.15) 69.11 (0.00) 86.14 (1.13) 73.34 (1.91) 85.41 (0.52)

FiGURe 52.23 (1.19) 68.55 (1.87) 70.99(0.52) 85.58 (0.49) 42.26 (0.20) 69.69 (0.00) 87.00 (1.24) 74.77 (2.00) 88.60 (0.44)

8.6 RFF Projections604

As shown in Section 6.2 and in Section 6.4, RFF projections are a computationally efficient way to605

achieve training by preserving the latent class behavior present in lower dimensional embeddings,606

by projecting them into a higher dimensional linearly separable space. The natural question that607

comes up is how do we compute these RFF projections? We provide an algorithm to compute the608

RFF projections in this section, in algorithm 1. Note that this follows [31].609

Algorithm 1 Random Fourier Feature Computation

Require: Input data X ∈ RN×d, target dimension D, kernel bandwidth γ
Ensure: Random Fourier Features Z ∈ RN×D

1: Initialize random weight matrix W ∈ Rd×D with Gaussian distribution
2: Initialize random bias vector b ∈ RD uniformly from [0, 2π]
3: Compute scaled input X ′ = γXW + b

4: Compute random Fourier features Z =
√

2
D cos(X ′)

5: return Z

8.7 Computational Comparisons with other Other Unsupervised Methods610

Table 10: Mean epoch time (in milliseconds) averaged across 20 trials with different hyperparameters.
A lower number means the method is faster. Even though our method is slower at 512 dimensions,
using 128 and 32 dimensional embeddings significantly reduces the mean epoch time. Using RFF as
described in 6.2 we are able to prevent the performance drops experienced by SUGRL and GRACE.

SUGRL GRACE FiGURe FiGURe128 FiGURe32
CORA 15.92 (4.10) 51.19 (6.8) 114.38 (0.51) 20.10 (0.46) 11.54 (0.34)

CITESEER 24.37 (4.92) 77.16 (7.2) 156.24 (0.56) 30.30 (0.60) 17.16 (0.51)
SQUIRREL 33.63 (6.94) 355.2 (67.34) 257.65 (0.76) 47.72 (1.40) 23.52 (1.14)

CHAMELEON 16.91 (5.90) 85.05 (14.1) 98.36 (0.64) 18.56 (0.39) 11.63 (0.48)

In Section 6.4, we compared the computational time of FiGURe with MVGRL and DGI, as all611

three methods fall under the category of unsupervised methods that preform contrastive learning612

with representations of the entire graph. However, there is another class of methods, such as613

16

SUGRL and GRACE, that contrast against other nodes without the need for graph representation614

computation. Consequently, these methods exhibit higher computational efficiency. Hence, as show615

in Table 10 upon initial inspection, it appears that SUGRL (at 512 dimensions) exhibits the highest616

computational efficiency, even outperforming FiGURe128. However, despite its computational617

efficiency, the significant drop in performance across datasets (as discussed in Section 6.1) renders618

it less favorable for consideration. In fact, FiGURe32 offers computational cost savings compared619

to SUGRL, while also achieving significantly better downstream classification accuracy. Turning620

to GRACE, it demonstrates greater computational efficiency than FiGURe (at 512 dimensions) for621

low to medium-sized graphs. However, as the graph size increases, due to random node feature622

level masking and edge level masking, the computational requirements of GRACE substantially623

increase (as evidenced by the results on SQUIRREL). Therefore, for larger graphs with more than624

approximately 5000 nodes, FiGURe proves to be more computationally efficient than GRACE (even625

at 512 dimensions). Furthermore, considering the performance improvements exhibited by FiGURe,626

it is evident that FiGURe (combined with RFF projections) emerges as the preferred method for627

unsupervised contrastive learning in graph data.628

8.8 Choice of Filter Banks629

In Section 4.1, we explore the flexibility of FiGURe to accommodate various filter banks. When630

making a choice, it is crucial to examine the intrinsic properties of the filters contained within different631

filter banks. We pick two filter banks FBERNNET and FGPRGNN and provide an overview of the filters632

contained in the filter banks. We use these two filter banks as examples to illustrate what should one633

be looking for, while choosing a filter bank.634

Bernstein Polynomials: Figure 3 illustrates that as the number of Bernstein Basis increases, the635

focus on different parts of the eigenspectrum also undergoes changes. With an increase in polynomial636

order, two notable effects can be observed. Firstly, the number of filters increases, enabling each637

filter to focus on more fine-grained eigenvalues. This expanded set of polynomial filters allows for a638

more detailed examination of the eigenspectrum. Secondly, if we examine the first and last Bernstein639

polynomials, we observe an outward shift in their shape. This shift results in the enhancement of a640

specific fine-grained part at the ends of the spectrum. These observations demonstrate that Bernstein641

polynomials offer the capability to selectively target and enhance specific regions of interest within642

the eigenspectrum643

Standard Basis: Figure 3 reveals two key observations. Firstly, at a polynomial order of 2, the644

standard basis exhibit focus at the ends of the spectrum, in contrast to the behavior of Bernstein645

polynomials, which tend to concentrate more on the middle of the eigenspectrum. This discrepancy646

highlights the distinct characteristics and emphasis of different polynomial bases in capturing different647

parts of the eigenspectrum. Secondly, as the number of polynomials increases (in contrast to648

Bernstein polynomials), the lower order polynomials remain relatively unchanged. Instead, additional649

polynomials are introduced, offering a more fine-grained focus at the ends of the spectrum. This650

expansion of polynomials allows for a more detailed exploration of specific regions of interest within651

the the ends of eigenspectrum.652

In the context of filter banks, previous studies [20, 4] have demonstrated that certain datasets, such as653

SQUIRREL and CHAMELEON, benefit from frequency response functions that enhance the tail ends654

of the eigenspectrum. This observation suggests that the standard basis, which naturally focuses655

on the ends of the spectrum, may outperform Bernstein basis functions at lower orders. However,656

as the order of the Bernstein basis increases, as discussed in 4.1, there is a notable improvement in657

performance. This can be attributed to the increased focus of Bernstein basis functions on specific658

regions, particularly the ends of the spectrum. As a result, higher-order Bernstein filters exhibit659

enhanced capability in capturing important information in those regions. It is worth noting that the660

choice between FGPRGNN and FBERNNET depends on the specific requirements of the downstream661

task. If the task necessitates a stronger focus on the middle of the spectrum or requires a band-pass or662

comb-like frequency response, FBERNNET is likely to outperform FGPRGNN. Thus, the selection of the663

appropriate filter bank should be based on the desired emphasis on different parts of the eigenspectrum.664

Regarding the performance comparison between FBERNNET and FGPRGNN, it is plausible that as we665

increase the order of the Bernstein basis, the performance could potentially match that of FGPRGNN.666

However, further investigation and experimentation are required to determine the specific conditions667

and orders at which this convergence in performance occurs.668

17

8.9 Visualising RFF Behavior and Community Structure669

As shown in prior sections, FiGURe improves on both computational efficiency as well as perfor-670

mance by utilising RFF projections. In this section, we aim to gain insights into the behavior of671

RFF projections and comprehend their underlying operations through a series of simple visualizations.672

t-SNE Plots: Figure 4 offers insights into the structure of the embeddings for the CORA dataset673

across different dimensions. Remarkably, even at lower dimensions (e.g., 32 dimensions), clear674

class structures are discernible, indicating that the embeddings capture meaningful information675

related to the class labels. Furthermore, when employing RFF to project the embeddings into higher676

dimensions, these distinct class structures are still preserved. This suggests that the role of RFF is not677

to introduce new information, but rather to enhance the suitability of lower-dimensional embeddings678

for linear classifiers while maintaining the underlying class-related information. Notably, even at679

512 dimensions, the class structures remain distinguishable. However, it is worth noting that the680

class-specific embeddings appear to be more tightly clustered and less dispersed compared to the681

32-dimensional embeddings or the projected 32-dimensional embeddings. This suggests that learning682

a 512-dimensional embedding differs inherently from learning a 32-dimensional embedding and683

subsequently projecting it into higher dimensions.684

Correlation Plots: Figure 5 offers insights into the correlation patterns within the embeddings gener-685

ated from the SQUIRREL dataset across different dimensions. In lower dimensions, the embeddings686

exhibit high correlation with each other, which can be attributed to the presence of a mixture of687

topics or latent classes within the dataset. However, when the embeddings are projected to higher688

dimensions using RFF, the correlation is reduced, and a block diagonal matrix emerges. This block689

diagonal structure indicates the presence of distinct classes or communities within the dataset. Even at690

512 dimensions, a more refined block diagonal structure can be observed compared to the correlation691

matrix of the 32-dimensional embeddings. Furthermore, it is noteworthy that the correlation of692

the projected embeddings can be regarded as a sparser version of the correlation observed in the693

512-dimensional embeddings.694

18

(a) Five Bernstein Basis (b) Five Standard Basis

(c) Seven Bernstein Basis (d) Seven Standard Basis

(e) Nine Bernstein Basis (f) Nine Standard Basis

(g) Eleven Bernstein Basis (h) Eleven Standard Basis

Figure 3: The figures contain the Bernstein basis as well as standard basis for different degrees. The
x-axis of the figures represents the eigenvalues of the Laplacian matrix, while the y-axis represents
the magnitude of the polynomials. It is important to note that while plotting the standard polynomials,
they are computed with respect to the Laplacian matrix (Ln) rather than the adjacency matrix. As a
result, the eigenvalues lie between [0, 2]. On the other hand, the Bernstein polynomials are typically
defined for the normalised Laplacian matrix, and therefore there is no change in the eigenvalue
range (the eigenvalues of the normalised Laplacian matrix typically range from 0 to 2). By using
the Laplacian matrix as the basis for plotting the polynomials, we can observe the behavior and
magnitude of the polynomials at different eigenvalues, providing insights into their spectral properties
and frequency response characteristics.

19

(a) FiGURe32 (without RFF) on
the CORA dataset

(b) FiGURe32 (with RFF) on the
CORA dataset

(c) FiGURe (without RFF) on
the CORA dataset

Figure 4: The figures present t-SNE plots for the CORA dataset. These plots showcase the embeddings
generated by the F3 filter, which corresponds to A2 in the case of FiGURe. The t-SNE plots are
generated at different embedding dimensions, providing insights into the distribution and clustering
of the embeddings for each dataset.

(a) FiGURe32 (without RFF) on
the SQUIRREL dataset

(b) FiGURe32 (with RFF) on the
SQUIRREL dataset

(c) FiGURe (without RFF) on
the SQUIRREL dataset

Figure 5: The figures display the normalized correlation plots for the SQUIRREL dataset. These plots
illustrate the normalized correlation values between embeddings generated by the F3 filter. In the
case of FiGURe, this filter corresponds to the square of the adjacency matrix (A2). The normalized
correlation provides a measure of similarity or agreement between the embeddings obtained using
the F3 filter for different embedding dimensions. These plots can help analyze the consistency or
variation of embeddings across different dimensions and datasets.

20

	Introduction
	Related Work
	Problem Setting
	Preliminaries
	Filter Banks
	Random Feature Maps for Kernel Approximations

	Proposed Approach
	Unsupervised Representation Learning
	Supervised Representation Learning

	Experimental Results
	RQ1: FiGURe versus SOTA Methods
	RQ2: RFF Projections on Lower Dimensional Representations
	RQ3: Sharing Weights Across Filter Specific Encoders
	RQ4: Computational Efficiency
	RQ5: Experiments on Other Filter Banks

	Conclusion and Future Work
	Supplementary Material
	Reproducibility
	Datasets
	Training Details
	Unsupervised Training
	Supervised Training
	Negative Sampling for the Identity Filter

	Evaluation on large graphs
	Comparison with other Supervised Methods
	RFF Projections
	Computational Comparisons with other Other Unsupervised Methods
	Choice of Filter Banks
	Visualising RFF Behavior and Community Structure

