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Abstract

Wasserstein distance (WD) and the associated optimal transport plan have proven
useful in many applications where probability measures are at stake. In this paper,
we propose a new proxy for the squared WD, coined min-SWGG, which relies on
the transport map induced by an optimal one-dimensional projection of the two
input distributions. We draw connections between min-SWGG and Wasserstein
generalized geodesics with a pivot measure supported on a line. We notably
provide a new closed form of the Wasserstein distance in the particular case
where one of the distributions is supported on a line, allowing us to derive a fast
computational scheme that is amenable to gradient descent optimization. We show
that min-SWGG is an upper bound of WD and that it has a complexity similar to
that of Sliced-Wasserstein, with the additional feature of providing an associated
transport plan. We also investigate some theoretical properties such as metricity,
weak convergence, computational and topological properties. Empirical evidences
support the benefits of min-SWGG in various contexts, from gradient flows, shape
matching and image colorization, among others.

1 Introduction

Gaspard Monge, in his seminal work on Optimal Transport (OT) [42], studied the following problem:
how to move with minimum cost the probability mass of a source measure to a target one, for a given
transfer cost function? At the heart of OT is the optimal map that describes the optimal displacement
as the Monge problem can be reformulated as an assignment problem. It has been relaxed by [33]]
by finding a plan that describes the amount of mass moving from the source to the target. Beyond
this optimal plan, an interest of OT is that it defines a distance between probability measures: the
Wasserstein distance (WD).

Recently, OT has been successfully employed in a wide range of machine learning applications, in
which the Wasserstein distance is estimated from the data, such as supervised learning [30], natural
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language processin@8| or generative modellingd]. Its capacityto provide meaningful distances
between empirical distributions is at the core of distance-based algorithms such as kernel-based
methods|60] or k-nearest neighbor®]. The optimal transport plan has also been used successfully

in many applications where a matching between empirical samples is sought such as color transfer
[55], domain adaptation [19] and positive-unlabeled learring [15].

Solving the OT problem is computationally intensive; the most common algorithmic tools to solve the
discrete OT problem are borrowed from combinatorial optimization and linear programming, leading
to a cubic complexity with the number of samples that prevents its use in large scale apdi&gjon

To reduce the computation burden, regularizing the OT problem with e.g. an entropikaeried to
solvers with a quadratic complexit23]. Other methods based on the existence of a closed form of
OT have also been devised to ef ciently compute a proxy for WD, as outlined below.

Projections-based OT.The Sliced-Wasserstein distance (SWBPH[ 10] leverages 1D-projections of
distributions toprovidea lower approximation of the Wasserstein distance, relying on the closed form
of OT for 1D probability distributions. Computation of SWD leads to a linearithmic time complexity.
While SWD averages WDs computed over several 1D projections, max-24/Rdeps only the
most informative projectionThese frameworks providef cient algorithms that can handle millions

of samples and have similar topological properties as \WH). [Other works restrain SWD and
max-SWD to projections onto low dimensional subspa®2s40] to provide more robust estimation

of those OT metricsAlthough effective agproxiesfor WD, those methods do not provide a transport
plan in the original spacB®. To overcome this limitation 44] aimsto computetransport plans in a
subspace which are extrapolated to the original space.

Pivot measure-based OTOther research works rely on a pivot, yet intermediate measure. They
decompose the OT metric inMvassersteirdistances between each input measure and the con-
sidered pivot measure. They exhibit better properties such as statistical sample complexity or
computational ef ciency[29, 65). Even though the OT problems are split, they are still expensive
when dealing with large sample size distributions, notably when only two distributions are involved.

Contributions. We introduce a new proxfor the squared WD that exploits the principles of
aforementione@pproximations of OT metric. The original idea is to rely on projections and one-
dimensional assignment of the projected distributions to compute the new proxy. The approach is
well-grounded as it hinges on the notion of Wasserstein generalized geodgsiith [pivot measure
supported on a line. The main features of the method are as: i) its computational complexity is on par
with SW, ii) it provides an optimal transport plan through the 1D assignment problem, iii) it acts as an
upper bound of WD, and iv) is amenable to optimization to nd the optimal pivot measure. As an addi-
tional contribution, we establish a closed foofithe WD when an input measure is supported on a line.

Outline. Section 2 presents some background of OT. Section 3 formulates our new WD proxy,
provides some of its topological properties and a numerical computation scheme. Section 4 builds
upon theconcepbf Wasserstein generalized geodesics to reformulate our OT metric approximation as
the Sliced Wasserstein Generalized Geodesics (SWGG) along its optimal variantroimr8iVG G

This reformulation allows deriving additional topological properties and an optimization scheme.
Finally, Section 5 provides experimental evaluations.

Notations. Leth; i be the Euclidean inner product & and letS? ! = fu 2 R s.t.kuk, = 1,
the unit sphere. We denoR(RY) the set of probability measures Bl endowed with the algebra
of Borel sg§ and®,(RY) P (RY) those with nite second-order moment i.&,(RY) = f 2
P(RY) s.t. o kxkid (x) < 1g . LetPJ(R?) be the subspace &,(R?) de ned by empirical
measures with-atoms and uniform masses. For any measurable funtctid® | RY, we denotd 4
its push forward, namely for 2 P ,(RY) and for any measurable s&t2 RY,f, (A)= (f 1(A)),
withf 1(A)= fx 2 Ris.t.f(x) 2 Ag.

2 Background on Optimal Transport

De nition 2.1 (Wasserstein distanceYhe squared WDg3] between 1; » 2 P,(RY) is de ned as:

z

W2( 15 2) € inf kx ykad (x;y) 1)
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with ( 1; 2)=f 2PyR' RYst (A RY)= ,(A)and (R A)= ,(A),8A
measurable set &tg.

Thearg min of EqQ. (1) is referred to ashe optimal transport plan. Denoted, it expresses how
to move the probability mass fromy to » with minimum cost. In some cases, is of the
form (Id; T)x 1 for a measurable map : R ! RY, i.e. there is no mass splitting during the
transport. This map is called agMonge map and is dendted 2 (orshortly T 2). Thus, one has
W2( 15 2)=inf rset, 1= , pe kX T(X)k3d 1(x). This occurs, for instance, when has a
density w.r.t. the Lebesgue measure [12] or wherand » are inP§ (RY) [58].

Endowed with the WD, the spa®(RY) is a geodesic space. Indeed, since there exists a Monge
mapT?! 2 between ; and », one can de ne a geodesic curvé' 2:[0;1]! P ,(RY) [31] as:

8201 MM (T 2+ 0Id)y 4 )

which represents the shortest path w.r.t. Wasserstein distaf¢Rd) between ; and . The
Wasserstein mean betweepand ; corresponds to = 0:5 and we simply write *' 2.

This notion of geodesic allows the study of the curvature of the Wasserstein $pacel¢ed, the
Wasserstein space is of positive curvature [b&],it respects the following inequality:

WE( 15 2) 2WH( 15 )+2WE(5 2) 4WF( M %) (3)
for all pivot measures 2 P »(RY).

Solving and approximating Optimal Transport. The Wasserstein distance between empirical
measures 1; » with n-atoms can be computed @(n® logn), preventing from the use of OT for
large scale applicationd ]]. Several algorithms have been proposed to lower this complexity, for
example the Sinkhorn algorithm [23] that provides an approximation in@¢af) complexity [2].

Notably, when ;= 2~ ", and ,= 2" | are 1D distributions, computing the WD can

be done by matching the sorted empirical samples, leading to an overall compleRify tfg n).
More precisely, let and two permutation operators s.k 1y X (g I X (n) and
Yo Y@ Y (- Then, the 1D Wasserstein distance is given by:

PN R .
W3( 1, 2) . X @y Y@ 4)
i=1

Sliced WD. The Sliced-Wasserstein distance (SWB%][aims to scale up the computation of OT
by leveragingthe closed form expressid¢a) of the Wasserstein distance for 1D distributions. It is
de ned as the expectation of 1D-WD computed along projection directich§? * over the unit
sphere: z

SWE( 1 2) ¥ WE(P, 1Py )l () (5)

S

whereP,, ; andP,  are projections onto the directior?2 S *withP :R¥! R, x 7! hx; i
and wherd is the uniform distribution ove®? 1.

Since the integral in Eq(5) is intractable, one resorts, in practice, to Monte-Carlo estimation to
approximate the SWD.

Its computation only involves projections and permutations. LFdirections, the computational
complexity isO(dLn + Ln logn) and the memory complexity ©(Ld + Ln). However, in high
dimension, several projections are necessary to approximate accurately the SWD and many projections
lead to 1D-WD close to 0. This issue is well known in the SW commur@g}, [where different

ways of performing effective sampling have been propog&d46, 50] such as distributional or
hierarchical slicing. In particular, this motivates the de nition of max-Sliced-Wasserstdjmhich

keeps only the most informative slice:

def
max-SW( 1; 2) = max WZ(P, 1Py 2): (6)
While being a non convex problem, it can be optimized ef ciently using a gradient ascent scheme.

The SW-like distances are attractive since they are fast to compute and enjoy theoretical properties:
they are proper metrics and metricize the weak convergence. However, they do not provide an OT
plan.



Projected WD. Anotherquantity of interest based on the 1D-WD is the projected Wasserstein
distance (PWD)57]. It leverages the permutations of the projected distributions in 1D in order to
derive couplings between the orlglnal distributions.
L1 y, NP2 (RY). The PWD is de ned as:

z

1 n 1
Let 1= 5 4 x;and 2= 2

def 1 X 24 .
PWD5( 1; 2) = = kx iy @mkad () (1)
sd 1 N i=1
where ; are the permutations obtained by sortlhg 1 andP, .

As some permutations are not optimal, we straightforwardly Ndge PWD3. Note that some
permutations can appear highly irrelevant in the original space, leading to an overestimatign of
(typically when the distributions are multi-modal or with support lying in a imensionamanifold,
see Supp. 7.1 for a discussion).

In this paper, we restrpgt ourselves to empwpx:al distributions with the same number of samples. They
aredenedas;= X ., s and ;=1 1 | inPJ(RY. Note that the results presented
therein can be extended to any discrete measures by mainly using quantile functions instead of
permutations and transport plans instead of transport maps (see Supp. 7.2).

3 De nition and properties of min-SWGG

The fact that thé WD overestimate$V? motivates the introduction of our new loss function coined
min-SWGGwhich keeps only the most informatipermutation Afterwards, we derive a property
of distance and grant an estimation of min-SWGG via random search of the directions.

De nition 3.1 (SWGG and min-SWGG)Let ;; > 2P (R and 2 S® !. Denoteby and
the permutations obtained by sorting the 1D prOjectiépsl andP, ». We de ne respectively
SWGG and min-SWGG as:

X

def 1

SWGG( 1; 2, ) T = kx )y ¥y ks 8
i:1

min-SWGG( 1; 2) ¥ min SWGG( 1; 2 ): 9)

One shall remark that the function SWGG corresponds to the building block of PWD in eq. (7).

One main feature ofmin-SWGG is that it comes with a transport map. Let 2
argmin SWGC%( 1; 2; ) bethe optimal projection direction. The associated transport map is:

TXi)=Y 1oy 81 i on (20)
In Supp. 7.6 we give several examples of such transport plan. These examples show that the overall
structure of the optimal transport plan is respected by the transport plan obtained via min-SWGG.

We now give some theoretical properties of the quantities SWGGandSWGG Their proofs are
given in Supp. 7.3.

Proposition 3.2(Distance and Upper boundlet 2 S% 1. SWGG( ; ; ) de nes a distance on
7 (RY). Moreovermin-SWGGis an upper bound V%, andW$ min-SWGG PWD3, with

equality betweetw$ and min-SWGG whend > 2n.

Remark 3.3. Similarly to max-SWmin-SWGGretains only one optimal direction 2 S% 1,

However, the two distances strongly differnijn-SWGGis an upper bound and max-SW a lower

bound ofwZ, ii) the optimal  may differ(see Supp. 7.4 for an illustration), and iii) max-SW does
not provide a transport plan betweenand ».

Solving Eg.(9) can be achieved using a random search, by samplidijections 2 S° ! and
keeping only the one leading to the lowest value of SWGG.

This gives an overall computational complexity@fLdn + Ln logn) and a memory complexity
of O(dn). In low dimension, the random search estimation is effective: covering all possible



permutations througB? ! can be done with a low number of directions. In high dimension, many
more directions are needed to have a relevant approximation, typic{ly® 1). This motivates
the design of gradient descent techniques for nding

4 SWGG as minimizing along the Wasserstein generalized geodesics

Solving problem in Eq(9) amounts to optimize
over a set of admissible permutatiofi$is prob-
lem is hard sinc&WGGis non convex w.r.t.
andpiecewiseconstant, thus not differentiable
over S? 1. Indeed, as long as the permuta-
tions remain the same for different directions
, the value oSWGG remaingonstantWhen
the permutations change, the objective SWGG

"jumps" as illustrated in Fig. 1.
igure 1: (Left) Empirical distributions with ex-

In this section, we tackle this problem by provids sles of 2 sampled lines (Riaht) that lead to 2
ing an alternative formulation ahin-SWGG osgible values OESW(;G w%elr?Z [%). 2]
that allows smoothing the different kinks of T

SWGG hence, makingnin-SWGGamenable to optimization. This formulation relies on Wasserstein
generalized geodesics we introduce hereinafter.

We show that this alternative formulation brings in computational advantages and allows establishing
some additional topological properties and deriving an ef cient optimization scheme. We also
provide a new closed form expression of the Wasserstein distag¢e;; ») when either ; or

2 is supported on a line.

4.1 SWGG based on Wasserstein Generalized Geodesics

Wasserstein generalized geodesics (see Supp. 8 for more details) were rst introdutjad order

to ensure the convergence of Euler scheme for Wasserstein Gradient Flows. This concept has been
used notably inZ9, 44] to speed up some computations and to derive some theoretical properties.
Generalized geodesic is also highly related with the idea of linearization of the Wasserstein distance
via anL? space [65, 43], see Supp. 9 for more details on the related works.

Generalized geodesics lay down on a pivot measu2eP § (RY) to transport the distribution;
toward ,. Indeed, one can leverage the optimal transport riiaps * andT ' 2 to construct a
curvet 7! 2 2(t) linking 1to as

Loy @ or! o+t oy, 8t2[01k (11)
The related generalized Wasserstein mean corresponds@®o5 and is denoted é’ 2,
Intuitively, the optimal transport maps betweeand ;i = 1;2 give rise to a sub-optimal transport
map between; and ;:
TH2E T e Tt with (TY %)y 1= (12)

One can be interested in the cost induced by the transportationtof , via the transport map
T 2 known as %he -based Wasserstein distance [47] and de ned as

W2( 15 2) & ke TY 200K3d 1(x) =2WE( 15 )*2WE(; 2) 4AWE( Y %) (13)
Rd

Notably, the second part of E§13) straddles the square Wasserstein distance with(8q.Re-
markably, the computation &% 2 can be ef cient if the pivot measureis choserappropriately As
established in Lemma 4.6, it is the case wheis supported on a line. Based on these facts, we
propose hereafter an alternative formulation of SWGG.

De nition 4.1 (Pivot measure)Let 1 and , 2 P 5 (RY). Werestrictthe pivot measure to be the
Wasserstein mean of the measuigs ; andQ,, »:

1 2 def ; 2 . 2/ . .
= ar min W D)+ Wi ;
g 2P 3 (Re) 2(Qy 17 ) 2(Qy 2)



where 2 S% andQ :RY! RY, x 7! Ix; i isthe projection onto the subspace generated.by
Moreover ' 2 is always de ned as the middle of a geodesic as in Eq (2).

One shall notice tha®,, 1 andQ,, » are supported on the line de ned by the directigrso is the
pivot measure = ' 2. We are now ready to reformulate the metric SWGG.

Proposition 4.2(SWGG based on generalized geodesitgt 2 S 1, ;; 2P (RY)and ' 2

be the pivot measure. Lef; 2 be the generalized Wasserstein mean betwgeand » 2 P 5 (R%)

with pivot measure ' 2. Then,

SWGG( 15 2 )=2WZ( 13 M )+2WZ( M % o) aWZ( g % M%) (14)

The proof is in Supp.10.1. From Proposition 42AVGGis the ! 2-based Wasserstein dis-
tance between; and ;. This alternative formulation allows establishing additional properties
of min-SWGG.

4.2 Theoretical properties

Additionally to the properties derived in SectionSWGGis a distance anthin-SWGGis an upper
bound ofw?2), we provide below other theoretical guarantees.

Proposition 4.3(Weak Convergence)min-SWGGmetricizes the weak convergencels (RY). In
other words, let k)k2n be a sequence of measure®H(RY) and 2 P J(RY). We have:

v !Lk;z 0 min-SWGG( «; ) !, O

. R R
wherel 2 stands for the weak convergence of measure efd ¢! fd forall continuous
bounded function§.

Beyond the weak convergenarin-SWGGpossesses the translation propedrgy,the translations
can be factored out as the Wasserstein distance does (see [53, remark 2.19] for a recall).

Proposition 4.4(Translation) LetTY (resp.TY) bethe max 7! x u (resp.x 7! x v), with
u;Vv vectors ofRY. We have:

min-SWGG(TY 1;T) 2)= min-SWGG( 1; 2)+ ku vk3 2 v;m; moi
R R
wherem; = ., xd 1(x)andmy = ., xd »(x) are the means of;, ».

This property is useful in some applications such as shape matching, in which translation invariances
are sought.

The proofs of the two Propositions are deferred to Supp. 10.2 and 10.3.

Remark 4.5 (Equality) min-SWGGandW? are equal in different cases. First3] showed that it
is the case whenevey is the shift and scaling of, (see Supp. 9.1 for a full discussion). In Lemma
4.6, we will state that it is also the case if one of the two distributions is supported on a line.

4.3 Ef cient computation of SWGG

SWGGde ned in Eqg.(14) involves computing three WDs that are fast to compute, with an overall
O(dn + nlogn) complexity, as detailed below. Building on this result, we provide an optimization
scheme that allows optimizing ovemwith O(sdn + snlogsn) operations at each iteration, wish

a (small) integer. We rst start by giving a new closed form expression of the WD whenever one
distribution is supported on a line, that proves useful for deriving an ef cient computation scheme.

New closed form of the WD. The following lemma states th&¢Z( 1; ») admits a closed form
whenever , is supported on a line.

This lemma leveragethe computation of the WD between and the orthogonal projection of
onto the linear subspace de ned by the line. Additionatiprovides an explicit formulation fathe
optimal transport mapg ' 2.



Lemma 4.6. Let 1; »inPJ(RY) with , supported on a line of direction2 S 1. We have:
WE( 15 2)= W3( Qs 1)+ WH(Qy 15 2) (15)

P
with Q asinDef. 4.1. Note thavZ( 1;Q, 1)= 2 kx; Q (x))k3andW2(Q, 1; 2)=
W2(P, 1;P, 2)arethe WD between 1D distributions. Additionally, the optimal transport map
isgiven byTY 2= TQ+ ' 2 T 1 Q 1=7TQ ' 2 Q | |nparticular,the mag? 2can
be obtained via the permutations of the 1D distributiBps ; andP, . The proof isprovidedin
Supp. 10.4.

Ef cient computation of SWGG Eq. (14)is de ned as the Wasserstein distance between a distri-
bution (either ; or , or ! 2) and a distribution supported on a line'{ ?). As detailed in Supp.
10.5, computation of Eq14) involvesthree Wasserstein distances between distributions and their
projections: )W5( 1;Q, 1), ii) WZ( 2;Q, ), ii)) W3( 3 % * ?), andaone dimensional
Wasserstein distana&'2(P, 1;P, »), resulting in 20(dn + nlogn) complexity.

Optimization scheme for min-SWGG. The termWZ( ¢ 2 ' ?)in Eq.(14)is notcontinuous
w.r.t. . Indeed, the generalized meaﬁ 2 dependonly on the transport maps "% 1 and
T " * 2, which remainconstant as long as different projection directionlead to the same

permutations and . Hence, we rely on a smooth surrogelfaé; 2 of the generalized mean and we
aim to minimize the following objective function:

SWGG( 1 21 ) E2wi( 4 M Hr2WI( M2 ) awil G MY (1)

To de ne ]g' 2, one option would be to use entropic maps in BEd.) but at the price of a quadratic

time complexity. We rather build upon the blurred Wasserstein distad@ed de ne ]é' 2asit
can be seen as an ef cient surrogate of entropic transport plans in 1D. In one dimensional setting,

]é' 2 can be approximateef ciently by adding an empirical Gaussian noise followed by a sorting
pass. In our case, it resorts in makimgopies of each sortegrojectionP (x (j)) andP (y (;))

respectively, to add an empirical Gaussian noise of deviatier? and to compute averages of sorted
blurred copiex S, yS.. We nally have(]ég )i = & ke pse1 Xsqg T Y0 [26] showed
that this blurred WD has the same asymptotic properties as the Sinkhorn divergence.

The surrogatSWGQE 1; »; ) is smoother w.r.t. and can thus be optimizessinggradient descent,
converging towards a local minima. Once the optimal directiois found,min-SWGGresorts to
be the solution provided bWG(E 1; 2; ). Fig. 2 illustrates the effect of the smoothing on

a toy example and more details are given in Supp. 10.6. The computa®NG 1; »; )is
summarized in Alg. 1.

Algorithm 1 ComputingS/\\NGC%( 1 2; )
: P P
Require: 1= & 4, 2= 5 y, 28" 1s2N:and 2R,
: ascending ordering P (x;))i, (Q (Y;))i
x5 scopiesof(x ¢))i,y® scopiesof(y )i

s; S ascending ordering ¢kS; i+ ,hyS; i+ for ; N (0; =2),8i sn

, P 2 2 20 . 20 .
a np i Xi  Q (Xi)kz + ky; Q (yipk; C2WS(13Qs 1) +2WS( 2:Q4 2)
2
b 2 P (X a)+P (X, C2WE(P, 1Py 2)
P ®» 2
c % ) %(Q (X (i))+ Q (y (|))) %k - 1(Xss(k) + ySS(k)) 2" 4W22(]ét 2; = 2)
1 =(1 S+

Outputa+ b ¢




Figure 2: lllustration of the smoothing effect in the same setting as in Fig. 1. (Left) Two sets of
generalized Wasserstein means are possible, depending on the direction of the sampled line w.r.t.

1 and ,, giving rise to 2 different values f@WGG (Middle) The surrogate provides a smooth
transition between the two sets of generalized Wasserstein means as the direbémges, (Right)
providing a smooth approximation of SWGG that is amenable to optimization.

5 Experiments

We highlight thaimin-SWGGis fast to compute, gives an approximation of the WD and the associated
transport plan. We start by comparing the random search and the gradient descent schemes for nding
the optimal direction in subsection 5.1. Subsection 5.2 illustrates the weak convergence property
of min-SWGGthrough a gradient ow application to match distributions. We then implement an

ef cient algorithm for colorization of gray scale images in 5.3, thanks to the new closed form
expression of the WD. We nally evaluatein-SWGG in a shape matching conté@xsubsection 5.4.

When possible from the context, we compare-SWGGwith the main methods for approximating

the WD namely SW, max-SW, SinkhorB3], factored coupling29] and subspace robust WD (SRW)

[52]. Supp. 11 provides additional results on the behavionim-SWGGand experiments on other

tasks such as color transfer or on data sets distance computation. All the code is avallable at

5.1 Computing min-SWGG

Let consider Gaussian distributions in dimensidr2 f 2; 20; 200g. We rst samplen = 1000 points

from each distribution to de ne; and ,. We then computmin—SWG@( 1; 2) computed using
different schemes, either by random search, by simulated anneadihor|by gradient descent. We

report the obtained results in Fig. 3 (left). For the random search scheme, we repeat each experiment
20 times and we plot the average value of min-SWGQ times the standard deviation.

For the gradient descent, we select a random initi&e observe that, in low dimension, all schemes
provide similar values afmin-SWGG When the dimension increases, optimizing the direction
yields a more accurate approximation of the true Wasserstein digise®elots' title in Fig. 3). On

Fig. 3 (right), we compare the empirical runtime evaluatiomfiim-SWGGwith different competitors

for d = 3 and usingh samples from Gaussian distributions, witt2 f 107; 10°; 10*;5 10*; 10°g.

We observe that, as expectedn-SWGGwith random search is as fast 88/ with a super linear

time complexity. With the optimization process, it is faster than SRW for a given number of samples.
We also note that SRW is more demanding in memory and hence does not scale asnirelsa8GG

We give more details on this experimentation and a comparison with competitors in Supp. 11.2.

Figure 3: (Left) evolution omin-SWGGwith different numbers of projections and with the dimension
dinf2;20;200g. (Right) Runtimes.

https://github.com/MaheyG/SWGG



5.2 Gradient Flows

We highlight the weak convergence propertyrah-SWGG Initiating from a random initial distribu-

tion, we aimto movethe particles of a source distribution towardsa target one , by reducing

the objectivemin-SWGG( 1; ) at each step. We compare both variantsai-SWGG against

SW, max-SWandPWD, relying on the code provided ii8f] for running the experiment; we report

the results on Fig. 4. We consider several target distributions, representing diverse scenarios and x
n =100. We run each experiment 10 times and report the meéme standard deviation. In every
case, one can see that moves towards » and that all methods tend to have similar behavior. One
can notice though that, for the distributionsdi= 500 dimensional spacenin-SWGGcomputed

with the optimization scheme leads to the best alignment of the distributions.

Figure 4: Log of the WD between different source and target distributions as a function of the number
of iterations.

5.3 Gray scale image colorization

Lemma 4.6 states that the WD has a closed form when one of the 2 distributions is supported on a
line, allowing us to compute the WD and the OT map with a complexi®@fn + nlogn). This
particular situation arises for instance with RBG images (2 2 P § (R®)), where black and white
images are supported on a line (the line of grays). One can address the problem of image colorization
through color transfer2p], where a black and white image is the source and a colorful image the
target. Our fast procedure allows considering large images without sub-sampling with a reasonable
computation time. Fig. 5 gives an example of colorization of an image of size 18 that was
computed in less than 0.2 second, while being totally untractable f@ ¢hélogn) solver of WD.

Figure 5: Cloud point source and target (left) colorization of image (right).
This procedure can be lifted to pan-sharpeni®g] {vhere one aim$o construct super-resolution
multi-chromatic satellite image with the help of a super-resolution mono-chromatic image (source)
and a low-resolution multi-chromatic image (target). Obtained results are given in the Supp. 11.4.

5.4 Point clouds registration

Iterative Closest Point (ICP) is an algorithm for aligning point clouds based on their geometries
[7]. Roughly, its most popular version de nes a one-to-one correspondence between point clouds,
computes a rigid transformation (namely translation, rotation or re ection), moves the source point
clouds using the transformation, and iterates the procedure until convergence. The rigid transformation
is the solution of the Procrustes problém argming .y,0¢q) re K( X ) Y k3, whereX ;Y

are the source and the target cloud points @Gd) the space of orthogonal matrices of dimension

This Procrustes problem can be solved using a SVD [59] for instance.

We perform the ICP algorithm with different variants to compute the one-to-one correspondence:
neareast neighbor (NN) correspondence, OT transport map (for small size datasetf)-8WGG



transport map. Note that SW, PWD, SRW, factored coupling and Sinkhorn cannot be run in this
context where a one-to-one correspondence is mandatory; subspace detpars frrelevant in this

context (see Supp. 11.5). We evaluate the results of the ICP algorithm in terms of: i) the quality of
the nal alignment, measured by the Sinkhorn divergence between the re-aligned and target point
cloud; ii) the speed of the algorithm given by the running time until convergence. We consider 3
datasets of different sizes. The results are shown in Table 1 and more details about the setup, can be
found in Supp. 11.5. In Supp. 11.5 we give a deeper analysis of the results, notably with different
criteria for the nal assignment, namely the Chamfer and the Frobenius distance. One can see that
the assignment provided by OT-based methods is better thamNNSWGGallows working with

large datasets, while OT fails to provide a solutionrior 150000.

n 500 3000 150 000
NN 354002 969030 23.369.3)
oT 0.32(0.18) 48.4 (58.46)

min-SWGG 0.05(0.04) 37.6(0.90) 6.7(105.75)
Table 1: Sinkhorn Divergence between nal transformation on
the source and the target. Timings in seconds are into parenthesis.
Best values are boldfaced. An example of a point clouds (
3000 is provided on the left.

6 Conclusion

In this paper, we hinge on the properties of sliced Wasserstein distance and on the Wasserstein
generalized geodesics to de ma&in-SWGQG a new upper bound of the Wasserstein distance that
comes with an associated transport map. Topological propertlBg/@Gare provided, showing that

it de nes a metric and thahin-SWGGmetrizes the weak convergence of measure. Wepalspose

two algorithms for computingnin-SWGGQG eitherthrougha random search scheme or a gradient
descent procedure after smoothing the generalized geodesics de nitoim&8WGG We illustrate

its behavior in several experimental setups, notably showcasing its interest in applications where a
transport map is needed.

The set of permutatioreoveredoy min-SWGGis the one induced by projections and permutations on
the line. Itis a subset of the original Birkhoff polytope and it would be interestirip&vacterizéow
these two sets relates. In particular, in the case of empmgedizationf continuous distributions, the
behavior oimin-SWGG whenn grows, needs to be investigated. In addition, the factthiatSWGG

and WD coincide whed > 2n calls for embedding the distributions in higher dimensional spaces to
bene tfromthe greateexpressive power of projection onto the likmotherimportant consideration

is to establish a theoretical upper bound for min-SWGG.
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7 Proofs and supplementary results related to Section 3

7.1 Overestimation of WD by PWD

As stated in Section 2, the projected Wasserstein distaWé® (see Eq. 7) tends to overestimate
the Wasserstein distance. This is due to the fact that some permutatiand  (with 2 S 1)
involved in PWD computation may be irrelevant. Such situation occurs when the distributions
are in high dimension but supported on a low dimensional manifold or when the distributions are
multi-modal.

Let consider the distributions; and » lying on a low dimensional manifold. In high dimension,
randomly sampled vectorstend to be orthogonal. Moreover, vectors orthogonal to the low dimen-
sional manifold lead to “collapsed” projected distributid®s 1 andP, » onto . Hence, such
projection directions lead to permutations that can be randomly chosen. To empirically illustrate this
behavior of PWD, we consider, and , as Gaussian distributions Rf, d = 10 but supported on

the rst two coordinates and we sample 200 points per distribution. Table 2 summarizes the obtained
corresponding distances and shows that PWD overestimates the WD.

Now, let us consider two multimodal distributiong; » with K clusters such that each cluster qf

has a close cluster from, (cyclical monotonicity assumption). Also we assume the same number

of points in each cluster. OT plan will match the corresponding clusters and will lead to a relatively
low value forw# (since cluster from ; has a closely related cluster in). However a®WD may

allow permutations that make correspondences between points from different clusters (since a source
cluster and a target cluster can be far in the original space but very close when projected on 1D), the
resulting distance will be much more larger, leading to an overestimation of the Wasserstein distance.
Table 2 provides an illustration fat = 10 clusters andl = 2.

Table 2: Values o2, PWD andmin-SWGGon two toy examples. PWD samplesiniformly over
s¢ 1. PWD Orthogonal Projections seek orthogonal vectors (see [57] for more details)

Distributions Multi-modal  Low dimensional manifold
W2 12 12

PWD3 Monte-Carlo 54 29

PWD;3 Orthogonal Projections 54 37
min-SWGG 13 13

7.2 Quantile version of SWGG

The main body of the paper expresSd8GGfor empirical distributions ; and , with the same
number of points and uniform probability masses. In this section we deBVW@Gin a more general
setting of discrete distributions.

Let remark thamin-SWGGrelies on solving a 1D optimal transport (OT) problem. So far, the 1D

OT problem was derived fory; » 2 PJ(R) and thus was expressed using the permutation operators
and . In the general setting of distributiong 2 PJ(R) and , 2 PJ"(R) with n 6 m, the

1D optimal transport is computed based on quantile functions. Hence, the expresSMGG

in the general setting of; 2 P2 (R) and , 2 P%'(R) hinges on quantile functions instead of

permutations.

More formally, let 2 P (R); its cumulative function is de ned as:
Z X

F :R! [0;1]; x 7! d a7)
1

and its quantile function (or pseudo inverse), is given by:
g :[0;1]! R; r 7' minfx 2 R[f1lg s.t.F (x) rg (18)

An important remark is that the quantile function is a step function wi{the number of atoms)
discontinuities. Thus, it can be stored ef ciently using two vectors of sigene for the locations of
the discontinuities and the other for the values of the discontinuities).
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For 1 2P} (R)and ;2 PJ'(R), we recover the Wasserstein distance through quantiles with:
z 1
W3( 15 2)= ; ja.(r) g, (nj*dr (19)

Moreover, the optimal transport plan is given by:

=(d,:0,)# o1 (20)

where [o.q) is the Lebesgue measure [@)1]. The transport plan can be stored ef ciently using two
vectors of sizdn + m 1) (see [53] Prop 3.4).

Following [53, Remark 9.6], one can de ne the quantile function related to the Wasserstein mean by :
1 1
q1’2:§q1+§q2: (21)

Now, let ; 2 PJ(RY) and , 2 PM"(RY). Let ' 2 be the Wasserstein mean of the projected
distributions on . Finally let ' ! denote the transport plan fromt' 2to ; and ' 2 be the
transport plan from*' 2to ,. Following the construction of4 Sec. 9.2], we shall introduce a
multi marginal plan de ned as:

2P,(RY R RYstPP2 = '1:pB = 'Zand 2 ( Y% ;L) (22

whereP1? : (R%)3 I (RY)? projects to the rst two coordinates aff® projects to the coordinates
1and 3. In particula®®}?  is the projection of onits 2 rst marginals and;® on the rstand 3rd

marginal. Similarly to the 2-marginal transport planwe de nged ' 2; 1; 5)=f 2P,(R
RICOR)st (A RRH)= ¥ 2A), (RRA R)= j(A)and (R' R¢ A)= ,(A),
8A measurable set ¢’g:

The generalized barycente}' 2 is then de ned as:

1 1
n2_ 1p2, 1ps
g 2P 2P ) (23)

whereP' is the projection on theth coordinate.

We nally have all the building blocks to compu@WVGGin the general case. Let remark that the
complexity goes fronD(dn + nlogn) in theP5 (RY) case taO(d(n + m) + ( n + m)log(n + m))
in the general case.

7.3 Proof of Proposition 3.2

We aim to provetha$WG@( 1, 2; )isanupperbound dV2( 1; ) andthaSWGQE 1; »; )
isadistanc8 2 S 1; ; 2P(RY),i=1;2

Distance. NPote that this prgof will be derived for the alternative de nition®WGGin supp. 10.8.

1 — l — lP d d 1
Let 1 = 3 xii 2= = yi» 35 7 . be |nP2(R) let 2 S We note (resp.
and )the permutat|on such thdk ), i ..: X (ny; 1 (resp. hy L
by (s Tandhz g5 0 e ny; ).
Non-negativity and nite valuel-rom the;jz norm, it is derived 5
Symmetry. SWGG( 1; 2; ) = 2 kx g y @k = I kv x gk =
SWG@( 20 15 )
Identity property.From one side, ; = , implies thathx;; i = hy;; 1,81 i nandthat = ,

which implies SWGG( 1; 2; )=0

P
From the other sSidSWGG( 1; 2; )=0 =) % kx G y 3k=0=) X =Y .
8l i n =) 1= 2.

16



p 1=2
Triangle Inequality. We have SWGG( 1; 2; ) = % P kx gy oy (i)k%
2 P , 172 P 2 1=2
K@) Z ket kz )ty )k LSO REAOLS +
P =
kz i)ty i)k = SWGG( 1; 3; )+ SWGG( 3; 2; )

Upper Bound The fact thamin-SWGG in an upper bound iV comes from the sub-optimality
of the permutations ; . Indeed, they induce a one-to-one correspondecncg) AN

81 i n.This corres%ondence corresponds to a transportiaguch thafl, ; = 5. Since
WZ=infrser, .= ,+ kx T(x)k3 we necessarily haw/s  min- SWG(:‘QZ

Equality The equalityw? = min-SWG(% wheneverd > 2n comes from the fact that all the
permutations are within the range 8WWGG In particular minimizingSWGGis equivalent to solve
the Monge problem. We refer to Supp. 11.1 for more details.

7.4 Difference between max-SW and min-SWGG

Herein, we give an example where the selected vectéos max-SW and min-SWGG differ.

10

Let 1; » 2P (R?) beanempirical sampling ™ (m1; 1) and ofN (my; »)withmy = 0

oo 10 _ 10 . _ 20
2% 01T 0 11 2= 0 2

Since these two distributions are far away onstheoordinate max-SWwill catch this difference
between the means by selecting é . Indeed, the projection on thecoordinate represents the
largest 1D WD.

Converselymin-SWGGselects the pivot measure to be supported on é that separates the

two distributions. Indeed, this direction better captures the geometry of the 2 distributions, delivering
permutations that are well grounded to minimize the transport cost.

Fig. 6 illustrates that difference between max-SW and min-SWGG.

Figure 6: Optimal for max-SW and min-SWGG

7.5 From permutations to transport map

In this section we provide the way of having a transport map from permutations.

Let 1; 2 2PJ(RY),let 2 argminSWGGandlet ; the associated permutations. The
associated map must Bgx )) =y (;; 81 i n. Inthe paper, we formulate the associated
transport map as:

T(xi)=y

1 oGy 81 i on (24)
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Moreover, the matrix representationDfis given by:

= 0 ()= ()
Tj = 0 otherwise (25)

7.6 Examples of Transport Plan

Fig. 7 illustrates two instances of the transport plan obtainedwiaSWGG Even though these
transport plans are not optimal, they were able to capture the overall structure of the true optimal
transport plans.

Figure 7: Example of transports plan given by Wasserstein (left and middle-right) and min-SWGG
(middle left and right). Transport plan distribution (top) and transport matrix (bottom).The relative
distances between source and target are given in the title.

The rst example shows that the OT plan byin-SWGGexhibits a "block" structure, and thus
approximates well the true Wasserstein distance. The second example shows that even in a context of
superimposed distribution the "general transport directiomiiim-SWGGis representative of that of

the optimal transport map.

8 Background on Wasserstein Generalized Geodesics
We introduce some concepts related the Wasserstein generalized geodesics in Sec. 4.1. In this section,
we provide more details about these geodesics in order to provide a wider view on this theory.

In the following de nitions, we do not address the issue of uniqueness of the geodesics. However this
is not a problem in our setup since we focus our study on pivot measuraaitbms 2 P 5 (RY).
In this case, we have uniqueness of thbased Wasserstein distance [47].

Wasserstein generalized geodesicsAs mentioned in Sec. 4.1, Wasserstein generalized geodesics
rely on a pivot measure 2 P §(RY) to transport 1 to ,. Indeed, one can leverage the optimal
transportmap¥ ' *andT ' 2 toconstruct a curve linking; to ». The generalized geodesic
with pivot measure is de ned as:

By E@a Tl o+t oo, 8t 2 [0: 1]; (26)

The generalized Wasserstein mean refers to the middle of the geodesic, i.et wehand has
been denotedy' 2.

Intuitively, the optimal transport maps betweeand ;i = 1;2 give rise to a sub-optimal transport
map between ; and » through:

TH2E T e Tt with (TY 2y 1= 27)
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TY ?links ;to , viathe generalized geodesic:
g (=@ Hid+tT" 2, o (28)

We recall here the-based Wasserstein distance induced by ? and introduced in Eq. (13).
De nition 8.1. The -based Wasseritein distance [21, 47] is de ned as:

W2( 1 2) Bl T 2()KEd 1(x) (29)
zr
= KT ' 1(z) T' 2(2)kid (2): (30)
Rd
Moreover, this new notion of geodesics comes with an inequality, which is of the opposite side to
Eq. (3):
WE( g 20 ) @ HWZ( 1 )+ tWE(5 2)  tL HWE( 15 2): (31)
The parallelogram law is not respected but straddles witl{3@nd eq.(31). We refer to Figure 8
for an intuition behind positive curvature [51], parallelogram law and generalized geodesics.

X1
X1 +(l t)Xz

Figure 8: Geodesiftld + (1 t)TY 2); ; and generalized geodegitd + (1 t)TY 2)s 1in
Wasserstein space (Left and Right) in dashed line and parallelogram Rév(imiddle).

Settingt = 0:5in Eq. (31) and reordering the term gives:
WE( 15 2) 2WE( 15 )+2WE(5 o) 4WZ( ¢ % ): (32)

Moreover one can remark that:
W2( 1 2)=2WEZ( 1; )+2WZ(; 2) 4wZ( ' %) (33)

In particular situation¥V? andW coincide. It is the case for 1D distributions where the Wasserstein
space is known to be at4]. In that case, the Wasserstein mean and the generalized Wasserstein
mean are the same.

Multi-marginal  Another formulation of the -based Wasserstein distance is possible through

the perspective of multi-marginal OBJ[ Let ( 1; 2; )= f stPi? = 1 2;p:3
' andP2® = 2 g, whereP! isthe projection onto the coordinateg. Letalso ( i; )
be the space of optimal transport maps betwgeand . We hzé\ve:
W2( 15 2) = inf kx  ykid (x;y) (34)
2( 15 2;)stP2 2 (4;)i=1;2 Rd

Equation(34) expresses the fact that we select the optimal plan fomy; »; ) which is already
optimal for ( i; ). Mathematically, this minimization is not a multi-marginal problem, since the
optimal plan is supposed to be already optimal for some coordinate.

Thesetf 2 ( 1; 2, )stPi® 2  (i; )i =1;2gis never empty, i.e. there is always

existence of 1 2 (thanks to the gluing lemma#§], page 23). Moreover, in situations where it is a
singleton, there is uniqueness df 2. Uniqueness is an ingredient which overpasses the selection
of a nal coupling and comes with additional result.

Lemma 8.2(Lemma 6 §7]). Wheneverf 2 ( 1; 2; )stPi® 2  (;)i=1;2gisa
singletonW ? is a proper distance. It is a semi-distance otherwise.

Notably, 1D pivot measure was studied B5] to ensure a dendritic structure of the distributions
along the geodesic.
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9 Related Works

In this section we highlight the fact that several upper approximatiokofre in the framework of
generalized geodesics. The differences lay in the choice of the pivot measure

Factored Coupling. In [29], the authors impose a low rank structure on the transport plan by
factorizing the couplings through a pivot measurexpressed as tHeWasserstein mean between

and , (k n). Itis of particular interest since whenever the pivot distribution is the Wasserstein
mean between; and », W2 andW# coincide.

Factored coupling results in a problem of computingkh@&/asserstein mean ¥ 2) followed by
solving two OT problems between the clustered Wasserstein mean and the two input distributions
W2( 1; * 2) andW2( ¥ 2; ,)). Even though the OT problems are smaller, they are still
expensive in practice.

Moreover, in this scenario, the uniqueness of the OT BIEn? is not ensured. It appears thag]
chooses the most entropic transport plan, i.e. sifiply2= T = ** 2 T 1! "

Subspace Detours. From a statistical point of view, it is bene cial to consider optimal transport

on a lower dimensional manifol&§]. In [44], authors compute an optimal transport p]larf’ 2
between projections on a lower linear subspogf ; and ,,i.e. F = Pg# ;, wherePg is the
linear projection orE . They aimed at leveragin§ ' ? to construct a sub-optimal mag' 2
between ; and ».

The problem can be recast as a generahzed geodesic problem beihg the Wasserstein mean of
£ and § embedded ilRY. Once again, uniquenessBf:' 2 is not guaranteed, authors provide
two ways of selecting the map, namely Monge-Knothe and Monge-Independent lifting.

Subspace detours result in a problem where one needs to select a linear stib$phoeh is a
non convex procedure), compute an optimal transport betweand , (in O(n®logn) whenever
dim(E) > 1) and reconstruct e

Linear Optimal Transport (LOT).  Given a set of distribution§ ;)™; 2 P,(RY)™, LOT [65]
embeds the set of distributions into thé( )-space by computing the OT of each distribution to
the pivot distribution. Mathematically, it comput&s' i 81 i m and lies on estimating
W2( i; j)withW2( ; ;) through eq. (13).

In LOT, the pivot measure was chosen to be the average of the input meas6gsthe Lebesgue
measure oY [41] or an isotropic Gaussian distribution [43].

Instead of computing"z1 expensive Wasserstein distances, it resorts onlpdlasserstein distances
between( ;)™ and . While signi cantly reducing the computational cost when several distributions
are at stake, it does not allow speeding up the computation when only two distributions are involved.

9.1 Linear Optimal Transport with shift and scaling

In this section, we recall the result from3. The theorem states that thebased approximation

is very close to WD whenever;, » are continuous distributions which are very close to be shift
and scaling of each other. It can applies to a continuous versiSWM&G however it works with
discrete measures in the particular case of equality betwié¢eandwz.

Theorem 9.1(Theorem 4.143)). Let = S, (shift) ;a 2 Rig[f R (scaling);c 2 Rg,
r =fh2 stkhk RgandG g =fg2L?RR%; )st9h2 . stkg hk g
Let , 2P,(RY),with ; (the Lebesgue measure). lRt> 0; > 0
e Forgi;2 2 G.g. and = onaconvex compact subsetif, we have:
W (g ig2¢ ) Wa(Qw igos ) C 5 +2 (35)
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« If and satisfy the assumption of Caffarelli's regularity theoret][ then forg;; g, 2
G . ,We have:

W (gis ;926 ) Wa(gs ;g2 ) C¥+C (36)

whereC; C depdends onn  andR.

10 Proofs and other results related to Section 4

10.1 Proof of Proposition 4.2: equivalence between the two formulations of SWGG

In this section, we prove that the two de nitions 8WGGin Def. 3.1 and Prop. 4.2 are equivalent.
Let 2 S® 1be xed.

From one side in Def. 3.1, we have:
1 X
SWGG( 1 20) € S kk ) ¥ K (37)
i
where and are the permutations obtained by sortfhg 1 andP, .
From the other side we nof2( 1; »,; ) the quantity:

D( 1 2i ) T2Wi( o M H+2WH( M 2% o) 4wi( g% M (39

We want to prove that SWGIE 1; 2; )= D( 1; 2; ); 8 1;RZZP5(Rd) and 2 &9 1.
Eq. (13) in the main paper states that 1; 2; ) is equivalentto o, kx T, 3 (x)ksd 1(x).

Finally, Lemma 4.6 states that the transport riia 2 is fully determined by the permutations on

the line: the projections part is a one-to-one correspondence beiwaed hx; i (resp. betweew
and hy; i). More formallyT%, 3(x ())=y () 81 i n.Andthuswe recover:

Z
X
o TY 2()k3d 1(x)=% X o Y ok (39)

which concludes the proof.

10.2 Proof of Weak Convergence (Proposition 4.3)

We want to prove that, for a sequence of meas(rgy.zn 2 P 5 (RY), we have:

F? O 2PRRY) 0 min-SWGG( «; ) (40)

: R
e notation g F?  stands for the weak convergenceR#d (RY) i.e. ra T (X)) (X) !
re F(x)d (x) for all continuous bounded functiorisand for the Euclidean distand¢gx) =
kxo xk3 forall xo 2 R.

From one side, imin-SWGG( ; )! 0 =) WZ(; )! 0 =) k F2 . The rst
implication is due to the fact thatin-SWGG is an upper-bounds a3, the Wasserstein distance,
and that WD metrizes the weak convergence.

From another side, assumg 2 ; we have for any :

1. Let < 2 P 2 (RY) stands for the Wasserstein mean of the projecti@ns x andQ,,

andlet ' =Q, .Wehave *' convergestowards (inlaw)to' ,whichimplies
that:

WEC G ) WEG ) (41)
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2. Since 2 PJ(RY), we haveT * ! « LT “ ' (see P2, theorem 3.2). It

implies that gf! I*  and particularly:

WEC g 0 ) WEG ) (42)

By combining the previous elements, we get:

WEC i ) FWEC Y ) AWEC s ) 2wWEG )
*2WZ( ')
aWz(; ' )=0 (43)

The previous relation shows that f2 impliesSWG@( ki o) !k Oforany . Hence, we
can conclude that:

F? 2 minsweE( «; )! 0 (44)

This concludes the proof.

Note that when ; and , are continuous41] proved that when the distributions are smooth enough
(i.e. respecting the Cafarelli theoredd]), there is a bi-Holder equivalence between thbased
Wasserstein distance aWd?. Hence, it still holds for SWGG for any2 S® 1

WZ( 1 2) SWGG( 1 20) B Wi( 1 2)° 8 2Py(R)  (45)

whereB depends on;j;i 2 f 1;2g; and the dimensiod. This bound is suf cient to prove that
SWGG metrizes the weak convergence in this context. We refer to [41] for more details.

10.3 Proof of Translation property (Proposition 4.4)

We prove thamin-SWG@ has the same behavior w.r.t. the translatio\gs This property is well
known for Wasserstein and useful in applications such as shape matching.

Let 1; 2 2PJ(RY), and letTY (resp.TV) bethe max 7! x u (resp.x 7! x V), withu;v
vectors ofRY.

To ease the notations, letde rg = T} 1and~ = T) ».

Let remind that in the case of Wasserstein distance we have [53](Remark 2.19):

W2(~1; =) EW2(TY 1;TY 2)= WZ( 1, 2) 2 vimy mai+ku vkZ  (46)

R R
withmy = o, xd 1(Xx)andm, = 4 xd 2(X).

We aim to compute min-SWGE~1; —) €' min-SWGG(TY 1;TY ). Letexpress rst

SWGG(~1; ~2) = 2WZ(~1; ~" 2)+2WZ(~;~" 3 awi(~ %~ 9 (47)

where~" 2 is the Wasserstein mean of the projections aloofjthe shifted measures = T}
and~; = Ty » asin Proposition 2. The generalized Wasserstein mgar is de ned accordingly
(see also Proposition 11).

We have:
W2(~1;~" )= WZ( 1, ¥ ?) 2hu;mi mai+ kukd (48)
R 1 2
wheremz = ., xd~" “(x).

Similarly W2 (~p; ~* 2)= W2( 2; ¥ 2) 2tw;m, mai + kvks.
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Let express now the third term in e@l7). For that we require to de ne the generalized Wasserstein
mean~: * with pivot measure-"" 2. By the virtue of eq. (11) in the main paper, we have:

1 1!2!___ 1 1!2!..

1 2 _ ~ ~ 12
T T ET t QT ’ . - (49)
1 ! 1 ! u+v
= ST T et T e T 2 (50)
# !
utv 1 | 1 !
=T,° éle! = e (51)
#
Hence, the third term in (47) is:
D E
u+v mpi+m u+v 2
WE=g 2~ A= WE(E S YY) 2 o ma + (52)

since the mean of a Wasserstein mean is the meam pfn,.
Putting all together, we have:

min-SWGG(TY 1;TY 2)= min-SWGG( 1; 2) 4hu;my mai 4hv;m, mai

(53)
+8Du+v_m1+ m, m
2 2 3
+ 2
+2kukZ+2kvkz 4 1Y i
= min-SWGG( 1; 2) +4hu+ v;mai (54)

4+ v;mszi 4dhu;maqi 4hv;moi
+4hu+ v;mi+ mai + ku  vk3
(Parallelogram law)

min-SWGG( 1; 2) 2hu;mgi 2hv;moi +2hu;moi +2hv; mai
(55)

+ku VK3
min-SWGG( 1; 2) 2 v;m; mai+ku vki (56)

10.4 Proof of the new closed form of the Wasserstein distance (Lemma 4.6)

We recall and prove the lemma that makes explicit a new closed form for WD. il et be in
PJ(RY) with , a distribution supported on a line whose direction & S¢ 1. We have:

WZ( 15 2)= WH( 1;Qp 1)+ WE(Qy 15 2): (57)
Moreover, the optimal map is given By*' 2= TQ# ' 2 T 1! Q¢ 1= TQ 1} 2 Q|
Let 1; beinPJ(RY) with , a distribution supported on a line of directionWe have:

WE( 15 2)= WE( Qs 1)+ WZ(Qx 15 2) (58)
Moreover, the optimal map is given by:

Tl! 2 TQ# 1! 2 Tl! Qs 1 = TQ# 1! 2 Q (59)

HereQ is given in Def. 4.1 of the paper.

The proof of the Lemma was rst inspired by 3|(Proposition 2.3), where authors show that
WE( 1; 2)= WZi( 15 )+ WZ(; »),withC} C? andC some cost matrices with the con-

straintsC;j =minsCg + C3 .
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P
Let ;=3 , and ,= 1 & beinPf(RY) with , a distribution supported on a line with

direction . LetQ, 1= ", = % % 2 PJ(RY). We emphasize here the fact that the atoms,of

and ; are supported on a line are denoted by the overline symbol.

From one side, we have: 7
WZ( 1; 2)= inf kx  Ti(x)k3d 1(x) (60)
T! S.t.T;l 1= ZZRd
= inf (kx  Q (K3 + kQ (x) THx)k3)d 1(x) (61)
T! S.I.T,;l 1= 2 Rd
Z Z
= kx  Q (x)k3d 1(x)+ inf kQ (x) T(x)kdd 1(x) (62)
Rd TistT! 1= 2 Rd
Z Z
inf kx  T?(x)kad + inf kx  T3(x)ksd— (X
Tzs.t.!l'r:,2 1=7; Rd X (X) 2 1(X) T3s.t.l'rF]j*1= 2 Rd X (X) 2 1(X)
(63)
WE( 1570+ W3 (T 2) (64)
Equation(61)is obtained thanks to the Pythagorean theorem siceQ (X;);Y;i is a right triangle
81 i n. The equatior{64)is obtained by taking thinf of the previous rst term of the previous
equation.
From the other side: 7 7
WZ( 1;79)+ WE(Ty; 2) = ks T3(X)ksd ™ (X) + ke  THX)k5d ™4 (X)  (65)
ZRd Rd
= kT3(X) THX)kid1(X) (66)
Rd
=W2 (15 2) W3( 1 2) (67)

WhereT?2 andT# are the optimal plan oV2( 1; ;) and- WZ(—;; »). Similarly, (65)is obtained
via the Pythagorean theorem. This concludes the proof.

We plot an illustration of the lemma in Figure 9.

Figure 9: Closed form for Wasserstein with Pythagorus theorem

10.5 Details on the ef cient computation of SWGG

We decompose the second formulatiorSGG Let rstremind thatQ :RY! RI, x 7! hx; i
andP :RI! R x 7!'hx; i are the projections on the subspace generated by

We have:
SWGG( 1; 2; )=2WZ( 1 M 9 +2WZ( ™ 2 ) 4Wi( 4 % Y2 (68)
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First, by lemma 4.6,

2WZ( 13 M ) =2WE( 13Qy 1) +2WE(Py 1Py M P) (69)
as ' ?'s supportis on aline. Similarly,
2WE( 2 M 2 =2WE( 25Qy 2) +2WE(P, 2Py M 2 (70)
and
AWF( g % M A= AWZ( g Qs oY) AWI(Py o BPy M) (7D)
We notice that2WZ(P, 1;P, ' 2) + 2W3(P, Y %P, ) = W3Z(P, 1;P, 2) (as

P, M 2 is the Wasserstein mean betweéh ; and P, ;). We also notice that

AWZ (P, & %P, ' ?) =0 (it comes from the fact that the generalized Wasserstein mean
is induced by the permutations on the line), we can put all together to have:

SWGG( 1; 25 )=2WJ( 1,Qs 1)+2WJF( 2,Qs 2) AWF( g %Qs g )+ WF(Py 1Py 2)
(72)

One can show tha&WGGis divided into 3 Wasserstein distances between a distribution and its
projections on a line and 1D Wasserstein problem. This results in a very fast compute®drGih

10.6 Smoothing of SWGG

In this section, we give details on the smoothing procedurainfSWGG an additional landscape

of SWGGand its smooth counterpgBWGGand an empirical heuristic for setting hyperparameters
sand .

Smoothing Procedure. A natural surrogate would be to add an entropic regularization within the
de nitonof T ' 1,i2f1; 2g and to solve an additional optimal transport problem. Nevertheless,
it would lead to an algorithm with a®(n?) complexity. Instead, we build upon the blurred
Wasserstein distance [26] between two distributionand »:

B2( 1; 2) ' Wi(kes 1kes  2)

where denotes the smoothing (convolution) operator knd is the Gaussian kernel of deviation
'=2. In our case, it resorts in makirgycopie$, of each sorted projectioRs (x;) andP (y;)
respectively, to add a Gaussian noise of deviation2 and to compute averages of sorted blurred
copiesx S, ySs:
]11 2y — 1 x s s .
(I %)= 25 X7s (k) +y s(k) - (73)
k=(i 1)s+1

Further, we provide additional examples of the landscapridfSWGQ 1; ») and discuss how to
choose empirically relevasstand values.

[26] has shown that the blurred WD has the same asymptotic properties as the Sinkhorn divergence,
with parameter the strength of the blurring: it interpolates between WD (when 0) and a
degenerate constant value (wheinl ).

To nd a minimum of Eq. (16) in the paper (i.ésl\\NGGE( 1; 2, )), we iterate over:

N
t+ 1 SWGG( 1; 2; )

t+1 = t+1 K 1 k2

t+1

where 2 R, isthe learning rate. This procedure converges towards a local minima with a complexity
of O(snd + snlog(sn)) for each iteration. Once the optimal directiohis found, the nal solution

resorts to be the solution provided BWGGZZ( 1; 2; 7), where the induced optimal transport map
is an unblurred matrix.
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Heuristic for setting the hyperparameters of SWGG We here provide an heuristic for setting
parameters (number of copies of each points) andstrength of the blurring). We then give an

example of the behavior SWGG w.r.t. these hyper parameters.

1F> 1P
Let ;1= & x; and 2= = y; -

¢ s 2 N, represents the number of copies of each sample. We observe empirically that the quantity
sh should be large to provide a smooth landscape. It means thawtiaes can be small when
increases, allowing to keep a competitive algorithm (as the complexity depemds on

¢ 2 R; represents the variance of the blurred copies of each sample. Empiricgtilyuld depend
on the variance of the distributions projected on the line. Indeedvany close to zero will not
smooth enough the discontinuities whereas a lang#l give a constant landscape.

As discussed in Section 4.3, nding an optimaR S® ! is a non convex problem and provides

a discontinuous loss function. We give some examples of the landsc&W®Gw.r.t. different
values of the hyperparameters in Fig. 10. The landscapes were computed with a set of projections
regularly sampled with angles[0; 2 ].

We observe that the larger the smootheBWGG Additionally, raising tends to attenSWGG
w.rt. (erasing local minima). Indeed similarly to Sinkhorn, a lardgurred the transport plan and
thus homogenize all the value of SWGG w.r.t.

Moreover, we empirically observe that the number of samplesf@nd , enforces the continuity of
SWGG We then conjecture that the discontinuitiesSMWGGare due to artifact of the sampling and

thus the smoothing operation erases this unwanted behavior. A full investigation of this assumption is
left for future work.

Figure 10: Non-convex landscapes for SWGG &WIGG with different hyper parameters.

10.7 Inconsequential of the pivot measure

Importanél(}/, only the direction is of importance for the value 8WGG Indeed, whenever
2 PJ(RY) is supported on a line of direction the position of the atoms is irrelevant féf

and the associated transport plan whenever the atoms are distinct. Despite the fact that the pivot
measure is inconsequential for the valués¥GG(at  xed), we choose it to be *' 2. This choice

is supported by the fact that' ? can be ef ciently computed (as a 1D Wasserstein mean) and that
some computation can be alleviated:

2WF(Qq 1 M H+2WF( Y ZQ, 2)= WHQy 1Qs 2) (74)
Itis an important comment to derive the property of distanc&SIMGG it also allows minimizing

SWGGover 2 S® 1 without consideration for, since any choice of supported on the subspace
generated by give the same result fanin-SWGG This property of irrelevance comes from the
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nature of the subspace wherés supported, which is uni-dimensional. More formally we give the
following proposition and its associated proof.

Proposition 10.1.Let 1, ,2PJ(RY).Let 2 S 1. Let 1; » 2 PJ(RY) be two pivot measures
supported on a line with direction with disctincs atoms for each measure. We then have:

W2( 15 2)= Wa( 15 2) (75)

We give a proof of this proposition.
Thanks to lemma 4.6, we known that the transport map? is fully induced by the transport

Qs 1! Qu 2 . Qs 1! Q4 2. : 1 Q 2 Q 1! :
planT . Let remind thafl is given byT # T ># (see equation
(12)). Moreover the two optimal transport plans are obtained via the ordering permutations, i.e. let
i 2S(n) st
X @ X (m)
Y o Y ()
z z

(€Y

With X; being the atoms 0@, 1, y; the atoms of),, » andz; being the atoms o,

One haveT ' (x ()) =z () (resp.T ' 2(z ()) = X )) 81 i n. Composing these two
identities gives:

Tl! 2(X (i)): y () 81 i n (76)

The last equation shows that' 2 is in fact independent of and thus of .

10.8 Proof that min-SWGG is a distance (generalized geodesic formulation)

This proof has already been established in 7.3. However we rephrase the proof in the context of
generalized geodesics.

q
We aim to prove thaBWGG = 2W3( 1; Y 2)+2W3( M 2 ;) 4wg( ¢ 2 Y 2?) de-
nes a metric.

Finite and non-negativityEach term oiSWGGZZ is nite thus the sum of the three terms is nite.
Moreover, being an upper bound of WD makes it non-negative.

Symmetry\We have

SWGG( 1; 2; )

2W22( 1 1! 2)+2W22( 5 1! 2) 4W22( é" 2; 1! 2)
2WZ( 20 M A +2WE( 1 MY Awg( g A v P
SWGC%( 2, 1, )8

Identity property.
From one side, when;
Thus:

1 2 1 2 ..
=T 2 = 1d,giving g ?= 1=

2 =) T

SWGG( 17 2i )=2W3( 15 M D +2WH( 13 M %) AWF( 4 M H=0 (77

From another siddﬁWGC—fz( 1, 20)=0 =) W2( 1 2)=0 =) 1 = 2 (bybeing an
upper bound of WD).
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Triangle InequalityWe have:

SWGG( 1 23 )= 2WE( u M HH2WE( M Z ) AWF( G % MY (78)
= 2 kT(x) xkid Y 3(x)+2  kT?(x) xkid Y %(x) (79)
RdZ Rd
4 kT9x) xkid ™ 2(x)
z K
= 2kTi(x) xk3+2kT?(x) xk3 4kT9x) xki d  2(x)
Rd
80
- (80)
= KT1(x) T2(x)k3d * 2(x) (81)
Rd

where, with an abuse of notation for clarity saké,is the optimal map betweer!' 2 and ; and
T? is the optimal map between Zand §' 2. The last line comes from the parallelogram rule of
RY. Thanks to Proposition 10.1 we see that SWGG is simply.tH&?; ) square norm, i.e.:

Z

SWGG( 1; 2; )= kT T2 L k1! T2 (82)
Rd
with  being any arbitrary pivot measure®f (RY). And thusSWGG is theL?(R%; ) norm. This
observation is enough to conclude that SWG&a proper distance for xed.

11 Experiment details and additional results

WD, SW, Sinkhorn, Factored coupling are computed using?yteon OTToolbox [28] and our
code is available dittps://github.com/MaheyG/SWGG . The Sinkhorn divergence for the point
cloud matching experiment was computed thanks td@eemlosspackage [27].

11.1 Behavior of min-SWGG with the dimension and the number of points

In this section, we draw two experiments to study the behaviarinfSWGGw.r.t. the dimension
and to the number of points.

Evolution with d In [20][Theorem of Section 2], authors aim at enumerate the number of permuta-
tions obtained via the projection of point clouds on a line. It appears that the number of permutations
increases with the dimension. They even show that wherevePn (2n being the total number of
points of the problem), all the possible permutatiam§ are in the scope of a line. Fig. 11 depicts

the number of obtainable permutations as a function of the dimedsfonn xed. This theorem

can be applied to min-SWGG to conclude that whenever2n, we have min-SWG&= W3,

It turns out empirically that the greater the dimension, the better the approximatitif efith
min-SWGG(see Fig. 11) for a xech. More formally, the set of all possible transport maps is
called the Birkhoff polytope and it is known that the minimum of the Monge problem is attained at
the extremal points (which are exactly the set of permutations matrices, ardehatrices in our
context) B]. The set of the transport maps in the scop&WGGis a subset of the extremal points

of the Birkhoff polytope (there are permutations matrices but not all possibilities are represented).
Theoretically, the set of transport maps in the scop@WiGGis larger agl grows, giving a subset

that is more and more tight with the extremal points of the Birkhoff polytope. This explains that
min-SWGG can bene t from higher dimension.

We plot in Fig. 11 the evolution, over 50 repetitions, of the rﬁ% with d, n = 50 and
LN (Lgeild), 5 N ( Lee:ld).

Evolution with n  Fig. 12 represents the evolution\WZ( 1; ) andmin-SWGG( 1; ») for
two distributions 1 N (lge;ld)and 2 N ( 1ge;ld), withd = 4 and a varying number of
points. The results are averages over 10 repetitions.
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Figure 11: Evolution oiV4 andmin-SWGG with the dimensiond for isotropic Gaussian distribu-

tions (left) Number of permutations induced by a directiod S¢ ! with n = 310 and a varying
dimension (right)

Figure 12: Evolution ofV and min-SWGG w.r.t. the number of points

We observe that, whemis large enoughmin-SWGGtends to stabilize around some constant value.
We conjecture that there may exist an upper bound for min-SWGG:

min-SWGG( 1; 2) (d;n; dYWZ( 1; 2) (83)
Whered®is the max of the dimensions of the distributions , [66], and an unknown function.

11.2 Computing min-SWGG

We now provide here more details about the experimental setup of the experiments of Section 5.1.

Choosing the optimal ~ We compare three variants for choosing the optimal directiamndom
search, simulated annealing and optimization (de ned in Section 4.3). We choose to compare with
simulated annealing since it is widely used in discrete problem (such as the travelling salesman) and
known to perform well in high dimensior®®] [16] [ 36]. We notice in Fig. 3 of the paper that the
smooth version omin-SWGGis always (comparable or) better than the simulated annealing. In
this experiment, we randomly sample 2 Gaussian distributions with different means and covariances
matrices, whose parameters are chosen randomly. For optinmEim&WGG we use the Adam
optimizer of Pytorch, with a xed learning rate 88 “ during100iterations, considering = 10

and =1.

Fig. 13 provides the timings for computing the random search approximation, simulated annealing
and the optimization scheme. In all cases, we recover the linear complexitineWGG (blue
curves) in a log space. For the computation timings we compinteSWGGwith random search
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with L = 500, simulated annealing (green curves) with 500 iterations with a temperature scheme
(1 % 229 and the optimization scheme (considergg 10 with a xed number of iterations for
the optimization scheme equals to 100).

Figure 13: Considering two Gaussian distributions in dimengietuals to: 2 (left), 20 (middle), 200
(right),we computenin-SWGGwith random search, simulated annealing schemes and optimization
procedure and report the timings for varying number of points and xed number of projections.

Additionally, we reproduce the same setup as in 5.1 fol¥e max-SWandPWD distance. For
sake of readability we compared with min-SWGG optim and report the results in Fig. 14.

Figure 14: Comparison ahin-SWGGoptim with PWD (left) and withmax-SWandSW (right).
PWD and SW are computed with a growing number of projection

Runtime Evaluation In the paper, on Fig. 3 (Right), we compare the empirical runtime evaluation
on GPU for different methods. We consider Gaussian distributions in dimedsio8 and we
samplen points per distribution witm 2 f 10?; 10°;10*;5 10%; 10°g. For SW Monte-Carlo and
min-SWGGrandom search, we use= 200 projections. For botmax-SWandmin-SWGGwith
optimization, we use 100 iterations with a learning rate of 1, and we=x50 for min-SWGG We

use the of cial implementation of the Subspace Robust Wasserstein (SRW) with the Frank-Wolfe
algorithm [52].

11.3 Gradient Flows

We rely on the code provided with [37] for running the experiment of Section 5.2.

We x n =100, the source distribution is taken to be Gaussian and we consider four different target
measures that represent several cases: i) a 2 dimensional Gaussian, ii) a 500 dimensional Gaussian
(high dimensional case), iii) 8 Gaussians (multi-modal distribution) and iv) a two-moons distribution
(non-linear case).

We x a global learning rate obe 2 with an Adam optimizer. FoBW, PWD andSWGG(random
search), we sample = 100 directions. For the optimization methodwmx-SW we set a learning
rate of le 3 with a number of 100 iterations for i), iii), and iv) and 200 iterations for ii). For
min-SWGG(optimization), we took a learning rate ofld !, ii)1e 3,iii)5e 2, andiv)le 3. The
hyper parameters for the optimization win-SWGGares = 10 and = 0:5, except for the
500-dimensional Gaussian for which we pick 10 .

Each experiment is run 10 times and shaded areas in Fig. 4 (see the main paper) represent the mean
the standard deviation.
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