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Abstract

Unsupervised node representations learnt using contrastive learning-based methods
have shown good performance on downstream tasks. However, these methods rely
on augmentations that mimic low-pass filters, limiting their performance on tasks
requiring different eigen-spectrum parts. This paper presents a simple filter-based
augmentation method to capture different parts of the eigen-spectrum. We show
significant improvements using these augmentations. Further, we show that sharing
the same weights across these different filter augmentations is possible, reducing the
computational load. In addition, previous works have shown that good performance
on downstream tasks requires high dimensional representations. Working with high
dimensions increases the computations, especially when multiple augmentations
are involved. We mitigate this problem and recover good performance through
lower dimensional embeddings using simple random Fourier feature projections.
Our method, FiGURe, achieves an average gain of up to 4.4%, compared to the
state-of-the-art unsupervised models, across all datasets in consideration, both
homophilic and heterophilic. Our code can be found at: https://github.com/
microsoft/figure.

1 Introduction

Contrastive learning is a powerful method for unsupervised graph representation learning, achieving
notable success in various applications [44, 15]. However, these evaluations typically focus on tasks
exhibiting homophily, where task labels strongly correlate with the graph’s structure. An existing
edge suggests the connected nodes likely share similar labels in these scenarios. However, these
representations often struggle when dealing with heterophilic tasks, where edges tend to connect
nodes with different labels. Several papers [7, 17, 4, 28] have tackled the problem of heterophily
by leveraging information from both low and high-frequency components. However, these methods
operate in the semi-supervised setting, and the extension of these ideas in unsupervised learning
still needs to be explored. Inspired by the insights in these papers, we propose a simple method
incorporating these principles.

Our approach introduces filter banks as additional views and learns separate representations for
each filter bank. However, this approach faces two main challenges: Firstly, storing representations
from each view can become prohibitively expensive for large graphs; secondly, contrastive learning

∗Both authors contributed equally to this work. Work done while the authors were Research Fellows at
Microsoft Research India.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/microsoft/figure
https://github.com/microsoft/figure
https://www.microsoft.com/en-us/research/academic-program/research-fellows-program-at-microsoft-research-india/


methods typically demand high-dimensional representations, which increase both the computational
cost of training and the storage burden. We employ a shared encoder for all filter banks to tackle the
first challenge. Our results confirm that a shared encoder performs on par with independent encoders
for each filter bank. This strategy enables us to reconstruct filter-specific representations as needed,
drastically reducing the storage requirement. For the second challenge, we train our models with
low-dimensional embeddings. Then, we use random Fourier feature projection [40] to lift these
low-dimensional embeddings into a higher-dimensional space. Kernel tricks [23] were typically used
in classical machine learning to project low-dimensional representation to high dimensions where
the labels can become linearly separable. However, constructing and leveraging the kernels in large
dataset scenarios could be expensive. To avoid this issue, several papers [40, 41, 20, 36, 26] proposed
to approximate the map associated with the kernel. For our scenario, we use the map associated with
Gaussian kernel [40]. We empirically demonstrate that using such a simple approach preserves high
performance for downstream tasks, even in the contrastive learning setting. Consequently, our solution
offers a more efficient approach to unsupervised graph representation learning in computation and
storage, especially concerning heterophilic tasks. The proposed method exhibits simplicity not only in
the augmentation of filters but also in its ability to learn and capture information in a low-dimensional
space, while still benefiting from the advantages of large-dimensional embeddings through Random
Fourier Feature projections.

Our contributions in this work are, 1] We propose a simple scheme of using filter banks for learning
representations that can cater to both heterophily and homophily tasks, 2] We address the computa-
tional and storage burden associated with this simple strategy by sharing the encoder across these
various filter views, 3] By learning a low-dimensional representation and later projecting it to high
dimensions using random Fourier Features, we further reduce the burden, 4] We study the perfor-
mance of our approach on four homophilic and seven heterophilic datasets. Our method, FiGURe,
achieves an average gain of up to 4.4%, compared to the state-of-the-art unsupervised models, across
all datasets in consideration, both homophilic and heterophilic. Notably, even without access to
task-specific labels, FiGURe performs competitively with supervised methods like GCN [25].

2 Related Work

Several unsupervised representation learning methods have been proposed in prior literature. Ran-
dom walk-based methods like Node2Vec [14] and DeepWalk [37] preserve node proximity but tend
to neglect structural information and node features. Contrastive methods, such as DEEP GRAPH
INFOMAX (DGI) [44], maximize the mutual information (MI) between local and global representa-
tions while minimizing the MI between corrupted representations. Methods like MVGRL [15] and
GRACE [45] expand on this, by integrating additional views into the MI maximization objective.
However, most of these methods focus on the low frequency components, overlooking critical insights
from other parts. Semi-supervised methods like GPRGNN [7], BERNNET [17], and PPGNN [28]
address this by exploring the entire eigenspectrum, but these concepts are yet to be applied in the
unsupervised domain. This work proposes the use of a filter bank to capture information across the
full eigenspectrum while sharing an encoder across filters. Given the high-dimensional representation
demand of contrastive learning methods, we propose using Random Fourier Features (RFF) to project
lower-dimensional embeddings into higher-dimensional spaces, reducing computational load without
sacrificing performance. The ensuing sections define our problem, describe filter banks and random
feature maps, and explain our model and experimental results.

3 Problem Setting

In the domain of unsupervised representation learning, our focus lies on graph data, denoted as
G = (V, E), where V is the set of vertices and E the set of edges (E ⊆ V × V). We associate an
adjacency matrix with G, referred to as A : A ∈ {0, 1}n×n, where n = |V| corresponds to the
number of nodes. Let X ∈ Rn×d be the feature matrix. We use AI to represent A+ I with I is the
identity matrix, while DAI

signifies the degree matrix of AI. We also define An as D−1/2
AI

AID
−1/2
AI

.
No additional information is provided during training. The goal is to learn a parameterized encoder,
Eθ : Rn×n × Rn×d 7→ Rn×d′

, where d′ ≪ d. This encoder produces a set of node representations
Eθ(X,An) = {h1, h2, ..., hn} where each hi ∈ Rd′

represents a rich representation for node i. The
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subsequent section will provide preliminary details about filter banks and random feature maps before
we discuss the specifics of the proposed approach.

4 Preliminaries

Our approach relies on filter banks and random feature maps. In this section, we briefly introduce
these components, paving the way for a detailed explanation of our approach.

4.1 Filter Banks

Graph Fourier Transform (GFT) forms the basis of Graph Neural Networks (GNNs). A GFT is defined
using a reference operator R which admits a spectral decomposition. Traditionally, in the case of
GNNs, this reference operator has been the symmetric normalized laplacian Ln = I−An or the An

as simplified in [25]. A graph filter is an operator that acts independently on the entire eigenspace of
a diagonalisable and symmetric reference operator R, by modulating their corresponding eigenvalues.
[43, 42]. Thus, a graph filter H is defined via the graph filter function g(.) operating on the
reference operator as H = g(R) = Ug(Λ)UT . Here, Λ = diag([λ1, λ2, ..., λn]), where λi
denotes the eigenvalues of the reference operator. We describe a filter bank as a set of filters,
denoted as F = {F1,F2, ...,FK}. Both GPRGNN [7] and BERNNET [17] employ filter banks,
comprising of polynomial filters, and amalgamate the representations from each filter bank to
enhance the performance across heterophilic datasets. GPRGNN uses a filter bank defined as
FGPRGNN = {I,An, ...,An

K−1}, while FBERNNET = {B0,B1, ...,BK−1} characterizes the filter
bank utilized by BERNNET. Here, Bi =

1
2K−1

(
K−1

i

)
(2I − Ln)

K−i−1(Ln)
i. Each filter in these

banks highlights different parts of the eigenspectrum. By tuning the combination on downstream
tasks, it offers the choice to select and leverage the right spectrum to enhance performance. Notably,
unlike traditional GNNs, which primarily emphasize low-frequency components, higher frequency
components have proved useful for heterophily [4, 7, 17, 28]. Consequently, a vital takeaway is that
for comprehensive representations, we must aggregate information from different parts of the
eigenspectrum and fine-tune it for specific downstream tasks.

4.2 Random Feature Maps for Kernel Approximations

Before the emergence of deep learning models, the kernel trick was instrumental in learning non-linear
models. A kernel function, k : Rd × Rd 7→ R, accepts two input features and returns a real-valued
score. Given a positive-definite kernel, Mercer’s Theorem [30] assures the existence of a feature
map ϕ(·), such that k(x, y) = ⟨ϕ(x), ϕ(y)⟩. Leveraging the kernel trick, researchers combined
Mercer’s theorem with the representer theorem [23], enabling the construction of non-linear models
that remain linear in k. These models created directly using k instead of the potentially complex
ϕ, outperformed traditional linear models. The implicit maps linked with these kernels projected
the features into a significantly high-dimensional space, where targets were presumed to be linearly
separable. However, computational challenges arose when dealing with large datasets. Addressing
these issues, subsequent works [41, 20, 36, 40] introduced approximations of the map associated with
individual kernels through random projections into higher-dimensional spaces (ϕ′(.)). This approach
ensures that ⟨ϕ′(x), ϕ′(y)⟩ ≈ k(x, y). These random feature maps are inexpensive to compute and
affirm that simple projections to higher-dimensional spaces can achieve linear separability. The
critical insight is that computationally efficient random feature maps, such as Random Fourier
features (RFF) [40], exist. These maps project lower-dimensional representations into higher
dimensions, enhancing their adaptability for downstream tasks..

5 Proposed Approach

The following section delineates the process of unsupervised representation learning. Then, we detail
the use of filter bank representations in downstream tasks with random feature maps.

5.1 Unsupervised Representation Learning

Our method FiGURe (Filter-based Graph Unsupervised Representation Learning) builds on concepts
introduced in [18, 44], extending the maximization of mutual information between node and global
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filter representations for each filter in the filter bank F = {F1,F2, ...FK}. In this approach, we
employ filter-based augmentations, treating filter banks as "additional views" within the context
of contrastive learning schemes. In the traditional approach, alternative baselines like DGI have
employed a single filter in the GPRGNN filter bank. Additionally, MVGRL attempted to use the
diffusion kernel; nevertheless, they only learned a single representation per node. We believe that
this approach is insufficient for accommodating a wide range of downstream tasks. We construct
an encoder for each filter to maximize the mutual information between the input data and encoder
output. For the ith filter, we learn an encoder, Eθ : Xi → X ′

i , denoted by learnable parameters θ. In
this context, Xi represents a set of examples, where each example [X̂ij , F̂ij ] ∈ Xi consists of a filter
Fi, its corresponding nodes and node features, drawn from an empirical probability distribution Pi.
That is, Pi captures the joint distribution of a filter Fi, its corresponding nodes and node features
([X,Fi]). Note that [X̂ij , F̂ij ] denote nodes, node features and edges sampled from the ith filter
([X,Fi]) basis the probability distribution Pi. Note that X̂ij ∈ RN ′×d and F̂ij ∈ RN ′×N ′

. X ′
i

defines the set of representations learnt by the encoder on utilizing feature information as well as
topological information from the samples, sampled from the joint distribution Pi. The goal, aligned
with [29, 18, 44], is to identify θ that maximizes mutual information between [X,Fi] and Eθ(X,Fi),
or Ii([X,Fi], Eθ(X,Fi)). While exact mutual information (MI) computation is infeasible due to
unavailable exact data and learned representations distributions, we can estimate the MI using the
Jensen-Shannon MI estimator [9, 32], defined as:

IJSD
i,θ,ω([X,Fi], Eθ(X,Fi)) := EPi [−sp(−Tθ,ω([X̂ij , F̂ij ], Eθ(X̂ij , F̂ij))]−

EPi×P̃i
[sp(Tθ,ω([X̂ij , F̂ij ], Eθ[X̃ij , F̃ij ])]

(1)

Figure 1: Unsupervised learning of node em-
beddings by maximizing mutual information
between node and graph representations over
the graphs from the filter bank. Note that the
parameter Θ is shared across all the filters.

Here, Tω : Xi × X ′
i → R represents a discrimi-

nator function with learnable parameters ω. Note
that [X̃ij , F̃ij ] is an input sampled from P̃i, which
denotes a distribution over the corrupted input data
(more details given below). The function sp(.) cor-
responds to the softplus function [10]. Addition-
ally, Tθ,ω([hij ]1, [hij ]2) = Dw ◦ (R([hij ]1), [hij ]2),
where R denotes the readout function responsible
for summarizing all node representations by aggre-
gating and distilling information into a global filter
representation. We introduce a learnable discrimina-
tor Dω, where Dω(., .) represents the joint probabil-
ity score between the global representation and the
node-specific patch representation. Note that [hij ]1,
denotes representations obtained after passing sam-
ples sampled from the original distribution Pi, to the
encoder, and [hij ]2, denotes representations obtained
after passing samples sampled from the original dis-
tribution Pi or samples sampled from the corrupted
distribution P̃i to the encoder. Intuitively, Eq. 1 im-
plies that we would want to maximize the mutual
information between the local (patch) representations
of the nodes and their corresponding global graph
representation, while minimising the mutual information between a global graph representation
and the local representations of corrupted input data. Note that: [X̃ij , F̃ij ] denotes a corrupted
version of input features and given filter. More details with regards to this will be given below.
In our approach, we first obtain node representations by feeding the filter-specific topology and
associated node features into the encoder: Hij = Eθ(Xij ,Fij) = {hFij

1 , h
Fij

2 , ..., h
Fij

N ′ }. Note that
Hij has the following dimensions RN ′×d′

.To obtain global representations, we employ a readout
function R : RN ′×d′ → Rd′

, which combines and distills information into a global representa-
tion hFij

g = R(Hij) = R(Eθ(Xij ,Fij)). Instead of directly maximizing the mutual information
between the local and global representations, we maximize Dω(., .). This joint score should be
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higher when considering global and local representations obtained from the same filter, as opposed
to the joint score between the global representation from one filter and the local representation
from corrupted (Xij ,Fij). To generate negative samples for contrastive learning, we employ a
corruption function C : RN ′×d × RN ′×N ′ → RN ′×d × RN ′×N ′

, which yields corrupted samples
denoted as [X̃ij , F̃ij ] = C(Xij ,Fij). The designed corruption function generates data decorrelated
with the input data. Note that [X̃ij , F̃ij ] denote nodes, node features and edges sampled from
the corrupted version of ith filter, basis the probability distribution P̃i. The corruption function
can be designed basis the task at hand. We employ a simple corruption function, whose details
are present in the experimental section. Let the corrupted node representations be as follows:

H̃ij = Eθ(C(Xij ,Fij)) = Eθ(X̃ij , F̃ij) = {h̃Fij

1 , h̃
Fij

2 , ..., h̃
Fij

N ′ }. In order to learn representations
across all filters in the filter bank, we aim to maximise the average estimate of mutual information
(MI) across all filters, considering K filters, defined by IF .

IF =
1

K

K∑
i=1

IJSD
i,θ,ω ([X,Fi], Eθ(X,Fi)) (2)

Maximising the Jenson-Shannon MI estimator can be approximately optimized by reducing the
binary cross entropy loss defined between positive samples (sampled from the Pi) and the negative
samples (sampled from P̃i). Therefore, for each filter, the loss for is defined as follows:

LFi1 = − 1

2N ′E([Xij ,Fij ]∼Pi)

 N ′∑
k=1

[log(Dω(h
Fij

k , hFij
g )) + log(1−Dω(h̃

Fij

k , hFij
g ))]

 (3)

Note that for Eq. 3, the global representation (hFij
g ) is generated by R(Eθ(Xij ,Fij)). The local

representations (h̃Fij

k ∀ k) are constructed by passing the sampled graph and features through a
corruption function (see H̃ij). Therefore to learn meaningful representations across all filters the
following objective is minimised:

L =
1

K

K∑
i=1

LFi (4)

Managing the computational cost and storage demands for large graphs with distinct node repre-
sentations for each filter poses a challenge, especially when contrastive learning methods require
high dimensions. To address this, we employ parameter sharing, inspired by studies like [7] and
[17]. This approach involves sharing the encoder’s parameters θ and the discriminator’s parameters ω
across all filters. Instead of storing dense filter-specific node representations, we only store the shared
encoder’s parameters and the first-hop neighborhood information for each node per filter, reducing
storage requirements. To obtain embeddings for downstream tasks, we reconstruct filter-specific
representations using a simple one-layer GNN. This on-demand reconstruction significantly reduces
computational and storage needs associated with individual node representations. Fig 1 illustrates
such a simple encoder’s mutual information-based learning process. To address the second challenge,
we initially train our models to produce low-dimensional embeddings that capture latent classes,
as discussed in [2]. These embeddings, while informative, lack linear separability. To enhance
separability, we project these low-dimensional embeddings into a higher-dimensional space using
random Fourier feature (RFF) projections, inspired by kernel methods (see Section 4.2). This ap-
proach improves the linear separability of latent classes, as confirmed by our experimental results in
Section 6.2, demonstrating the retention of latent class information in these embeddings.

5.2 Supervised Representation Learning

After obtaining representations for each filter post the reconstruction of the node representations,
learning an aggregation mechanism to combine information from representations that capture different
parts of the eigenspectrum for the given task is necessary. We follow learning schemes from [7, 17, 28],
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Figure 2: Supervised Learning: Using the trained parameter Θ, we generate the node embeddings by
encoding the filtered graphs that get consumed in the classification task.

learning a weighted combination of filter-specific representations. The combined representations for
downstream tasks, considering K filters from filter bank F, are as follows:

Z =

K∑
i=1

αiϕ
′(Eθ(X,Fi)) (5)

The parameters αi’s are learnable. Additionally, the function ϕ′(.) represents either the RFF projec-
tion or an identity transformation, depending on whether Eθ(X,Fi) is low-dimensional or not. A
classifier model (e.g. logistic regression) consumes these embeddings, where we train both the αi’s
and the weights of the classifier. Fig 2 illustrates this process. Notably, semi-supervised methods
like [28, 7, 17] differ as they learn both encoder and coefficients from labeled data, while our method
pre-trains the encoder and learns task-specific combinations of filter-specific representations.

6 Experimental Results

Training Details: We define a single-layer graph convolutional network (GCN) with shared weights
(Θ) across all filters in the filter bank (F) as our encoder. Therefore, the encoder can be expressed as
follows: Eθ(X,Fi) = ψ(FiXΘ). It is important to note that Fi represents a normalized filter with
self-loops, which ensures that its eigenvalues are within the range of [0, 2]. The non-linearity function
ψ refers to the parametric rectified linear unit [16]. As we work with a single graph, we obtain the
positive samples by sampling nodes from the graph. Using these sampled nodes, we construct a new
adjacency list that only includes the edges between these sampled nodes in filter Fi. On the other
hand, the corruption function C operates on the same sampled nodes. However, it randomly shuffles
the node features instead of perturbing the adjacency list. In essence, this involves permuting the node
features while maintaining a consistent graph structure. This action introduces a form of corruption,
altering each node’s feature to differ from its original representation in the data. Similar to [44], we
employ a straightforward readout function that involves averaging the representations across all nodes
for a specific filter Fi: R(Hi) = σ

(
1
N

∑N
j=0 h

Fi
j

)
where σ denotes the sigmoid non-linearity. We

utilize a bilinear scoring function Dω(., .), whose parameters are also shared across all filters, where
Dω(h

Fi
j , hFi

g ) = σ(hFiT
j WhFi

g ). We learn the encoder and discriminator parameters by optimising
Eq. 4. While we could use various filter banks, we specifically employ the filter bank corresponding
to GPRGNN (FGPRGNN) for all our experiments. However, we conduct an ablation study (see 6.5)
comparing FGPRGNN with FBERNNET. Additional training details are available in 8.3.

We conducted a series of comprehensive experiments to evaluate the effectiveness and competitiveness
of our proposed model compared to SOTA models and methods. These experiments address the
following research questions: [RQ1] How does FiGURe, perform compared to SOTA unsupervised
models? [RQ2] Can we perform satisfactorily even with lower dimensional representations using
projections such as RFF? [RQ3] Does shared encoder decrease performance? [RQ4] What is the
computational efficiency gained by using lower dimensional representations compared to methods
that rely on higher dimensional representations? [RQ5] Can alternative filter banks be employed to
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recover good quality representations? [RQ6] How does FiGURe combine information from different
filters (in FGPRGNN) in a task-dependent manner?

Datasets and Setup: We evaluated our model on a diverse set of real-world datasets, which include
both heterophilic and homophilic networks, to assess its effectiveness. Similar to previous works, we
utilized the node classification task as a proxy to evaluate the quality of the learned representations.
Please refer to 8.2 for detailed information about the benchmark datasets.

Baselines: In our comparison against baselines, we considered common unsupervised approaches,
such as DEEPWALK and NODE2VEC, and state-of-the-art mutual information-based methods, namely
DGI, MVGRL, GRACE, and SUGRL. We also include the performance numbers of the widely
used GCN for reference. Unless stated otherwise, we use a 512-dimensional representation size for
all reported results, following prior research. For additional details please refer to 8.3 and 8.4.

6.1 RQ1: FiGURe versus SOTA Methods

Table 1: Contains node classification accuracy percentages on homophilic and heterophilic datasets.
FiGUReRFF

32 and FiGUReRFF
128 refer to FiGURe trained with 32 and 128 dimensional representations,

respectively, and then projected using RFF. Other models, including FiGURe512 and all baselines are
trained at 512 dimensions and do not utilize RFF. Higher numbers indicate better performance. It is
worth noting that FiGURe512 outperforms or remains competitive with the baselines in all cases. The
rightmost column Av. ∆gain represents the average accuracy % gain of FiGURe512 over the model
in that row, averaged across the different datasets. If a model is labeled as ’OOM’ for a dataset, it’s
excluded from Av. ∆gain calculation. Magenta, Green and Blue represent the 1st, 2nd and 3rd best
performing models, for a particular dataset.

HETEROPHILIC DATASETS HOMOPHILIC DATASETS

SQUIRREL CHAMELEON ROMAN-EMPIRE MINESWEEPER ARXIV-YEAR CORA CITESEER PUBMED OGBN-ARXIV Av. ∆gain

DEEPWALK 38.66 (1.44) 53.42 (1.73) 13.08 (0.59) 79.96 (0.08) 41.05 (0.10) 83.64 (1.85) 63.66 (3.36) 80.85 (0.44) 64.02 13.48
NODE2VEC 42.60 (1.15) 54.23 (2.30) 12.12 (0.30) 80.00 (0.00) 39.69 (0.09) 78.19 (1.14) 57.45 (6.44) 73.24 (0.59) 60.20 15.78

DGI 39.61 (1.81) 59.28 (1.23) 47.54 (0.76) 82.51 (0.47) 40.59 (0.09) 84.57 (1.22) 73.96 (1.61) 86.57 (0.52) 65.58 6.61
MVGRL 39.90 (1.39) 54.61 (2.29) 68.50 (0.38) 85.60 (0.35) OOM 86.22 (1.30) 75.02 (1.72) 87.12 (0.35) OOM 4.39
GRACE 53.15 (1.10) 68.25 (1.77) 47.83 (0.53) 80.22 (0.45) OOM 84.79 (1.51) 67.60 (2.01) 87.04 (0.43) OOM 5.54
SUGRL 43.13 (1.36) 58.60 (2.04) 39.40 (0.49) 82.40 (0.58) 36.96 (0.19) 81.21 (2.07) 67.50 (1.62) 86.90 (0.54) 65.80 8.64

FiGUReRFF
32 48.89 (1.55) 65.66 (2.52) 64.61 (0.92) 85.28 (0.71) 41.30 (0.21) 82.56 (0.87) 71.25 (2.20) 83.91 (0.69) 66.58 3.65

FiGUReRFF
128 48.78 (2.48) 66.03 (2.19) 67.01 (0.56) 85.16 (0.58) 41.94 (0.15) 86.14 (1.13) 73.34 (1.91) 83.56 (0.34) 69.11 2.53

FiGURe512 52.23 (1.19) 68.55 (1.87) 70.99 (0.52) 85.58 (0.49) 42.26 (0.20) 87.00 (1.24) 74.77 (2.00) 88.60 (0.44) 69.69 0.00

Table 2: Comparing node classification with the widely-used GCN, FiGURe512 achieves strong
results even without task-specific labels, highlighting its ability to learn quality representations.

SQUIRREL CHAMELEON ROMAN-EMPIRE MINESWEEPER ARXIV-YEAR CORA CITESEER PUBMED OGBN-ARXIV

GCN 47.78 (2.13) 61.43 (2.70) 73.69 (0.74) 89.75 (0.52) 46.02 (0.26) 87.36 (0.91) 76.47 (1.34) 88.41 (0.46) 69.37 (0.00)
FiGURe512 52.23 (1.19) 68.55 (1.87) 70.99 (0.52) 85.58 (0.49) 42.26 (0.20) 87.00 (1.24) 74.77 (2.00) 88.60 (0.44) 69.69 (0.00)

Table 3: Mean epoch time (in seconds) on the two large datasets for different embedding sizes. For
lower dimensional embeddings, there is a significant speedup.

512 dims 128 dims 32 dims
ARXIV-YEAR 1.24s 0.75s 0.72s
OGBN-ARXIV 0.92s 0.74s 0.72s

We analyzed the results in Table 1 and made important observations. Across homophilic and het-
erophilic datasets, FiGURe512 consistently outperforms several SOTA unsupervised models, except
in a few cases where it achieves comparable performance. Even on the large-scale datasets ARXIV-
YEAR and OGBN-ARXIV FiGURe512 performs well, demonstrating the scalability of our method.
Two baseline methods MVGRL and GRACE run into memory issues on the larger datasets and are
accordingly reported OOM in the table. We want to emphasize the rightmost column of the table,
which shows the average percentage gain in performance across all datasets. This metric compares the
improvement that FiGURe512 provides over each baseline model for each dataset and averages these
improvements. This metric highlights that FiGURe512 performs consistently well across diverse
datasets. No other baseline model achieves the same consistent performance across all datasets as
FiGURe512. Even the recent state-of-the-art contrastive models GRACE and SUGRL experience
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average performance drops of approximately 5% and 10%, respectively. This result indicates that
FiGURe512 learns representations that exhibit high generalization and task-agnostic capabilities.
Another important observation is the effectiveness of RFF projections in improving lower dimen-
sional representations. We compared FiGURe at different dimensions, including FiGUReRFF

32 and
FiGUReRFF

128 , corresponding to learning 32 and 128-dimensional embeddings, respectively, in addi-
tion to the baseline representation size of 512 dimensions. Remarkably, even at lower dimensions,
FiGURe with RFF projections demonstrates competitive performance across datasets, surpassing the
512-dimensional baselines in several cases. This result highlights the effectiveness of RFFprojections
in enhancing the quality of lower dimensional representations. Using lower-dimensional embeddings
reduces the computation time and makes FiGURe faster than the baselines. The computational
efficiency of reducing dimension size becomes more significant with larger datasets, as evidenced in
Table 3. On ARXIV-YEAR, a large graph with 169, 343 nodes, 128-dimensional embeddings yield a
1.6x speedup, and 32-dimensional embeddings yield a 1.7x speedup. Similar results are observed in
OGBN-ARXIV. For further insights into the effectiveness of RFFprojections, see Section 6.2, and
for computational efficiency gains, refer to Section 6.4. In Table 2, we include GCN as a benchmark
for comparison. Remarkably, FiGURe512 remains competitive across most datasets, sometimes even
surpassing GCN. This highlights that FiGURe512 can capture task-specific information required
by downstream tasks, typically handled by GCN, through unsupervised means. When considering
a downstream task, using FiGURe512 embeddings allows for the use of computationally efficient
models like Logistic Regression, as opposed to training resource-intensive end-to-end graph neural
networks. There are, however, works such as [6], [13], and [5], that explore methods to speed up
end-to-end graph neural network training. In summary, FiGURe offers significant computational
efficiency advantages over end-to-end supervised graph neural networks. Performance can potentially
improve further by incorporating non-linear models like MLP. For detailed comparisons with other su-
pervised methods, please refer to 8.4. It’s noteworthy that both OGBN-ARXIV and ARXIV-YEAR use
the ARXIV citation network but differ in label prediction tasks (subject area and publication year,
respectively). FiGURe demonstrates improvements in both cases, showcasing its task-agnostic and
multi-task capabilities due to its flexible node representation. This flexibility enables diverse tasks to
extract the most relevant information (see Section 5.2), resulting in strong overall performance. Note
that in 8.5, we have also performed an ablation study where the depth of the encoder is increased.

6.2 RQ2: RFF Projections on Lower Dimensional Representations

Table 4: Node classification accuracy percentages with and without using Random Fourier Feature
projections (on 32 dimensions). A higher number means better performance. The performance is
improved by using RFF in almost all cases, indicating the usefulness of this transformation

RFF CORA CITESEER SQUIRREL CHAMELEON

DGI × 81.65 (1.90) 65.62 (2.39) 31.60 (2.19) 45.48 (3.02)
✓ 81.49 (1.96) 66.50 (2.44) 38.19 (1.52) 56.01 (2.66)

MVGRL × 81.03 (1.29) 72.38 (1.68) 37.20 (1.22) 49.65 (2.08)
✓ 80.48 (1.71) 72.54 (1.89) 39.53 (1.04) 56.73 (2.52)

SUGRL × 65.35 (2.41) 42.84 (2.57) 31.62 (1.47) 43.20 (1.79)
✓ 70.06 (1.24) 47.03 (3.02) 38.50 (2.19) 51.01 (2.26)

GRACE × 76.84 (1.09) 58.40 (3.05) 38.20 (1.38) 53.25 (1.58)
✓ 79.15 (1.44) 63.66 (2.96) 51.56 (1.39) 67.39 (2.23)

FiGURe32 × 82.88 (1.42) 70.32 (1.98) 39.38 (1.35) 53.27 (2.40)
✓ 82.56 (0.87) 71.25 (2.20) 48.89 (1.55) 65.66 (2.52)

In this section, we analyse the performance of unsupervised baselines using 32-dimensional embed-
dings with and without RFF projections (see Table 4). Despite extensive hyperparameter tuning,
we could not replicate the results reported by SUGRL, so we present the best results we obtained.
Two noteworthy observations emerge from these tables. Firstly, it is evident that lower dimensional
embeddings can yield meaningful and linearly separable representations when combined with simple
RFF projections. Utilising RFF projections enhances performance in almost all cases, highlight-
ing the value captured by MI-based methods even with lower-dimensional embeddings. Secondly,
FiGUReRFF

32 consistently achieves superior or comparable performance to the baselines, even in lower
dimensions. Notably, this includes SUGRL, purported to excel in such settings. However, there is a 2-
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3% performance gap between GRACE and our method for the SQUIRREL and CHAMELEON datasets.
While GRACE handles heterophily well at lower dimensions, its performance deteriorates with
homophilic graphs, unlike FiGUReRFF

32 which captures lower frequency information effectively.
Additionally, our method exhibits computational efficiency advantages for specific datasets in lower
dimensions. Please refer to 8.6: for discussions with regards to the RFF algorithm, 8.7: for analysing
the RFF behaviour and community structure, 8.8: for experiments using other random projection
methods, 8.9 and 8.10: for ablation studies with regards to projecting to higher dimensional spaces
via RFF, and 8.11: for issues related to including RFF in training. Overall, these findings highlight
the potential of RFF projections in extracting useful information from lower dimensional embeddings
and reaffirm the competitiveness of FiGURe over the baselines.

6.3 RQ3: Sharing Weights Across Filter Specific Encoders

Table 5: A comparison of the performance on the downstream node classification task using indepen-
dently trained encoders and weight sharing across encoders is shown. The reported metric is accuracy.
In both cases, the embeddings are combined using the method described in 5.2

CORA CITESEER SQUIRREL CHAMELEON

INDEPENDENT 86.92 (1.10) % 75.03 (1.75) % 50.52 (1.51) % 66.86 (1.85) %
SHARED 87.00 (1.24) % 74.77 (2.00) % 52.23 (1.19) % 68.55 (1.87) %

Our method proposes to reduce the computational load by sharing the encoder weights across all
filters. It stands to reason whether sharing these weights causes any degradation in performance. We
present the results with shared and independent encoders across the filters in Table 5 to verify this. We
hypothesize that, sharing encoder weights embeds diverse filter representations in a common space,
improving suitability for combined representation learning. This enhances features for downstream
tasks, in some cases boosting performance. Experimental results confirm that shared weights do not
significantly reduce performance; sometimes, they even enhance it, highlighting shared encoders’
effectiveness in reducing computational load without sacrificing performance.

6.4 RQ4: Computational Efficiency

Table 6: Mean epoch time (in milliseconds) averaged across 20 trials with different hyperparameters.
A lower number means the method is faster. Even though our method is slower at 512 dimensions,
using 128 and 32 dimensional embeddings significantly reduces the mean epoch time. Using RFF as
described in 6.2 we are able to prevent the performance drops experienced by DGI and MVGRL.

DGI MVGRL FiGURe512 FiGUReRFF
128 FiGUReRFF

32

CORA 38.53 (0.77) 75.29 (0.56) 114.38 (0.51) 20.10 (0.46) 11.54 (0.34)
CITESEER 52.98 (1.15) 102.41 (0.99) 156.24 (0.56) 30.30 (0.60) 17.16 (0.51)
SQUIRREL 87.06 (2.07) 168.24 (2.08) 257.65 (0.76) 47.72 (1.40) 23.52 (1.14)

CHAMELEON 33.08 (0.49) 64.71 (1.05) 98.36 (0.64) 18.56 (0.39) 11.63 (0.48)

To assess the computational efficiency of the different methods, we analyzed the computation time and
summarized the results in Table 6. The key metric used in this analysis is the mean epoch time: the
average time taken to complete one epoch of training. We compared our method with other MI based
methods such as DGI and MVGRL. Due to the increase in the number of augmentation views,
there is an expected increase in computation time from DGI to MVGRL to FiGURe. However,
as demonstrated in 6.2, using RFF projections allows us to achieve competitive performance even
at lower dimensions. Therefore, we also included comparisons with our method at 128 and 32
dimensions in the table. It is evident from the results that our method, both at 128 and 32 dimensions,
exhibits faster computation times compared to both DGI and MVGRL, which rely on higher-
dimensional representations to achieve good performance. This result indicates that FiGURe is
computationally efficient due to its ability to work with lower-dimensional representations. During
training, our method, FiGUReRFF

32 , is ∼ 3x faster than DGI and ∼ 6x times faster than MVGRL.
Despite the faster computation, FiGUReRFF

32 also exhibits an average performance improvement of
around 2% across the datasets over all methods considered in our experiments. Please refer to 8.12
and 8.13 for further discussions.
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6.5 RQ5: Experiments on Other Filter Banks

Table 7: Accuracy percentages for various filter banks in conjunction with FiGURe. Specifically,
F3

BERNNET and F11
BERNNET refer to the FBERNNET filter bank with K set to 3 and 11, respectively. Simi-

larly, F3
CHEBNET and F11

CHEBNET represent the FCHEBNET filter bank with K set to 3 and 11, respectively.
CORA CITESEER SQUIRREL CHAMELEON

F3
BERNNET 85.13 (1.26) 73.38 (1.81) 37.07 (1.29) 53.95 (2.78)

F11
BERNNET 86.62 (1.59) 73.97 (1.43) 43.48 (3.80) 62.13 (3.66)

F3
CHEBNET 83.84 (1.36) 71.92 (2.29) 40.23 (1.58) 60.61 (2.03)

F11
CHEBNET 76.14 (6.80) 59.89 (8.94) 52.46 (1.10) 67.37 (1.60)

FGPRGNN 87.00 (1.24) 74.77 (2.00) 52.23 (1.19) 68.55 (1.87)

To showcase the versatility of our proposed framework, we conducted an experiment using Bernstein
and Chebyshev filters, as detailed in Table 7. The results indicate that using FGPRGNN leads to
better performance than BERNNET and CHEBNET filters. We believe this is happening is due to
the latent characteristics of the dataset. [17, 28] have shown that datasets like CHAMELEON and
SQUIRREL need frequency response functions that give more prominence to the tail-end spectrum.
GPRGNN filters are more amenable to these needs, as demonstrated in [28]. However, different
datasets may require other frequency response shapes, where BERNNET and CHEBNET filters may
excel, and give better performance. For instance, FBERNNET may better approximate comb filters,
as their basis gives uniform prominence to the entire spectrum. Our framework is designed to
accommodate any filter bank, catering to diverse dataset needs. Further discussions are in 8.14.

6.6 RQ6: Combining information from different filters (in FGPRGNN)

To analyze how FiGURe combines representations from different filters, we present alpha coefficients
for the highest-performing split in Table 8, utilizing FGPRGNN on: CORA, CITESEER, SQUIRREL, and
CHAMELEON (coefficients may vary for different splits within the same dataset) [28]. GPRGNN fil-
ters adapt well to heterophilic datasets like CHAMELEON and SQUIRREL, emphasizing spectral tails
with significant weightage on the A2 filter. In contrast, homophilic datasets require low-pass filters,
achieved by assigning higher weightage to the A and A3 filters. Achieving these filter shapes with
other methods like BERNNET and CHEBNET is possible but more challenging for the model to
learn. We believe that this is why GPRGNN filters consistently outperform other filter banks on
the datasets we’ve examined. However, it’s important to note that some datasets may benefit from
different response shapes, where BERNNET and CHEBNET filters might be more suitable. This table
validates our hypothesis about the efficacy of GPRGNN filter coefficients, with A3 dominating in
homophilic datasets (CORA , CITESEER) and A2 in heterophilic datasets (CHAMELEON , SQUIRREL).

Table 8: We present the alpha coefficients obtained from the best-performing split utilizing
GPRGNN filters for CORA, CITESEER, SQUIRREL, and CHAMELEON datasets

I A A2 A3

CORA 18.2 0 0 35.95
CITESEER 0 0 0 0.48
SQUIRREL 0 0 15.3 0
CHAMELEON 0 0 8.93 0.1

7 Conclusion and Future Work

Our work demonstrates the benefits of enhancing contrastive learning methods with filter views and
learning filter-specific representations to cater to diverse tasks from homophily to heterophily. We have
effectively alleviated computational and storage burdens by sharing the encoder across these filters
and focusing on low-dimensional embeddings that utilize high-dimensional projections, a technique
inspired by random feature maps developed for kernel approximations. Future directions involve
expanding the analysis from [2] to graph contrastive learning and investigating linear separability in
lower dimensions, which could strengthen the connection to the random feature maps approach.
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8.1 Reproducibility

We strive to ensure the reproducibility of our research findings. To facilitate this, we provide the
details of our experimental setup, including dataset sources, preprocessing steps, hyperparameters,
and model configurations. We also make our code and the datasets used, publicly available at
https://github.com/microsoft/figure, enabling researchers to reproduce our results and
build upon our work. We would like to emphasize that our code is built on top of the existing
MVGRL codebase. For the datasets used in our evaluation, we provide references to their original
sources and any specific data splits that we employed. This allows others to obtain the same datasets
and perform their own analyses using consistent data. Additionally, we specify the versions of
libraries and frameworks used in our experiments, in Section 8.3, and in the REQUIREMENTS file and
the README file, in the codebase, enabling others to set up a compatible environment. We document
any specific seed values or randomization procedures that may affect the results. By providing these
details and resources, we aim to promote transparency and reproducibility in scientific research. We
encourage fellow researchers to reach out to us if they have any questions or need further clarification
on our methods or results.

8.2 Datasets

Homophilic Datasets: We evaluated our model (as well as baselines) on three homophilic datasets:
CORA, CITESEER, and PUBMED as borrowed from [34]. All three are citation networks, where
each node represents a research paper and the links represent citations. Pubmed consists of medical
research papers. The task is to predict the category of the research paper. We follow the same dataset
setup mentioned in [34] to create 10 random splits for each of these datasets.

Heterophilic Datasets: In our evaluation, we included four heterophilic datasets: CHAMELEON,
SQUIRREL, ROMAN-EMPIRE, and MINESWEEPER. For CHAMELEON and SQUIRREL, nodes represent
Wikipedia web pages and edges capture mutual links between pages. We utilized the ten random splits
provided in [34], where 48%, 32%, and 20% of the nodes were allocated for the train, validation, and
test sets, respectively. In ROMAN-EMPIRE each node corresponds to a word in the Roman Empire
Wikipedia article. Two words are connected with an edge if either these words follow each other
in the text, or they are connected in the dependency tree of the sentence. The syntactic role of the
word/node defines its class label. The MINESWEEPER graph is a regular 100x100 grid where each
node is connected to eight neighboring nodes, and the features are on-hot encoded representations
of the number of neighboring mines. The task is to predict which nodes are mines. For both
ROMAN-EMPIRE and MINESWEEPER, we used the ten random splits provided in [38].

Large Datasets: We also evaluate our method on two large datasets OGBN-ARXIV (from [19])
and ARXIV-YEAR (from [27]). Both these datasets are from the arxiv citation network. In OGBN-
ARXIV, the task is to predict the category of the research paper, and in ARXIV-YEAR the task is
to predict the year of publication. We use the publicly available splits for OGBN-ARXIV [22] and
follow the same dataset setup mentioned in [27] to generate 5 random splits for ARXIV-YEAR. Note
that OGBN-ARXIV is a homophilic dataset while ARXIV-YEAR is a heterophilic datasets.

The detailed dataset statistics can be found in Table 9.

Table 9: Dataset Statistics. The table provides information on the following dataset characteristics:
number of nodes, number of edges, feature dimension, number of classes, as well as the count of
nodes used for training, validation, and testing.

HETEROPHILIC DATASETS HOMOPHILIC DATASETS
PROPERTIES SQUIRREL CHAMELEON ROMAN-EMPIRE MINESWEEPER ARXIV-YEAR OGBN-ARXIV CITESEER PUBMED CORA

#NODES 5201 2277 22662 10000 169343 169343 3327 19717 2708
#EDGES 222134 38328 32927 39402 1166243 1335586 12431 108365 13264

#FEATURES 2089 500 300 7 128 128 3703 500 1433
#CLASSES 5 5 18 2 5 40 6 3 7

#TRAIN 2496 1092 11331 5000 84671 90941 1596 9463 1192
#VAL 1664 729 5665 2500 42335 29799 1065 6310 796
#TEST 1041 456 5666 2500 42337 48603 666 3944 497
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8.3 Training Details

We conducted all experiments on a machine equipped with an Intel(R) Xeon(R) CPU E5-2690 v4 @
2.60GHz processor, 440GB RAM, and a Tesla-P100 GPU with 16GB of memory. The experiments
were executed using Python 3.9.12 and PyTorch 1.13.0 [33]. To optimize the hyperparameter search,
we employed Optuna [1]. We utilized the Adam optimizer [24] for the optimization process.

8.3.1 Unsupervised Training

We conducted hyperparameter tuning for all unsupervised methods using 20 Optuna trials. The
hyperparameter ranges and settings for each method are as follows:

DEEPWALK: We set the learning rate to 0.01, number of epochs to 20 and the varied the random
walk length over {8, 9, 10, 11, 12}. Additionally, we varied the context window size over {3, 4, 5}
and the negative size (number of negative samples per positive sample) over {4, 5, 6}.

NODE2VEC: For Node2Vec, we set the learning rate to 0.01 and number of epochs to 100. We varied
the number of walks over {5, 10, 15} and the walk length over {40, 50, 60}. The p (return parameter)
value was chosen from {0.1, 0.25, 0.5, 1} and q (in-out parameter) value was chosen from {3, 4, 5}.

DGI: DGI [44] proposes a self-supervised learning framework for graph representation learning by
maximizing the mutual information between local and global structural context of nodes, enabling
unsupervised feature extraction in graph neural networks. We relied on the authors’ code2 and the
prescribed hyperparameter ranges specific to the DGI model, for our experiments.

MVGRL: MVGRL [15] proposes a method for learning unsupervised node representations by
leveraging two views of the graph data, the graph diffusion view and adjacency graph view. We relied
on the authors’ code3 and the prescribed hyperparameter ranges specific to the MVGRL model, for
our experiments.

GRACE: GRACE [45] proposes a technique where two different perspectives of the graph are
created through corruption, and the learning process involves maximizing the consistency between
the node representations obtained from these two views. We relied on the authors’ code4 and the
prescribed hyperparameter ranges specific to the GRACE model, for our experiments.

SUGRL: SUGRL [31] proposes a technique for learning unsupervised representations which capture
node proximity, while also utilising node feature information. We relied on the authors’ code5 and
the prescribed hyperparameter ranges specific to the SUGRL model, for our experiments.

FiGURe: We followed the setting of the MVGRL model, setting the batch size to 2 and number
of GCN layers to 1. We further tuned the learning rate over {0.00001, 0.0001, 0.001, 0.01, 0.1} and
the sample size (number of nodes selected per batch) over {1500, 1750, 2000, 2250}, except for the
large graphs, for which we set the sample size to 5,000.

We maintained consistency across all methods by employing identical parameters for maximum
epochs and early stopping criteria. Specifically, we set the maximum number of epochs to 30, 000
and utilized an early stopping patience of 20 epochs, with the exception of large datasets, where we
extended the patience to 500 epochs.

In each case, we selected the hyperparameters that resulted in the lowest unsupervised training loss.

8.3.2 Supervised Training

For all unsupervised methods, including the baselines and our method, we perform post-training
supervised evaluation using logistic regression with 60 Optuna trials. We set the maximum number
of epochs to 10000 and select the epoch and hyperparameters that yield the best validation accuracy.
The learning rate is swept over the range {0.00001, 0.0001, 0.001, 0.0015, 0.01, 0.015, 0.1, 0.5, 1, 2},
and the weight decay is varied over {10−5, 10−4, 10−3, 10−2, 10−1, 0, 0.5, 1, 3}.

2https://github.com/PetarV-/DGI.git
3https://github.com/kavehhassani/mvgrl.git
4https://github.com/CRIPAC-DIG/GRACE.git
5https://github.com/YujieMo/SUGRL.git
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FiGURe: Along with the hyperparameters described above, following the approach described in [17],
we also tune the combination coefficients (αi’s) with a separate learning rate. This separate learning
rate is swept over the range {0.00001, 0.0001, 0.001, 0.0015, 0.01, 0.015, 0.1, 0.5, 1, 2}. In addition,
we have a coefficient for masking the incoming embeddings from each filter, which is varied between
0 and 1. Furthermore, these coefficients are passed through an activation layer, and we have two
options: ‘none’ and ‘exp’. When ‘none’ is selected, the coefficients are used directly, while ‘exp’
indicates that they are passed through an exponential function before being used.

FiGURe with RFF: For the experiments involving Random Fourier Features (RFF), we use
the same hyperparameter ranges as mentioned above. However, we also tune the gamma pa-
rameter which is specific to RFF projections. The gamma parameter is tuned within the range
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2}.

8.3.3 Negative Sampling for the Identity Filter

In our implementation of FGPRGNN or FBERNNET, we follow a specific procedure for handling the
filters during training and evaluation. For all filters except the identity filter (I), we employ the
negative sampling approach described in Section 6. However, the identity filter is treated differently.
During training, we exclude the identity filter and only include it during evaluation.

During negative sampling, the generation of the negative anchor involves shuffling the node features,
followed by premultiplying the shuffled node feature matrix with the filter matrix and computing the
mean. On the other hand, for the positive anchor, the same procedure is applied without shuffling the
node features. This approach encourages the model to learn meaningful patterns and relationships in
the data when the filter matrix is not the identity matrix.

The decision to exclude the identity filter during training is based on the observation that it presents a
special case where the positive and negative anchors become the same. As a result, the model would
optimize and minimize the same quantity, potentially leading to trivial solutions. To prevent this, we
exclude the identity filter during training.

By excluding the identity filter during training, we ensure that the model focuses on the other filters in
FGPRGNN or FBERNNET to capture and leverage the diverse information present in the graph. Including
the identity filter only during evaluation allows us to evaluate its contribution to the final performance
of the model. This approach helps prevent the model from learning trivial solutions and ensures that
it learns meaningful representations by leveraging the other filters.

8.4 Comparison with other Supervised Methods

Table 10 presents a comparison with common supervised baselines. Specifically, we choose 3 models
for comparison, representing three different kinds of supervised methods, standard aggregation
models (GCN), spectral filter-based models (GPRGNN) and smart-aggregation models (H2GCN).
There are two key observations from this table. Firstly, FiGURe512 is competitive with the supervised
baselines, lagging behind only by a few percentage points in some cases. This suggests that much
of the information that is required by the downstream tasks, captured by the supervised models,
can be made available through unsupervised methods like FiGURe which uses filter banks. It
is important to note that in FiGURe we only utilize logistic regression while evaluating on the
downstream task. This is much more efficient that training a graph neural network end to end.
Additionally it is possible that further gains may be obtained by utilizing a non-linear model like
an MLP. Furthermore, as indicated by 10, we can gain further computational efficiency by utilizing
lower dimensional representations like 32 and 128 (with RFF), and still not compromise significantly
on the performance. Overall FiGURe manages to remain competitive despite not having access to
task-specific labels and is computationally efficient as well.

8.5 Increasing the depth of the Encoder

We present an analysis in Table 11 featuring an increased number of encoder layers. In this context,
"encoder layers" can be interpreted in two ways: firstly, as a deeper GCN which entails aggregating
information from multiple-hop neighborhoods into the node; and secondly, as a single-hop GCN with
a more extensive network for feature transformation. We provide performance results for both scenar-
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Table 10: Contains node classification accuracy percentages on heterophilic and homophilic datasets.
GCN, GPRGNN and H2GCN are supervised methods. FiGUReRFF

32 and FiGUReRFF
128 refer to

FiGURe trained with 32 and 128 dimensional representations, respectively, and then projected
using RFF. The remaining models are trained at 512 dimensions. Higher numbers indicate better
performance.

HETEROPHILIC DATASETS HOMOPHILIC DATASETS

SQUIRREL CHAMELEON ROMAN-EMPIRE MINESWEEPER ARXIV-YEAR OGBN-ARXIV CORA CITESEER PUBMED

GCN 47.78 (2.13) 62.83 (1.52) 73.69 (0.74) 89.75 (0.52) 46.02 (0.26) 69.37 (0.00) 87.36 (0.91) 76.47 (1.34) 88.41 (0.46)
GPRGNN 46.31 (2.46) 62.59 (2.04) 64.85 (0.27) 86.24 (0.61) 45.07 (0.21) 68.44 (0.00) 87.77 (1.31) 76.84 (1.69) 89.08 (0.39)
H2GCN 37.90 (2.02) 58.40 (2.77) 60.11 (0.52) 89.71 (0.31) 49.09 (0.10) OOM 87.81 (1.35) 77.07 (1.64) 89.59 (0.33)

FiGUReRFF
32 48.89 (1.55) 65.66 (2.52) 67.67 (0.77) 85.28 (0.71) 41.30 (0.21) 66.58 (0.00) 82.56 (0.87) 71.25 (2.20) 84.18 (0.53)

FiGUReRFF
128 48.78 (2.48) 66.03 (2.19) 68.10 (1.09) 85.16 (0.58) 41.94 (0.15) 69.11 (0.00) 86.14 (1.13) 73.34 (1.91) 85.41 (0.52)

FiGURe 52.23 (1.19) 68.55 (1.87) 70.99(0.52) 85.58 (0.49) 42.26 (0.20) 69.69 (0.00) 87.00 (1.24) 74.77 (2.00) 88.60 (0.44)

ios, encompassing two and three layers each. It is noteworthy that the single-layer GCN achieves
equal or superior performance compared to all other configurations.

Table 11: Analyzing the impact of altering the number of encoder layers on downstream accuracy, it
is evident that in all instances, the single-layer GCN outperforms the others.

CORA CITESEER SQUIRREL CHAMELEON

1 Layer GCN 87.00 (1.24) 74.77 (2.00) 52.23 (1.19) 68.55 (1.87)
2 Layer GCN 86.62 (1.43) 73.62 (1.46) 43.80 (1.57) 53.53 (2.13)
3 Layer GCN 84.40 (1.84) 72.52 (2.09) 42.79 (1.12) 61.73 (2.25)
GCN+ 2 Layer MLP 85.73 (1.03) 70.21 (2.30) 49.91 (2.68) 68.18 (1.76)
GCN+ 3 Layer MLP 84.99 (1.43) 71.39 (2.32) 45.85 (3.33) 64.19 (1.43)

8.6 RFF Projections

As shown in Section 6.2 and in Section 6.4, RFF projections are a computationally efficient way to
achieve training by preserving the latent class behavior present in lower dimensional embeddings,
by projecting them into a higher dimensional linearly separable space. The natural question that
comes up is how do we compute these RFF projections? We provide an algorithm to compute the
RFF projections in this section, in algorithm 1. Note that this follows [40].

Algorithm 1 Random Fourier Feature Computation

Require: Input data X ∈ RN×d, target dimension D, kernel bandwidth γ
Ensure: Random Fourier Features Z ∈ RN×D

1: Initialize random weight matrix W ∈ Rd×D with Gaussian distribution
2: Initialize random bias vector b ∈ RD uniformly from [0, 2π]
3: Compute scaled input X ′ = γXW + b

4: Compute random Fourier features Z =
√

2
D cos(X ′)

5: return Z

8.7 Visualising RFF Behavior and Community Structure

As shown in prior sections, FiGURe improves on both computational efficiency as well as perfor-
mance by utilising RFF projections. In this section, we aim to gain insights into the behavior of
RFF projections and comprehend their underlying operations through a series of simple visualizations.

t-SNE Plots: Figure 3 offers insights into the structure of the embeddings for the CORA dataset
across different dimensions. Remarkably, even at lower dimensions (e.g., 32 dimensions), clear
class structures are discernible, indicating that the embeddings capture meaningful information
related to the class labels. Furthermore, when employing RFF to project the embeddings into higher
dimensions, these distinct class structures are still preserved. This suggests that the role of RFF is not
to introduce new information, but rather to enhance the suitability of lower-dimensional embeddings
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for linear classifiers while maintaining the underlying class-related information. Notably, even at
512 dimensions, the class structures remain distinguishable. However, it is worth noting that the
class-specific embeddings appear to be more tightly clustered and less dispersed compared to the
32-dimensional embeddings or the projected 32-dimensional embeddings. This suggests that learning
a 512-dimensional embedding differs inherently from learning a 32-dimensional embedding and
subsequently projecting it into higher dimensions.

(a) FiGURe32 (without RFF) on
the CORA dataset

(b) FiGUReRFF
32 (with RFF) on

the CORA dataset
(c) FiGURe512 (without RFF)
on the CORA dataset

Figure 3: The figures present t-SNE plots for the CORA dataset. These plots showcase the embeddings
generated by the F3 filter, which corresponds to A2 in the case of FiGURe. The t-SNE plots are
generated at different embedding dimensions, providing insights into the distribution and clustering
of the embeddings for each dataset.

Correlation Plots: Figure 4 offers insights into the correlation patterns within the embeddings gener-
ated from the SQUIRREL dataset across different dimensions. In lower dimensions, the embeddings
exhibit high correlation with each other, which can be attributed to the presence of a mixture of
topics or latent classes within the dataset. However, when the embeddings are projected to higher
dimensions using RFF, the correlation is reduced, and a block diagonal matrix emerges. This block
diagonal structure indicates the presence of distinct classes or communities within the dataset. Even at
512 dimensions, a more refined block diagonal structure can be observed compared to the correlation
matrix of the 32-dimensional embeddings. Furthermore, it is noteworthy that the correlation of
the projected embeddings can be regarded as a sparser version of the correlation observed in the
512-dimensional embeddings.

(a) FiGURe32 (without RFF) on
the SQUIRREL dataset

(b) FiGUReRFF
32 (with RFF) on

the SQUIRREL dataset
(c) FiGURe512 (without RFF)
on the SQUIRREL dataset

Figure 4: The figures display the normalized correlation plots for the SQUIRREL dataset. These plots
illustrate the normalized correlation values between embeddings generated by the F3 filter. In the
case of FiGURe, this filter corresponds to the square of the adjacency matrix (A2). The normalized
correlation provides a measure of similarity or agreement between the embeddings obtained using
the F3 filter for different embedding dimensions. These plots can help analyze the consistency or
variation of embeddings across different dimensions and datasets.

8.8 Other Random Projections

We conducted an analysis exploring the impact of utilizing random projections beyond RFF in Table
12. Our findings reveal that RFF outperforms alternative random projection methods.
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Table 12: Accuracy (%) comparison of different random projections with RFF. Notably, RFF consis-
tently outperforms the other random projection methods.

Features CORA CITESEER SQUIRREL CHAMELEON

Polynomial (d=2) [21] 81.35 (2.11) 69.81 (2.14) 38.57 (1.56) 53.88 (1.94)
Polynomial (d=10) [21] 80.44 (1.56) 68.71 (1.67) 38.08 (1.10) 55.20 (1.97)
Exp [21] 80.42 (2.14) 68.81 (1.34) 38.06 (1.61) 55.50 (2.11)
ANOVA [3] 83.26 (0.78) 70.09 (2.44) 40.77 (1.46) 56.01 (1.86)
RFF 87.00 (1.24) 74.77 (2.00) 52.23 (1.19) 68.55 (1.87)

8.9 RFF ablation study at 128 dimensions

We replicate the analysis conducted in 6.2 for 128 dimensions, as outlined in Table 13. It is apparent
that our approach consistently outperforms or matches most other methods when operating at 32
dimensions across various datasets. This trend persists even after projecting the learned embeddings
to higher dimensions through RFF. Our experiment reaffirms the observations detailed in 6.2.

Table 13: Node classification accuracy percentages with and without using Random Fourier Feature
projections (on 128 dimensions). A higher number means better performance. The performance is
improved by using RFF in almost all cases, indicating the usefulness of this transformation.

RFF CORA CITESEER SQUIRREL CHAMELEON

DGI × 84.99 (1.36) 72.22 (2.50) 34.22 (1.47) 49.82 (2.96)
✓ 84.17 (2.11) 72.65 (1.52) 37.97 (1.41) 57.72 (2.03)

MVGRL × 85.31 (1.66) 73.42 (1.63) 36.92 (1.04) 55.20 (1.70)
✓ 84.61 (1.74) 72.81 (2.13) 38.73 (1.22) 57.81 (1.80)

SUGRL × 71.49 (1.15) 63.85 (2.27) 38.04 (1.17) 53.03 (1.73)
✓ 71.40 (1.40) 63.06 (2.22) 43.24 (1.63) 57.04 (1.78)

GRACE × 80.87 (1.49) 62.52 (3.57) 41.25 (1.32) 63.14 (1.89)
✓ 79.70 (1.91) 64.47 (2.12) 52.29 (1.81) 68.90 (2.05)

FiGURe128 × 84.73 (1.13) 73.07 (1.13) 41.06 (1.51) 59.08 (3.36)
✓ 86.14 (1.13) 73.34 (1.91) 48.78 (2.48) 66.03 (2.19)

8.10 RFF ablation study at 512 dimensions

We present the results obtained by applying RFF to 512 dimensions, as shown in Table 14. It is
evident that there is minimal performance improvement when using RFF on embeddings that are
already of sufficient dimensionality.

Table 14: FiGURe at 512 dimensions
CORA CITESEER SQUIRREL CHAMELEON

RFF@512 86.84 (0.98) 74.40 (1.30) 51.86 (1.87) 68.60 (1.57)

8.11 Issues with including RFF in training

In the context of incorporating Random Feature techniques like RFF into machine learning models,
some challenges have arisen in the training process. In the Transformer attention module, these
features can exhibit large variances in zero kernel score regions, leading to unstable training [8].
Additionally, increasing the sampling rate in methods like Performer and Random Feature Attention
(RFA) [35] can also introduce instability, as highlighted in [39]. Another area where the use of
random features with deep networks has been explored is kernel learning. There are of course,
computational and convergence challenges that have been observed with these methods as well
[11][12]. FiGURe avoids these problems by excluding the random feature generation from training
altogether. Parameters like gamma, involved in the random feature construction, are treated as
hyperparameters and a search is performed over them. Kernel learning, however, is an important area
of research, and integrating RFF in the training loop would be an interesting extension of this work.
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8.12 Computational Comparisons with other Other Unsupervised Methods

Table 15: Mean epoch time (in milliseconds) averaged across 20 trials with different hyperparameters.
A lower number means the method is faster. Even though our method is slower at 512 dimensions,
using 128 and 32 dimensional embeddings significantly reduces the mean epoch time. Using RFF as
described in 6.2 we are able to prevent the performance drops experienced by SUGRL and GRACE.

SUGRL GRACE FiGURe512 FiGUReRFF
128 FiGURerff32

CORA 15.92 (4.10) 51.19 (6.8) 114.38 (0.51) 20.10 (0.46) 11.54 (0.34)
CITESEER 24.37 (4.92) 77.16 (7.2) 156.24 (0.56) 30.30 (0.60) 17.16 (0.51)
SQUIRREL 33.63 (6.94) 355.2 (67.34) 257.65 (0.76) 47.72 (1.40) 23.52 (1.14)

CHAMELEON 16.91 (5.90) 85.05 (14.1) 98.36 (0.64) 18.56 (0.39) 11.63 (0.48)

In Section 6.4, we compared the computational time of FiGURe with MVGRL and DGI, as all
three methods fall under the category of unsupervised methods that preform contrastive learning
with representations of the entire graph. However, there is another class of methods, such as
SUGRL and GRACE, that contrast against other nodes without the need for graph representation
computation. Consequently, these methods exhibit higher computational efficiency. Hence, as show
in Table 15 upon initial inspection, it appears that SUGRL (at 512 dimensions) exhibits the highest
computational efficiency, even outperforming FiGUReRFF

128 . However, despite its computational
efficiency, the significant drop in performance across datasets (as discussed in Section 6.1) renders it
less favorable for consideration. In fact, FiGUReRFF

32 offers computational cost savings compared to
SUGRL, while also achieving significantly better downstream classification accuracy. Turning to
GRACE, it demonstrates greater computational efficiency than FiGURe512 for low to medium-sized
graphs. However, as the graph size increases, due to random node feature level masking and edge
level masking, the computational requirements of GRACE substantially increase (as evidenced
by the results on SQUIRREL). Therefore, for larger graphs with more than approximately 5,000
nodes, FiGURe proves to be more computationally efficient than GRACE (even at 512 dimensions).
Furthermore, considering the performance improvements exhibited by FiGURe, it is evident that
FiGURe (combined with RFF projections) emerges as the preferred method for unsupervised
contrastive learning in graph data.

8.13 Time and storage cost

In Table 16, we present a comparison of training time and storage cost between our method and
DGI. To ensure fairness in the evaluation, we maintained consistent settings across all baselines.
The maximum number of epochs was uniformly set to 30,000, with an early stopping patience of
20 epochs, except for larger datasets where we extended the patience to 500 epochs. It’s important
to note that due to varying hyperparameter tuning among the baselines, normalizing the number of
epochs posed some challenges. Nevertheless, we ensured that a sufficiently high number of epochs
were employed to facilitate convergence. Our approach builds upon DGI and exhibits linear scaling
of training time with the number of filters used. Currently, our model employs three filters for training,
resulting in a training time three times longer than that of DGI. Specifically for OGBN-ARXIV, we
provide information on the number of epochs, mean epoch time, and total training time. Additionally,
we report the storage cost of representations generated by these methods. Please keep in mind that
the linear relationship in training time between DGI and FiGURe is not apparent here, as it factors
in considerations such as batching and sampling time.

Table 16: We provide the number of epochs, mean epoch time, and total training time for OGBN-
ARXIV. We also report the storage cost of the representations from these methods.

Model / Dims Num Epochs Mean Epoch Time Total time Storage
DGI / 512 3945 0.77s 50.75mins 330.75MB
FiGURe / 512 4801 0.92s 73.62mins 1.32GB
FiGURe / 128 4180 0.74s 51.55mins 330.75MB
FiGURe / 32 3863 0.72s 46.36mins 82.69MB
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8.14 Choice of Filter Banks

In Section 4.1, we explore the flexibility of FiGURe to accommodate various filter banks. When
making a choice, it is crucial to examine the intrinsic properties of the filters contained within different
filter banks. We pick two filter banks FBERNNET and FGPRGNN and provide an overview of the filters
contained in the filter banks. We use these two filter banks as examples to illustrate what should one
be looking for, while choosing a filter bank.

Bernstein Polynomials: Figure 5 illustrates that as the number of Bernstein Basis increases, the
focus on different parts of the eigenspectrum also undergoes changes. With an increase in polynomial
order, two notable effects can be observed. Firstly, the number of filters increases, enabling each
filter to focus on more fine-grained eigenvalues. This expanded set of polynomial filters allows for a
more detailed examination of the eigenspectrum. Secondly, if we examine the first and last Bernstein
polynomials, we observe an outward shift in their shape. This shift results in the enhancement of a
specific fine-grained part at the ends of the spectrum. These observations demonstrate that Bernstein
polynomials offer the capability to selectively target and enhance specific regions of interest within
the eigenspectrum

Standard Basis: Figure 5 reveals two key observations. Firstly, at a polynomial order of 2, the
standard basis exhibit focus at the ends of the spectrum, in contrast to the behavior of Bernstein
polynomials, which tend to concentrate more on the middle of the eigenspectrum. This discrepancy
highlights the distinct characteristics and emphasis of different polynomial bases in capturing different
parts of the eigenspectrum. Secondly, as the number of polynomials increases (in contrast to
Bernstein polynomials), the lower order polynomials remain relatively unchanged. Instead, additional
polynomials are introduced, offering a more fine-grained focus at the ends of the spectrum. This
expansion of polynomials allows for a more detailed exploration of specific regions of interest within
the the ends of eigenspectrum.

In the context of filter banks, previous studies [28, 7] have demonstrated that certain datasets, such as
SQUIRREL and CHAMELEON, benefit from frequency response functions that enhance the tail ends
of the eigenspectrum. This observation suggests that the standard basis, which naturally focuses
on the ends of the spectrum, may outperform Bernstein basis functions at lower orders. However,
as the order of the Bernstein basis increases, as discussed in 4.1, there is a notable improvement in
performance. This can be attributed to the increased focus of Bernstein basis functions on specific
regions, particularly the ends of the spectrum. As a result, higher-order Bernstein filters exhibit
enhanced capability in capturing important information in those regions. It is worth noting that the
choice between FGPRGNN and FBERNNET depends on the specific requirements of the downstream
task. If the task necessitates a stronger focus on the middle of the spectrum or requires a band-pass or
comb-like frequency response, FBERNNET is likely to outperform FGPRGNN. Thus, the selection of the
appropriate filter bank should be based on the desired emphasis on different parts of the eigenspectrum.
Regarding the performance comparison between FBERNNET and FGPRGNN, it is plausible that as we
increase the order of the Bernstein basis, the performance could potentially match that of FGPRGNN.
However, further investigation and experimentation are required to determine the specific conditions
and orders at which this convergence in performance occurs.
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(a) Five Bernstein Basis (b) Five Standard Basis

(c) Seven Bernstein Basis (d) Seven Standard Basis

(e) Nine Bernstein Basis (f) Nine Standard Basis

(g) Eleven Bernstein Basis (h) Eleven Standard Basis

Figure 5: The figures contain the Bernstein basis as well as standard basis for different degrees. The
x-axis of the figures represents the eigenvalues of the Laplacian matrix, while the y-axis represents
the magnitude of the polynomials. It is important to note that while plotting the standard polynomials,
they are computed with respect to the Laplacian matrix (Ln) rather than the adjacency matrix. As a
result, the eigenvalues lie between [0, 2]. On the other hand, the Bernstein polynomials are typically
defined for the normalised Laplacian matrix, and therefore there is no change in the eigenvalue
range (the eigenvalues of the normalised Laplacian matrix typically range from 0 to 2). By using
the Laplacian matrix as the basis for plotting the polynomials, we can observe the behavior and
magnitude of the polynomials at different eigenvalues, providing insights into their spectral properties
and frequency response characteristics.
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