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Abstract

Wasserstein distance (WD) and the associated optimal transport plan have proven
useful in many applications where probability measures are at stake. In this paper,
we propose a new proxy for the squared WD, coined min-SWGG, which relies on
the transport map induced by an optimal one-dimensional projection of the two
input distributions. We draw connections between min-SWGG and Wasserstein
generalized geodesics with a pivot measure supported on a line. We notably
provide a new closed form of the Wasserstein distance in the particular case
where one of the distributions is supported on a line, allowing us to derive a fast
computational scheme that is amenable to gradient descent optimization. We show
that min-SWGG is an upper bound of WD and that it has a complexity similar to
that of Sliced-Wasserstein, with the additional feature of providing an associated
transport plan. We also investigate some theoretical properties such as metricity,
weak convergence, computational and topological properties. Empirical evidences
support the benefits of min-SWGG in various contexts, from gradient flows, shape
matching and image colorization, among others.

1 Introduction

Gaspard Monge, in his seminal work on Optimal Transport (OT) [42], studied the following problem:
how to move with minimum cost the probability mass of a source measure to a target one, for a given
transfer cost function? At the heart of OT is the optimal map that describes the optimal displacement
as the Monge problem can be reformulated as an assignment problem. It has been relaxed by [33]
by finding a plan that describes the amount of mass moving from the source to the target. Beyond
this optimal plan, an interest of OT is that it defines a distance between probability measures: the
Wasserstein distance (WD).

Recently, OT has been successfully employed in a wide range of machine learning applications, in
which the Wasserstein distance is estimated from the data, such as supervised learning [30], natural
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language processing [38] or generative modelling [5]. Its capacityto provide meaningful distances
between empirical distributions is at the core of distance-based algorithms such as kernel-based
methods [60] or k-nearest neighbors [6]. The optimal transport plan has also been used successfully
in many applications where a matching between empirical samples is sought such as color transfer
[55], domain adaptation [19] and positive-unlabeled learning [15].

Solving the OT problem is computationally intensive; the most common algorithmic tools to solve the
discrete OT problem are borrowed from combinatorial optimization and linear programming, leading
to a cubic complexity with the number of samples that prevents its use in large scale applications [53].
To reduce the computation burden, regularizing the OT problem with e.g. an entropic termhas led to
solvers with a quadratic complexity [23]. Other methods based on the existence of a closed form of
OT have also been devised to ef�ciently compute a proxy for WD, as outlined below.

Projections-based OT.TheSliced-Wasserstein distance (SWD) [56, 10] leverages 1D-projections of
distributions toprovidea lower approximation of the Wasserstein distance, relying on the closed form
of OT for 1D probability distributions. Computation of SWD leads to a linearithmic time complexity.
While SWD averages WDs computed over several 1D projections, max-SWD [24] keeps only the
most informative projection.These frameworks provideef�cient algorithms that can handle millions
of samples and have similar topological properties as WD [45]. Other works restrain SWD and
max-SWD to projections onto low dimensional subspaces [52, 40] to provide more robust estimation
of those OT metrics.Althougheffective asproxiesfor WD, those methods do not provide a transport
plan in the original spaceRd. To overcome this limitation, [44] aimsto computetransport plans in a
subspace which are extrapolated to the original space.

Pivot measure-based OT.Other research works rely on a pivot, yet intermediate measure. They
decompose the OT metric intoWassersteindistances between each input measure and the con-
sidered pivot measure. They exhibit better properties such as statistical sample complexity or
computational ef�ciency[29, 65]. Even though the OT problems are split, they are still expensive
when dealing with large sample size distributions, notably when only two distributions are involved.

Contributions. We introduce a new proxyfor the squared WD that exploits the principles of
aforementionedapproximations of OT metric. The original idea is to rely on projections and one-
dimensional assignment of the projected distributions to compute the new proxy. The approach is
well-grounded as it hinges on the notion of Wasserstein generalized geodesics [4] with pivot measure
supported on a line. The main features of the method are as: i) its computational complexity is on par
with SW, ii) it provides an optimal transport plan through the 1D assignment problem, iii) it acts as an
upper bound of WD, and iv) is amenable to optimization to �nd the optimal pivot measure. As an addi-
tional contribution, we establish a closed formof the WD when an input measure is supported on a line.

Outline. Section 2 presents some background of OT. Section 3 formulates our new WD proxy,
provides some of its topological properties and a numerical computation scheme. Section 4 builds
upon theconceptof Wasserstein generalized geodesics to reformulate our OT metric approximation as
the Sliced Wasserstein Generalized Geodesics (SWGG) along its optimal variant coinedmin-SWGG.
This reformulation allows deriving additional topological properties and an optimization scheme.
Finally, Section 5 provides experimental evaluations.

Notations. Let h�; �i be the Euclidean inner product onRd and letSd� 1 = f u 2 Rd s.t. kuk2 = 1g,
the unit sphere. We denoteP(Rd) the set of probability measures onRd endowed with the� � algebra
of Borel set andP2(Rd) � P (Rd) those with �nite second-order moment i.e.P2(Rd) = f � 2
P(Rd) s.t.

R
Rd kx k2

2d� (x ) < 1g . Let Pn
2 (Rd) be the subspace ofP2(Rd) de�ned by empirical

measures withn-atoms and uniform masses. For any measurable functionf : Rd ! Rd, we denotef #

its push forward, namely for� 2 P 2(Rd) and for any measurable setA 2 Rd, f # � (A) = � (f � 1(A)) ,
with f � 1(A) = f x 2 Rd s.t. f (x ) 2 Ag.

2 Background on Optimal Transport

De�nition 2.1 (Wasserstein distance). The squared WD [63] between� 1; � 2 2 P 2(Rd) is de�ned as:

W 2
2 (� 1; � 2) def= inf

� 2 �( � 1 ;� 2 )

Z

Rd � Rd
kx � yk2

2d� (x ; y ) (1)
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with �( � 1; � 2) = f � 2 P 2(Rd � Rd) s.t. � (A � Rd) = � 1(A) and� (Rd � A) = � 2(A), 8A
measurable set ofRdg.

Thearg min of Eq. (1) is referred to asthe optimal transport plan. Denoted� � , it expresses how
to move the probability mass from� 1 to � 2 with minimum cost. In some cases,� � is of the
form (Id; T )# � 1 for a measurable mapT : Rd ! Rd, i.e. there is no mass splitting during the
transport. This map is called a Monge map and is denotedT � 1 ! � 2 (or shortlyT1! 2). Thus, one has
W 2

2 (� 1; � 2) = inf T s.t. T# � 1 = � 2

R
Rd kx � T(x )k2

2d� 1(x ). This occurs, for instance, when� 1 has a
density w.r.t. the Lebesgue measure [12] or when� 1 and� 2 are inPn

2 (Rd) [58].

Endowed with the WD, the spaceP2(Rd) is a geodesic space. Indeed, since there exists a Monge
mapT1! 2 between� 1 and� 2, one can de�ne a geodesic curve� 1! 2 : [0; 1] ! P 2(Rd) [31] as:

8t 2 [0; 1]; � 1! 2(t) def= ( tT 1! 2 + (1 � t)Id )# � 1 (2)

which represents the shortest path w.r.t. Wasserstein distance inP2(Rd) between� 1 and� 2. The
Wasserstein mean between� 1 and� 2 corresponds tot = 0 :5 and we simply write� 1! 2.

This notion of geodesic allows the study of the curvature of the Wasserstein space [1]. Indeed, the
Wasserstein space is of positive curvature [51],i.e. it respects the following inequality:

W 2
2 (� 1; � 2) � 2W 2

2 (� 1; � ) + 2 W 2
2 (�; � 2) � 4W 2

2 (� 1! 2; � ) (3)

for all pivot measures� 2 P 2(Rd).

Solving and approximating Optimal Transport. The Wasserstein distance between empirical
measures� 1; � 2 with n-atoms can be computed inO(n3 logn), preventing from the use of OT for
large scale applications [11]. Several algorithms have been proposed to lower this complexity, for
example the Sinkhorn algorithm [23] that provides an approximation in nearO(n2) complexity [2].

Notably, when� 1 = 1
n

P n
i =1 � x i and� 2 = 1

n

P n
i =1 � y i are 1D distributions, computing the WD can

be done by matching the sorted empirical samples, leading to an overall complexity ofO(n logn).
More precisely, let� and � two permutation operators s.t.x � (1) � x � (2) � ::: � x � (n ) and
y� (1) � y� (2) � ::: � y� (n ) . Then, the 1D Wasserstein distance is given by:

W 2
2 (� 1; � 2) =

1
n

nX

i =1

(x � ( i ) � y� ( i ) )
2: (4)

Sliced WD. The Sliced-Wasserstein distance (SWD) [56] aims to scale up the computation of OT
by leveragingthe closed form expression(4) of the Wasserstein distance for 1D distributions. It is
de�ned as the expectation of 1D-WD computed along projection directions� 2 Sd� 1 over the unit
sphere:

SW2
2(� 1; � 2) def=

Z

Sd � 1
W 2

2 (P �
# � 1; P �

# � 2)d! (� ); (5)

whereP �
# � 1 andP �

# � 2 are projections onto the direction� 2 Sd� 1 with P � : Rd ! R, x 7! hx ; � i
and where! is the uniform distribution overSd� 1.

Since the integral in Eq.(5) is intractable, one resorts, in practice, to Monte-Carlo estimation to
approximate the SWD.

Its computation only involves projections and permutations. ForL directions, the computational
complexity isO(dLn + Ln logn) and the memory complexity isO(Ld + Ln ). However, in high
dimension, several projections are necessary to approximate accurately the SWD and many projections
lead to 1D-WD close to 0. This issue is well known in the SW community [68], where different
ways of performing effective sampling have been proposed [49, 46, 50] such as distributional or
hierarchical slicing. In particular, this motivates the de�nition of max-Sliced-Wasserstein [24] which
keeps only the most informative slice:

max-SW2
2(� 1; � 2) def= max

� 2 Sd � 1
W 2

2 (P �
# � 1; P �

# � 2): (6)

While being a non convex problem, it can be optimized ef�ciently using a gradient ascent scheme.

The SW-like distances are attractive since they are fast to compute and enjoy theoretical properties:
they are proper metrics and metricize the weak convergence. However, they do not provide an OT
plan.
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Projected WD. Anotherquantity of interest based on the 1D-WD is the projected Wasserstein
distance (PWD) [57]. It leverages the permutations of the projected distributions in 1D in order to
derive couplings between the original distributions.

Let � 1 = 1
n

P n
i =1 � x i and� 2 = 1

n

P n
i =1 � y i

in Pn
2 (Rd). The PWD is de�ned as:

PWD2
2(� 1; � 2) def=

Z

Sd � 1

1
n

nX

i =1

kx � � ( i ) � y � � ( i ) k
2
2d! (� ); (7)

where� � ; � � are the permutations obtained by sortingP �
# � 1 andP �

# � 2.

As some permutations are not optimal, we straightforwardly haveW 2
2 � PWD2

2. Note that some
permutations can appear highly irrelevant in the original space, leading to an overestimation ofW 2

2
(typically when the distributions are multi-modal or with support lying in a lowdimensionalmanifold,
see Supp. 7.1 for a discussion).

In this paper, we restrict ourselves to empirical distributions with the same number of samples. They
are de�ned as� 1 = 1

n

P n
i =1 � x i and� 2 = 1

n

P n
i =1 � y i

in Pn
2 (Rd). Note that the results presented

therein can be extended to any discrete measures by mainly using quantile functions instead of
permutations and transport plans instead of transport maps (see Supp. 7.2).

3 De�nition and properties of min-SWGG

The fact that thePWDoverestimatesW 2
2 motivates the introduction of our new loss function coined

min-SWGGwhich keeps only the most informativepermutation. Afterwards, we derive a property
of distance and grant an estimation of min-SWGG via random search of the directions.

De�nition 3.1 (SWGG and min-SWGG). Let � 1; � 2 2 P n
2 (Rd) and� 2 Sd� 1. Denote by� � and� �

the permutations obtained by sorting the 1D projectionsP �
# � 1 andP �

# � 2. We de�ne respectively
SWGG and min-SWGG as:

SWGG2
2(� 1; � 2; � ) def=

1
n

nX

i =1

kx � � ( i ) � y � � ( i ) k
2
2; (8)

min-SWGG2
2(� 1; � 2) def= min

� 2 Sd � 1
SWGG2

2(� 1; � 2; � ): (9)

One shall remark that the function SWGG corresponds to the building block of PWD in eq. (7).

One main feature ofmin-SWGG is that it comes with a transport map. Let� � 2
argmin SWGG2

2(� 1; � 2; � ) be the optimal projection direction. The associated transport map is:

T(x i ) = y � � 1
� � ( � � � ( i )) ; 81 � i � n: (10)

In Supp. 7.6 we give several examples of such transport plan. These examples show that the overall
structure of the optimal transport plan is respected by the transport plan obtained via min-SWGG.

We now give some theoretical properties of the quantitiesmin-SWGGandSWGG. Their proofs are
given in Supp. 7.3.

Proposition 3.2(Distance and Upper bound). Let � 2 Sd� 1. SWGG2(�; �; � ) de�nes a distance on
Pn

2 (Rd). Moreover,min-SWGGis an upper bound ofW 2
2 , andW 2

2 � min-SWGG2
2 � PWD2

2, with
equality betweenW 2

2 and min-SWGG22 whend > 2n.

Remark 3.3. Similarly to max-SW,min-SWGGretains only one optimal direction� � 2 Sd� 1.
However, the two distances strongly differ: i)min-SWGGis an upper bound and max-SW a lower
bound ofW 2

2 , ii) the optimal� � may differ(see Supp. 7.4 for an illustration), and iii) max-SW does
not provide a transport plan between� 1 and� 2.

Solving Eq. (9) can be achieved using a random search, by samplingL directions� 2 Sd� 1 and
keeping only the one leading to the lowest value of SWGG.

This gives an overall computational complexity ofO(Ldn + Ln logn) and a memory complexity
of O(dn). In low dimension, the random search estimation is effective: covering all possible
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permutations throughSd� 1 can be done with a low number of directions. In high dimension, many
more directions� are needed to have a relevant approximation, typicallyO(L d� 1). This motivates
the design of gradient descent techniques for �nding� � .

4 SWGG as minimizing along the Wasserstein generalized geodesics

Figure 1: (Left) Empirical distributions with ex-
amples of 2 sampled lines (Right) that lead to 2
possible values of SWGG when� 2 [0; 2� ].

Solving problem in Eq.(9) amounts to optimize
over a set of admissible permutations.Thisprob-
lem is hard sinceSWGGis non convex w.r.t.�
andpiecewiseconstant, thus not differentiable
over Sd� 1. Indeed, as long as the permuta-
tions remain the same for different directions
� , the value ofSWGG remainsconstant.When
the permutations change, the objective SWGG
"jumps" as illustrated in Fig. 1.

In this section, we tackle this problem by provid-
ing an alternative formulation ofmin-SWGG
that allows smoothing the different kinks of
SWGG, hence, makingmin-SWGGamenable to optimization. This formulation relies on Wasserstein
generalized geodesics we introduce hereinafter.

We show that this alternative formulation brings in computational advantages and allows establishing
some additional topological properties and deriving an ef�cient optimization scheme. We also
provide a new closed form expression of the Wasserstein distanceW 2

2 (� 1; � 2) when either� 1 or
� 2 is supported on a line.

4.1 SWGG based on Wasserstein Generalized Geodesics

Wasserstein generalized geodesics (see Supp. 8 for more details) were �rst introduced in [4] in order
to ensure the convergence of Euler scheme for Wasserstein Gradient Flows. This concept has been
used notably in [29, 44] to speed up some computations and to derive some theoretical properties.
Generalized geodesic is also highly related with the idea of linearization of the Wasserstein distance
via anL 2 space [65, 43], see Supp. 9 for more details on the related works.

Generalized geodesics lay down on a pivot measure� 2 P n
2 (Rd) to transport the distribution� 1

toward� 2. Indeed, one can leverage the optimal transport mapsT � ! � 1 andT � ! � 2 to construct a
curvet 7! � 1! 2

g (t) linking � 1 to � 2 as

� 1! 2
g (t) def= ((1 � t)T � ! � 1 + tT � ! � 2 )# �; 8t 2 [0; 1]: (11)

The related generalized Wasserstein mean corresponds tot = 0 :5 and is denoted� 1! 2
g .

Intuitively, the optimal transport maps between� and� i ; i = 1 ; 2 give rise to a sub-optimal transport
map between� 1 and� 2:

T1! 2
�

def= T � ! � 2 � T � 1 ! � with (T1! 2
� )# � 1 = � 2: (12)

One can be interested in the cost induced by the transportation of� 1 to � 2 via the transport map
T1! 2

� , known as the� -based Wasserstein distance [47] and de�ned as

W 2
� (� 1; � 2) def=

Z

Rd
kx � T1! 2

� (x )k2
2d� 1(x ) = 2 W 2

2 (� 1; � )+2 W 2
2 (�; � 2) � 4W 2

2 (� 1! 2
g ; � ): (13)

Notably, the second part of Eq.(13) straddles the square Wasserstein distance with Eq.(3). Re-
markably, the computation ofW 2

� can be ef�cient if the pivot measure� is chosenappropriately. As
established in Lemma 4.6, it is the case when� is supported on a line. Based on these facts, we
propose hereafter an alternative formulation of SWGG.
De�nition 4.1 (Pivot measure). Let � 1 and� 2 2 P n

2 (Rd). Werestrictthe pivot measure� to be the
Wasserstein mean of the measuresQ�

# � 1 andQ�
# � 2:

� 1! 2
�

def= arg min
� 2P n

2 (Rd )
W 2

2 (Q�
# � 1; � ) + W 2

2 (�; Q �
# � 2);
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where� 2 Sd� 1 andQ� : Rd ! Rd, x 7! � hx ; � i is the projection onto the subspace generated by� .
Moreover� 1! 2

� is always de�ned as the middle of a geodesic as in Eq (2).

One shall notice thatQ�
# � 1 andQ�

# � 2 are supported on the line de�ned by the direction� , so is the
pivot measure� = � 1! 2

� . We are now ready to reformulate the metric SWGG.

Proposition 4.2(SWGG based on generalized geodesics). Let � 2 Sd� 1, � 1; � 2 2 P n
2 (Rd) and� 1! 2

�
be the pivot measure. Let� 1! 2

g;� be the generalized Wasserstein mean between� 1 and� 2 2 P n
2 (Rd)

with pivot measure� 1! 2
� . Then,

SWGG2
2(� 1; � 2; � ) = 2 W 2

2 (� 1; � 1! 2
� ) + 2 W 2

2 (� 1! 2
� ; � 2) � 4W 2

2 (� 1! 2
g;� ; � 1! 2

� ): (14)

The proof is in Supp.10.1. From Proposition 4.2,SWGG is the � 1! 2
� -based Wasserstein dis-

tance between� 1 and� 2. This alternative formulation allows establishing additional properties
of min-SWGG.

4.2 Theoretical properties

Additionally to the properties derived in Section 3 (SWGGis a distance andmin-SWGGis an upper
bound ofW 2

2 ), we provide below other theoretical guarantees.

Proposition 4.3(Weak Convergence). min-SWGGmetricizes the weak convergence inPn
2 (Rd). In

other words, let(� k )k2 N be a sequence of measures inPn
2 (Rd) and� 2 P n

2 (Rd). We have:

� k
L ;2
�!

k
� () min-SWGG2

2(� k ; � ) �!
k

0;

where
L ;2
�! stands for the weak convergence of measure i.e.

R
Rd fd� k !

R
Rd fd� for all continuous

bounded functionsf .

Beyond the weak convergence,min-SWGGpossesses the translation property,i.e. the translations
can be factored out as the Wasserstein distance does (see [53, remark 2.19] for a recall).

Proposition 4.4(Translation). Let Tu (resp.T v ) be the mapx 7! x � u (resp.x 7! x � v), with
u ; v vectors ofRd. We have:

min-SWGG2
2(Tu

# � 1; T v
# � 2) = min-SWGG2

2(� 1; � 2) + ku � vk2
2 � 2hu � v; m 1 � m 2 i

wherem 1 =
R

Rd x d� 1(x ) andm 2 =
R

Rd x d� 2(x ) are the means of� 1, � 2.

This property is useful in some applications such as shape matching, in which translation invariances
are sought.

The proofs of the two Propositions are deferred to Supp. 10.2 and 10.3.

Remark 4.5(Equality). min-SWGGandW 2
2 are equal in different cases. First, [43] showed that it

is the case whenever� 1 is the shift and scaling of� 2 (see Supp. 9.1 for a full discussion). In Lemma
4.6, we will state that it is also the case if one of the two distributions is supported on a line.

4.3 Ef�cient computation of SWGG

SWGGde�ned in Eq.(14) involves computing three WDs that are fast to compute, with an overall
O(dn + n logn) complexity, as detailed below. Building on this result, we provide an optimization
scheme that allows optimizing over� with O(sdn + sn logsn) operations at each iteration, withs
a (small) integer. We �rst start by giving a new closed form expression of the WD whenever one
distribution is supported on a line, that proves useful for deriving an ef�cient computation scheme.

New closed form of the WD. The following lemma states thatW 2
2 (� 1; � 2) admits a closed form

whenever� 2 is supported on a line.

This lemma leveragesthe computation of the WD between� 2 and the orthogonal projection of� 1
onto the linear subspace de�ned by the line. Additionally,it provides an explicit formulation forthe
optimal transport mapT1! 2.
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Lemma 4.6. Let � 1; � 2 in Pn
2 (Rd) with � 2 supported on a line of direction� 2 Sd� 1. We have:

W 2
2 (� 1; � 2) = W 2

2 (� 1; Q�
# � 1) + W 2

2 (Q�
# � 1; � 2) (15)

with Q� as in Def. 4.1. Note thatW 2
2 (� 1; Q�

# � 1) = 1
n

P
kx i � Q� (x i )k2

2 andW 2
2 (Q�

# � 1; � 2) =
W 2

2 (P �
# � 1; P �

# � 2) are the WD between 1D distributions. Additionally, the optimal transport map

is given byT1! 2 = TQ �
# � 1 ! � 2 � T � 1 ! Q �

# � 1 = TQ �
# � 1 ! � 2 � Q� . In particular, the mapT1! 2 can

be obtained via the permutations of the 1D distributionsP �
# � 1 andP �

# � 2. The proof isprovidedin
Supp. 10.4.

Ef�cient computation of SWGG. Eq. (14) is de�ned as the Wasserstein distance between a distri-
bution (either� 1 or � 2 or � 1! 2

g;� ) and a distribution supported on a line (� 1! 2
� ). As detailed in Supp.

10.5, computation of Eq.(14) involvesthree Wasserstein distances between distributions and their
projections: i)W 2

2 (� 1; Q�
# � 1), ii) W 2

2 (� 2; Q�
# � 2), iii) W 2

2 (� 1! 2
g;� ; � 1! 2

� ), anda one dimensional
Wasserstein distanceW 2

2 (P �
# � 1; P �

# � 2), resulting in aO(dn + n logn) complexity.

Optimization scheme for min-SWGG. The termW 2
2 (� 1! 2

g;� ; � 1! 2
� ) in Eq. (14) is not continuous

w.r.t. � . Indeed, the generalized mean� 1! 2
g;� dependsonly on the transport mapsT � 1! 2

� ! � 1 and

T � 1! 2
� ! � 2 , which remainconstant as long as different projection directions� lead to the same

permutations� � and� � . Hence, we rely on a smooth surrogate]� 1! 2
g;� of the generalized mean and we

aim to minimize the following objective function:

ŜWGG2
2(� 1; � 2; � ) def= 2W 2

2 (� 1; � 1! 2
� ) + 2 W 2

2 (� 1! 2
� ; � 2) � 4W 2

2 ( ]� 1! 2
g;� ; � 1! 2

� ): (16)

To de�ne ]� 1! 2
g;� , one option would be to use entropic maps in Eq.(11)but at the price of a quadratic

time complexity. We rather build upon the blurred Wasserstein distance [26] to de�ne ]� 1! 2
g;� as it

can be seen as an ef�cient surrogate of entropic transport plans in 1D. In one dimensional setting,
]� 1! 2

g;� can be approximatedef�ciently by adding an empirical Gaussian noise followed by a sorting
pass. In our case, it resorts in makings copies of each sortedprojectionP � (x � ( i ) ) andP � (y � ( i ) )
respectively, to add an empirical Gaussian noise of deviation

p
�=2 and to compute averages of sorted

blurred copiesx s
� s , y s

� s . We �nally have( ]� 1! 2
g;� ) i = 1

2s

P is
k=( i � 1)s+1 x s

� s (k ) + y s
� s (k ) . [26] showed

that this blurred WD has the same asymptotic properties as the Sinkhorn divergence.

The surrogatêSWGG(� 1; � 2; � ) is smoother w.r.t.� and can thus be optimizedusinggradient descent,
converging towards a local minima. Once the optimal direction� � is found,min-SWGGresorts to
be the solution provided bySWGG(� 1; � 2; � � ). Fig. 2 illustrates the effect of the smoothing on

a toy example and more details are given in Supp. 10.6. The computation ofŜWGG(� 1; � 2; � ) is
summarized in Alg. 1.

Algorithm 1 ComputingŜWGG2
2(� 1; � 2; � )

Require: � 1 = 1
n

P
� x i , � 2 = 1

n

P
� y i

, � 2 Sd� 1, s 2 N+ and� 2 R+

�; �  ascending ordering of(P � (x i )) i , (Q� (y i )) i
x s  s copies of(x � ( i ) ) i , y s  s copies of(y � ( i ) ) i

� s; � s  ascending ordering ofhx s; � i + � , hy s; � i + � for � i � N (0; �=2), 8i � sn

a  2
n

P
i

� 


 x i � Q� (x i )k2

2 + ky i � Q� (y i )k
2
2

�
. 2W 2

2 (� 1; Q�
# � 1) + 2 W 2

2 (� 2; Q�
# � 2)

b  2
n

P
i




 P � (x � ( i ) ) + P � (x � ( i ) )




 2

2 . 2W 2
2 (P �

# � 1; P �
# � 2)

c  4
n

P

i




 1

2 (Q� (x � ( i ) ) + Q� (y � ( i ) )) � 1
2s

isP

k=( i � 1)s+1
(x s

� s (k ) + y s
� s (k ) )




 2

2 . 4W 2
2 ( ]� 1! 2

g;� ; � 1! 2
� )

Output a + b� c

7



Figure 2: Illustration of the smoothing effect in the same setting as in Fig. 1. (Left) Two sets of
generalized Wasserstein means are possible, depending on the direction of the sampled line w.r.t.
� 1 and� 2, giving rise to 2 different values forSWGG. (Middle) The surrogate provides a smooth
transition between the two sets of generalized Wasserstein means as the direction� changes, (Right)
providing a smooth approximation of SWGG that is amenable to optimization.

5 Experiments

We highlight thatmin-SWGGis fast to compute, gives an approximation of the WD and the associated
transport plan. We start by comparing the random search and the gradient descent schemes for �nding
the optimal direction in subsection 5.1. Subsection 5.2 illustrates the weak convergence property
of min-SWGGthrough a gradient �ow application to match distributions. We then implement an
ef�cient algorithm for colorization of gray scale images in 5.3, thanks to the new closed form
expression of the WD. We �nally evaluatemin-SWGG in a shape matching contextin subsection 5.4.
When possible from the context, we comparemin-SWGGwith the main methods for approximating
the WD namely SW, max-SW, Sinkhorn [23], factored coupling [29] and subspace robust WD (SRW)
[52]. Supp. 11 provides additional results on the behavior ofmin-SWGGand experiments on other
tasks such as color transfer or on data sets distance computation. All the code is available at1

5.1 Computing min-SWGG

Let consider Gaussian distributions in dimensionsd 2 f 2; 20; 200g. We �rst samplen = 1000 points
from each distribution to de�ne� 1 and� 2. We then computemin-SWGG2

2(� 1; � 2) computed using
different schemes, either by random search, by simulated annealing [54] or by gradient descent. We
report the obtained results in Fig. 3 (left). For the random search scheme, we repeat each experiment
20 times and we plot the average value of min-SWGG� 2 times the standard deviation.

For the gradient descent, we select a random initial� . We observe that, in low dimension, all schemes
provide similar values ofmin-SWGG. When the dimension increases, optimizing the direction�
yields a more accurate approximation of the true Wasserstein distance(see plots' title in Fig. 3). On
Fig. 3 (right), we compare the empirical runtime evaluation formin-SWGGwith different competitors
for d = 3 and usingn samples from Gaussian distributions, withn 2 f 102; 103; 104; 5 � 104; 105g.
We observe that, as expected,min-SWGGwith random search is as fast asSW with a super linear
time complexity. With the optimization process, it is faster than SRW for a given number of samples.
We also note that SRW is more demanding in memory and hence does not scale as well asmin-SWGG.
We give more details on this experimentation and a comparison with competitors in Supp. 11.2.

Figure 3: (Left) evolution ofmin-SWGGwith different numbers of projections and with the dimension
d in f 2; 20; 200g. (Right) Runtimes.

1https://github.com/MaheyG/SWGG
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5.2 Gradient Flows

We highlight the weak convergence property ofmin-SWGG. Initiating from a random initial distribu-
tion, we aimto movethe particles of a source distribution� 1 towardsa target one� 2 by reducing
the objectivemin-SWGG2

2(� 1; � 2) at each step. We compare both variants ofmin-SWGG against
SW, max-SWandPWD, relying on the code provided in [37] for running the experiment; we report
the results on Fig. 4. We consider several target distributions, representing diverse scenarios and �x
n = 100. We run each experiment 10 times and report the mean� the standard deviation. In every
case, one can see that� 1 moves towards� 2 and that all methods tend to have similar behavior. One
can notice though that, for the distributions ind = 500 dimensional space,min-SWGGcomputed
with the optimization scheme leads to the best alignment of the distributions.

Figure 4: Log of the WD between different source and target distributions as a function of the number
of iterations.

5.3 Gray scale image colorization

Lemma 4.6 states that the WD has a closed form when one of the 2 distributions is supported on a
line, allowing us to compute the WD and the OT map with a complexity ofO(dn + n logn). This
particular situation arises for instance with RBG images (� 1; � 2 2 P n

2 (R3)), where black and white
images are supported on a line (the line of grays). One can address the problem of image colorization
through color transfer [25], where a black and white image is the source and a colorful image the
target. Our fast procedure allows considering large images without sub-sampling with a reasonable
computation time. Fig. 5 gives an example of colorization of an image of size 1280� 1024 that was
computed in less than 0.2 second, while being totally untractable for theO(n3 logn) solver of WD.

Figure 5: Cloud point source and target (left) colorization of image (right).
This procedure can be lifted to pan-sharpening [64] where one aimsto constructa super-resolution
multi-chromatic satellite image with the help of a super-resolution mono-chromatic image (source)
and a low-resolution multi-chromatic image (target). Obtained results are given in the Supp. 11.4.

5.4 Point clouds registration

Iterative Closest Point (ICP) is an algorithm for aligning point clouds based on their geometries
[7]. Roughly, its most popular version de�nes a one-to-one correspondence between point clouds,
computes a rigid transformation (namely translation, rotation or re�ection), moves the source point
clouds using the transformation, and iterates the procedure until convergence. The rigid transformation
is the solution of the Procrustes problemi.e. arg min(
 ;t )2 O(d) � Rd k
( X � t) � Y k2

2, whereX ; Y
are the source and the target cloud points andO(d) the space of orthogonal matrices of dimensiond.
This Procrustes problem can be solved using a SVD [59] for instance.

We perform the ICP algorithm with different variants to compute the one-to-one correspondence:
neareast neighbor (NN) correspondence, OT transport map (for small size datasets) andmin-SWGG
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transport map. Note that SW, PWD, SRW, factored coupling and Sinkhorn cannot be run in this
context where a one-to-one correspondence is mandatory; subspace detours [44] are irrelevant in this
context (see Supp. 11.5). We evaluate the results of the ICP algorithm in terms of: i) the quality of
the �nal alignment, measured by the Sinkhorn divergence between the re-aligned and target point
cloud; ii) the speed of the algorithm given by the running time until convergence. We consider 3
datasets of different sizes. The results are shown in Table 1 and more details about the setup, can be
found in Supp. 11.5. In Supp. 11.5 we give a deeper analysis of the results, notably with different
criteria for the �nal assignment, namely the Chamfer and the Frobenius distance. One can see that
the assignment provided by OT-based methods is better than NN.min-SWGGallows working with
large datasets, while OT fails to provide a solution forn = 150000.

n 500 3000 150 000
NN 3.54 (0.02) 96.9 (0.30) 23.3 (59.37)
OT 0.32 (0.18) 48.4 (58.46) �
min-SWGG 0.05(0.04) 37.6(0.90) 6.7(105.75)

Table 1: Sinkhorn Divergence between �nal transformation on
the source and the target. Timings in seconds are into parenthesis.
Best values are boldfaced. An example of a point clouds (n =
3000) is provided on the left.

6 Conclusion

In this paper, we hinge on the properties of sliced Wasserstein distance and on the Wasserstein
generalized geodesics to de�nemin-SWGG, a new upper bound of the Wasserstein distance that
comes with an associated transport map. Topological properties ofSWGGare provided, showing that
it de�nes a metric and thatmin-SWGGmetrizes the weak convergence of measure. We alsopropose
two algorithms for computingmin-SWGG, eitherthrougha random search scheme or a gradient
descent procedure after smoothing the generalized geodesics de�nition ofmin-SWGG. We illustrate
its behavior in several experimental setups, notably showcasing its interest in applications where a
transport map is needed.

The set of permutationscoveredby min-SWGGis the one induced by projections and permutations on
the line. It is a subset of the original Birkhoff polytope and it would be interesting tocharacterizehow
these two sets relates. In particular, in the case of empiricalrealizationsof continuous distributions, the
behavior ofmin-SWGG, whenn grows, needs to be investigated. In addition, the fact thatmin-SWGG
and WD coincide whend > 2n calls for embedding the distributions in higher dimensional spaces to
bene�t fromthe greaterexpressive power of projection onto the line.Anotherimportant consideration
is to establish a theoretical upper bound for min-SWGG.
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7 Proofs and supplementary results related to Section 3

7.1 Overestimation of WD by PWD

As stated in Section 2, the projected Wasserstein distancePWD (see Eq. 7) tends to overestimate
the Wasserstein distance. This is due to the fact that some permutations� � and� � (with � 2 Sd� 1)
involved in PWD computation may be irrelevant. Such situation occurs when the distributions
are in high dimension but supported on a low dimensional manifold or when the distributions are
multi-modal.

Let consider the distributions� 1 and� 2 lying on a low dimensional manifold. In high dimension,
randomly sampled vectors� tend to be orthogonal. Moreover, vectors orthogonal to the low dimen-
sional manifold lead to “collapsed” projected distributionsP �

# � 1 andP �
# � 2 onto � . Hence, such

projection directions lead to permutations that can be randomly chosen. To empirically illustrate this
behavior of PWD, we consider� 1 and� 2 as Gaussian distributions inRd, d = 10 but supported on
the �rst two coordinates and we sample 200 points per distribution. Table 2 summarizes the obtained
corresponding distances and shows that PWD overestimates the WD.

Now, let us consider two multimodal distributions� 1; � 2 with K clusters such that each cluster of� 1
has a close cluster from� 2 (cyclical monotonicity assumption). Also we assume the same number
of points in each cluster. OT plan will match the corresponding clusters and will lead to a relatively
low value forW 2

2 (since cluster from� 1 has a closely related cluster in� 2). However asPWDmay
allow permutations that make correspondences between points from different clusters (since a source
cluster and a target cluster can be far in the original space but very close when projected on 1D), the
resulting distance will be much more larger, leading to an overestimation of the Wasserstein distance.
Table 2 provides an illustration forK = 10 clusters andd = 2 .

Table 2: Values ofW 2
2 , PWD andmin-SWGGon two toy examples. PWD samples� uniformly over

Sd� 1; PWD Orthogonal Projections seek orthogonal vectors (see [57] for more details)
Distributions Multi-modal Low dimensional manifold
W 2

2 12 12
PWD2

2 Monte-Carlo 54 29
PWD2

2 Orthogonal Projections 54 37
min-SWGG2

2 13 13

7.2 Quantile version of SWGG

The main body of the paper expressesSWGGfor empirical distributions� 1 and� 2 with the same
number of points and uniform probability masses. In this section we derivedSWGGin a more general
setting of discrete distributions.

Let remark thatmin-SWGGrelies on solving a 1D optimal transport (OT) problem. So far, the 1D
OT problem was derived for� 1; � 2 2 P n

2 (R) and thus was expressed using the permutation operators
� and� . In the general setting of distributions� 1 2 P n

2 (R) and� 2 2 P m
2 (R) with n 6= m, the

1D optimal transport is computed based on quantile functions. Hence, the expression ofSWGG
in the general setting of� 1 2 P n

2 (R) and� 2 2 P m
2 (R) hinges on quantile functions instead of

permutations.

More formally, let� 2 P n
2 (R); its cumulative function is de�ned as:

F� : R ! [0; 1] ; x 7!
Z x

�1
d� (17)

and its quantile function (or pseudo inverse), is given by:

q� : [0; 1] ! R ; r 7! minf x 2 R [ f�1g s.t.F� (x) � r g (18)

An important remark is that the quantile function is a step function withn (the number of atoms)
discontinuities. Thus, it can be stored ef�ciently using two vectors of sizen (one for the locations of
the discontinuities and the other for the values of the discontinuities).
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For � 1 2 P n
2 (R) and� 2 2 P m

2 (R), we recover the Wasserstein distance through quantiles with:

W 2
2 (� 1; � 2) =

Z 1

0
jq� 1 (r ) � q� 2 (r )j2dr (19)

Moreover, the optimal transport plan is given by:

� = ( q� 1 ; q� 2 )# � [0;1] (20)

where� [0;1] is the Lebesgue measure on[0; 1]. The transport plan can be stored ef�ciently using two
vectors of size(n + m � 1) (see [53] Prop 3.4).

Following [53, Remark 9.6], one can de�ne the quantile function related to the Wasserstein mean by :

q� 1! 2 =
1
2

q� 1 +
1
2

q� 2 : (21)

Now, let � 1 2 P n
2 (Rd) and� 2 2 P m

2 (Rd). Let � 1! 2
� be the Wasserstein mean of the projected

distributions on� . Finally let � � ! 1 denote the transport plan from� 1! 2
� to � 1 and� � ! 2 be the

transport plan from� 1! 2
� to � 2. Following the construction of [4, Sec. 9.2], we shall introduce a

multi marginal plan de�ned as:

� 2 P 2(Rd � Rd � Rd) s.t. P12
# � = � � ! 1 ; P13

# � = � � ! 2 and� 2 �( � 1! 2
� ; � 1; � 2) (22)

whereP12 : (Rd)3 ! (Rd)2 projects to the �rst two coordinates andP13 projects to the coordinates
1 and 3. In particular,P12

# � is the projection of� on its 2 �rst marginals andP13
# � on the �rst and 3rd

marginal. Similarly to the 2-marginal transport plan we de�ned�( � 1! 2
� ; � 1; � 2) = f � 2 P 2(Rd �

Rd � Rd) s.t. � (A � Rd � Rd) = � 1! 2
� (A) , � (Rd � A; � Rd) = � 1(A) and� (Rd � Rd � A) = � 2(A),

8A measurable set ofRdg:

The generalized barycenter� 1! 2
g;� is then de�ned as:

� 1! 2
g;� =

�
1
2

P2 +
1
2

P3
�

#
� (23)

whereP i is the projection on thei -th coordinate.

We �nally have all the building blocks to computeSWGGin the general case. Let remark that the
complexity goes fromO(dn + n logn) in thePn

2 (Rd) case toO(d(n + m) + ( n + m) log(n + m))
in the general case.

7.3 Proof of Proposition 3.2

We aim to prove thatSWGG2
2(� 1; � 2; � ) is an upper bound ofW 2

2 (� 1; � 2) and thatSWGG(� 1; � 2; � )
is a distance8� 2 Sd� 1; � i 2 P n

2 (Rd), i = 1 ; 2.

Distance. Note that this proof will be derived for the alternative de�nition ofSWGGin supp. 10.8.

Let � 1 = 1
n

P
� x i ; � 2 = 1

n

P
� y i

; � 3 = 1
n

P
� z i be inP2(Rd), let � 2 Sd� 1. We note� (resp.

� and � ) the permutation such thathx � (1) ; � i � ::: � :::hx � (n ) ; � i (resp. hy � (1) ; � i � ::: �
:::hy � (n ) ; � i andhz � (1) ; � i � ::: � :::hz � (n ) ; � i ).

Non-negativity and �nite value.From thè 2 norm, it is derived

Symmetry. SWGG2
2(� 1; � 2; � ) = 1

n

P
i kx � ( i ) � y � ( i ) k

2
2 = 1

n

P
i ky � ( i ) � x � ( i ) k2

2 =
SWGG2

2(� 2; � 1; � )

Identity property.From one side,� 1 = � 2 implies thathx i ; � i = hy i ; � i , 81 � i � n and that� = � ,
which implies SWGG22(� 1; � 2; � ) = 0 .

From the other side,SWGG2
2(� 1; � 2; � ) = 0 = ) 1

n

P
kx � ( i ) � y � ( i ) k

2
2 = 0 = ) x � ( i ) = y � ( i ) ,

81 � i � n =) � 1 = � 2.
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Triangle Inequality. We have SWGG2(� 1; � 2; � ) =
�

1
n

P
i kx � ( i ) � y � ( i ) k

2
2

� 1=2

�
� P

i kx � ( i ) � z � ( i ) k2
2 +

P
i kz � ( i ) + y � ( i ) k

2
2

� 1=2
�

� P
i kx � ( i ) � z � ( i ) k2

2

� 1=2
+

� P
i kz � ( i ) + y � ( i ) k

2
2

� 1=2
= SWGG2(� 1; � 3; � ) + SWGG2(� 3; � 2; � )

Upper Bound The fact thatmin-SWGG2
2 in an upper bound ofW 2

2 comes from the sub-optimality
of the permutations� � ; � � . Indeed, they induce a one-to-one correspondencex � � ( i ) ! y � � ( i )

81 � i � n. This correspondence corresponds to a transport mapT � such thatT �
# � 1 = � 2. Since

W 2
2 = inf T s.t. T# � 1 = � 2

1
n

P
kx � T(x )k2

2 we necessarily haveW 2
2 � min-SWGG2

2.

Equality The equalityW 2
2 = min-SWGG2

2 wheneverd > 2n comes from the fact that all the
permutations are within the range ofSWGG. In particular minimizingSWGGis equivalent to solve
the Monge problem. We refer to Supp. 11.1 for more details.

7.4 Difference between max-SW and min-SWGG

Herein, we give an example where the selected vectors� for max-SW and min-SWGG differ.

Let � 1; � 2 2 P (R2) be an empirical sampling ofN (m1; � 1) and ofN (m2; � 2) with m1 =
�

� 10
0

�
,

m2 =
�

10
0

�
, � 1 =

�
1 0
0 11

�
and� 2 =

�
2 0
0 2

�
.

Since these two distributions are far away on thex-coordinate,max-SWwill catch this difference

between the means by selecting� �
�

1
0

�
. Indeed, the projection on thex-coordinate represents the

largest 1D WD.

Conversely,min-SWGGselects the pivot measure to be supported on� �
�

1
0

�
that separates the

two distributions. Indeed, this direction better captures the geometry of the 2 distributions, delivering
permutations that are well grounded to minimize the transport cost.

Fig. 6 illustrates that difference between max-SW and min-SWGG.

Figure 6: Optimal� for max-SW and min-SWGG

7.5 From permutations to transport map

In this section we provide the way of having a transport map from permutations.

Let � 1; � 2 2 P n
2 (Rd), let � � 2 arg min SWGGand let� � � ; � � � the associated permutations. The

associated map must beT(x � ( i ) ) = y � ( i ) 81 � i � n. In the paper, we formulate the associated
transport map as:

T(x i ) = y � � 1
� � ( � � � ( i )) ; 81 � i � n: (24)
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Moreover, the matrix representation ofT is given by:

Tij =
�

1
n if � (i ) = � (j )
0 otherwise (25)

7.6 Examples of Transport Plan

Fig. 7 illustrates two instances of the transport plan obtained viamin-SWGG. Even though these
transport plans are not optimal, they were able to capture the overall structure of the true optimal
transport plans.

Figure 7: Example of transports plan given by Wasserstein (left and middle-right) and min-SWGG
(middle left and right). Transport plan distribution (top) and transport matrix (bottom).The relative
distances between source and target are given in the title.

The �rst example shows that the OT plan bymin-SWGGexhibits a "block" structure, and thus
approximates well the true Wasserstein distance. The second example shows that even in a context of
superimposed distribution the "general transport direction" inmin-SWGGis representative of that of
the optimal transport map.

8 Background on Wasserstein Generalized Geodesics

We introduce some concepts related the Wasserstein generalized geodesics in Sec. 4.1. In this section,
we provide more details about these geodesics in order to provide a wider view on this theory.

In the following de�nitions, we do not address the issue of uniqueness of the geodesics. However this
is not a problem in our setup since we focus our study on pivot measure withn-atoms� 2 P n

2 (Rd).
In this case, we have uniqueness of the� -based Wasserstein distance [47].

Wasserstein generalized geodesicsAs mentioned in Sec. 4.1, Wasserstein generalized geodesics
rely on a pivot measure� 2 P n

2 (Rd) to transport� 1 to � 2. Indeed, one can leverage the optimal
transport mapsT � ! � 1 andT � ! � 2 to construct a curve linking� 1 to � 2. The generalized geodesic
with pivot measure� is de�ned as:

� 1! 2
g (t) def= ((1 � t)T � ! � 1 + tT � ! � 2 )# � 8t 2 [0; 1]: (26)

The generalized Wasserstein mean refers to the middle of the geodesic, i.e. whent = 0 :5 and has
been denoted� 1! 2

g .

Intuitively, the optimal transport maps between� and� i ; i = 1 ; 2 give rise to a sub-optimal transport
map between� 1 and� 2 through:

T1! 2
�

def= T � ! � 2 � T � 1 ! � with (T1! 2
� )# � 1 = � 2: (27)
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T1! 2
� links � 1 to � 2 via the generalized geodesic:

� 1! 2
g (t) = ((1 � t)Id + tT 1! 2

� )# � 1: (28)

We recall here the� -based Wasserstein distance induced byT1! 2
� and introduced in Eq. (13).

De�nition 8.1. The� -based Wasserstein distance [21, 47] is de�ned as:

W 2
� (� 1; � 2) def=

Z

Rd
kx � T1! 2

� (x )k2
2d� 1(x ) (29)

=
Z

Rd
kT � ! � 1 (z) � T � ! � 2 (z)k2

2d� (z): (30)

Moreover, this new notion of geodesics comes with an inequality, which is of the opposite side to
Eq. (3):

W 2
2 (� 1! 2

g (t); � ) � (1 � t)W 2
2 (� 1; � ) + tW 2

2 (�; � 2) � t(1 � t)W 2
2 (� 1; � 2): (31)

The parallelogram law is not respected but straddles with eq.(3) and eq.(31). We refer to Figure 8
for an intuition behind positive curvature [51], parallelogram law and generalized geodesics.

� 1 � 1

� �

� 2
� 2x1

y

x2
� 1 ! 2 ( t )

� 1! 2
g ( t )

tx 1 + (1 � t)x2

Figure 8: Geodesic(tId + (1 � t)T1! 2)# � 1 and generalized geodesic(tId + (1 � t)T1! 2
� )# � 1 in

Wasserstein space (Left and Right) in dashed line and parallelogram law inRd (middle).

Settingt = 0 :5 in Eq. (31) and reordering the term gives:
W 2

2 (� 1; � 2) � 2W 2
2 (� 1; � ) + 2 W 2

2 (�; � 2) � 4W 2
2 (� 1! 2

g ; � ): (32)

Moreover one can remark that:
W 2

� (� 1; � 2) = 2 W 2
2 (� 1; � ) + 2 W 2

2 (�; � 2) � 4W 2
2 (� 1! 2

g ; � ) (33)

In particular situationsW 2
� andW 2

2 coincide. It is the case for 1D distributions where the Wasserstein
space is known to be �at [4]. In that case, the Wasserstein mean and the generalized Wasserstein
mean are the same.

Multi-marginal Another formulation of the� -based Wasserstein distance is possible through
the perspective of multi-marginal OT [4]. Let �( � 1; � 2; � ) = f � s.t. P12

# � = � 1! 2 ; P13
# � =

� 1! � andP23
# � = � 2! � g, whereP ij is the projection onto the coordinatesi; j . Let also� � (� i ; � )

be the space of optimal transport maps between� i and� . We have:

W 2
� (� 1; � 2) = inf

� 2 �( � 1 ;� 2 ;� ) s.t. P i 3
# � 2 � � ( � i ;� ) i =1 ;2

Z

Rd
kx � yk2

2d� (x ; y ) (34)

Equation(34)expresses the fact that we select the optimal plan from�( � 1; � 2; � ) which is already
optimal for�( � i ; � ). Mathematically, this minimization is not a multi-marginal problem, since the
optimal plan is supposed to be already optimal for some coordinate.

The setf � 2 �( � 1; � 2; � ) s.t. P i 3
# � 2 � � (� i ; � ) i = 1 ; 2g is never empty, i.e. there is always

existence of� 1! 2
� (thanks to the gluing lemma [63], page 23). Moreover, in situations where it is a

singleton, there is uniqueness of� 1! 2
� . Uniqueness is an ingredient which overpasses the selection

of a �nal coupling and comes with additional result.
Lemma 8.2(Lemma 6 [47]). Wheneverf � 2 �( � 1; � 2; � ) s.t. P i 3

# � 2 � � (� i ; � ) i = 1 ; 2g is a
singleton,W 2

� is a proper distance. It is a semi-distance otherwise.

Notably, 1D pivot measure was studied in [35] to ensure a dendritic structure of the distributions
along the geodesic.
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9 Related Works

In this section we highlight the fact that several upper approximations ofW 2
2 are in the framework of

generalized geodesics. The differences lay in the choice of the pivot measure� .

Factored Coupling. In [29], the authors impose a low rank structure on the transport plan by
factorizing the couplings through a pivot measure� expressed as thek-Wasserstein mean between� 1
and� 2 (k � n). It is of particular interest since whenever the pivot distribution is the Wasserstein
mean between� 1 and� 2, W 2

� andW 2
2 coincide.

Factored coupling results in a problem of computing thek-Wasserstein mean (� 1! 2) followed by
solving two OT problems between the clustered Wasserstein mean and the two input distributions
(W 2

2 (� 1; � 1! 2) and W 2
2 (� 1! 2; � 2)). Even though the OT problems are smaller, they are still

expensive in practice.

Moreover, in this scenario, the uniqueness of the OT planT1! 2
� is not ensured. It appears that [29]

chooses the most entropic transport plan, i.e. simplyT1! 2
� = T � 1! 2 ! � 2 � T � 1 ! � 1! 2

.

Subspace Detours. From a statistical point of view, it is bene�cial to consider optimal transport
on a lower dimensional manifold [66]. In [44], authors compute an optimal transport planT � E

1 ! � E
2

between projections on a lower linear subspaceE of � 1 and� 2, i.e. � E
i = PE # � i , wherePE is the

linear projection onE. They aimed at leveragingT � E
1 ! � E

2 to construct a sub-optimal mapT1! 2
E

between� 1 and� 2.

The problem can be recast as a generalized geodesic problem with� being the Wasserstein mean of
� E

1 and� E
2 embedded inRd. Once again, uniqueness ofT � 1 ! � 2

� is not guaranteed, authors provide
two ways of selecting the map, namely Monge-Knothe and Monge-Independent lifting.

Subspace detours result in a problem where one needs to select a linear subspaceE (which is a
non convex procedure), compute an optimal transport between� 1 and� 2 (in O(n3 logn) whenever
dim(E) > 1) and reconstructT � 1 ! � 2

E .

Linear Optimal Transport (LOT). Given a set of distributions(� i )m
i =1 2 P 2(Rd)m , LOT [65]

embeds the set of distributions into theL 2(� )-space by computing the OT of each distribution to
the pivot distribution. Mathematically, it computesT � ! � i 81 � i � m and lies on estimating
W 2

2 (� i ; � j ) with W 2
� (� i ; � j ) through eq. (13).

In LOT, the pivot measure� was chosen to be the average of the input measures [65], the Lebesgue
measure onRd [41] or an isotropic Gaussian distribution [43].

Instead of computing
� m

2

�
expensive Wasserstein distances, it resorts only onm Wasserstein distances

between(� i )m
i and� . While signi�cantly reducing the computational cost when several distributions

are at stake, it does not allow speeding up the computation when only two distributions are involved.

9.1 Linear Optimal Transport with shift and scaling

In this section, we recall the result from [43]. The theorem states that the� -based approximation
is very close to WD whenever� 1, � 2 are continuous distributions which are very close to be shift
and scaling of each other. It can applies to a continuous version ofSWGG, however it works with
discrete measures in the particular case of equality betweenW 2

� andW 2
2 .

Theorem 9.1(Theorem 4.1 [43]). Let � = f Sa (shift) ; a 2 Rdg [ f Rc (scaling) ; c 2 Rg,
� �;R = f h 2 � s.t.khk� � Rg andG�;R;� = f g 2 L 2(Rd; � ) s.t.9h 2 � �;R s.t.kg � hk� � � g

Let � , � 2 P 2(Rd), with �; � � � (the Lebesgue measure). LetR > 0; � > 0

• For g1; g2 2 G�;R;� and� = � on a convex compact subset ofRd, we have:

W� (g1# �; g 2# � ) � W2(g1# �; g 2# � ) � C�
2

15 + 2 � (35)
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• If � and� satisfy the assumption of Caffarelli's regularity theorem [14], then forg1; g2 2
G�;R;� , we have:

W� (g1# �; g 2# � ) � W2(g1# �; g 2# � ) � C� 1=2 + C� (36)

whereC; C depdends on�; � andR.

10 Proofs and other results related to Section 4

10.1 Proof of Proposition 4.2: equivalence between the two formulations of SWGG

In this section, we prove that the two de�nitions ofSWGGin Def. 3.1 and Prop. 4.2 are equivalent.
Let � 2 Sd� 1 be �xed.

From one side in Def. 3.1, we have:

SWGG2
2(� 1; � 2; � ) def=

1
n

X

i

kx � � ( i ) � y � � ( i ) k
2
2 (37)

where� � and� � are the permutations obtained by sortingP �
# � 1 andP �

# � 2.

From the other side we noteD(� 1; � 2; � ) the quantity:

D (� 1; � 2; � ) def= 2W 2
2 (� 1; � 1! 2

� ) + 2 W 2
2 (� 1! 2

� ; � 2) � 4W 2
2 (� 1! 2

g;� ; � 1! 2
� ): (38)

We want to prove that SWGG22(� 1; � 2; � ) = D(� 1; � 2; � ); 8� 1; � 2 2 P n
2 (Rd) and� 2 Sd� 1.

Eq. (13) in the main paper states thatD(� 1; � 2; � ) is equivalent to
R

Rd kx � T1! 2
� 1! 2

�
(x )k2

2d� 1(x ).

Finally, Lemma 4.6 states that the transport mapT1! 2
� 1! 2

�
is fully determined by the permutations on

the line: the projections part is a one-to-one correspondence betweenx and� hx ; � i (resp. betweeny
and� hy ; � i ). More formallyT1! 2

� 1! 2
�

(x � � ( i ) ) = y � � ( i ) 81 � i � n. And thus we recover:
Z

Rd
kx � T1! 2

� 1! 2
�

(x )k2
2d� 1(x ) =

1
n

X

i

kx � � ( i ) � y � � ( i ) k
2
2 (39)

which concludes the proof.

10.2 Proof of Weak Convergence (Proposition 4.3)

We want to prove that, for a sequence of measures(� k )k2 N 2 P n
2 (Rd), we have:

� k
L ;2
�! � 2 P n

2 (Rd)) () min-SWGG2
2(� k ; � ) �!

k
0 (40)

The notation� k
L ;2
�! � stands for the weak convergence inPn

2 (Rd) i.e.
R

Rd f (x )d� (k ) (x ) !R
Rd f (x )d� (x ) for all continuous bounded functionsf and for the Euclidean distancef (x ) =

kx 0 � x k2
2 for all x0 2 Rd.

From one side, ifmin-SWGG2
2(� k ; � ) ! 0 =) W 2

2 (� k ; � ) ! 0 =) � k
L ;2
�! � . The �rst

implication is due to the fact thatmin-SWGG2
2 is an upper-bounds ofW 2

2 , the Wasserstein distance,
and that WD metrizes the weak convergence.

From another side, assume� k
L ;2
�! � ; we have for any� :

1. Let � � k ! �
� 2 P n

2 (Rd) stands for the Wasserstein mean of the projectionsQ�
# � k andQ�

# �
and let� � ! �

� = Q�
# � . We have� � k ! �

� converges towards (in law) to� � ! �
� , which implies

that:

W 2
2 (� k ; � � k ! �

� ) �!
k

W 2
2 (�; � � ! �

� ): (41)
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2. Since� 2 P n
2 (Rd), we haveT �

� k ! �
� ! � k �!

k
T �

� k ! �
� ! � (see [22], theorem 3.2). It

implies that� � k ! �
g;�

L�! � and particularly:

W 2
2 (� � k ! �

g;� ; � � k ! �
� ) �!

k
W 2

2 (�; � � ! �
� ) (42)

By combining the previous elements, we get:

2W 2
2 (� k ; � � k ! �

� ) + 2 W 2
2 (� � k ! �

� ; � k ) � 4W 2
2 (� � k ! �

g;� ; � � k ! �
� ) �!

k
2W 2

2 (�; � � ! �
� )

+ 2W 2
2 (� � ! �

� ; � )

� 4W 2
2 (�; � � ! �

� ) = 0 (43)

The previous relation shows that� k
L ;2
�! � impliesSWGG2

2(� k ; �; � ) �!
k

0 for any� . Hence, we

can conclude that:

� k
L ;2
�! � =) min-SWGG2

2(� k ; � ) ! 0 (44)

This concludes the proof.

Note that when� 1 and� 2 are continuous, [41] proved that when the distributions are smooth enough
(i.e. respecting the Cafarelli theorem [14]), there is a bi-Holder equivalence between the� -based
Wasserstein distance andW 2

2 . Hence, it still holds for SWGG for any� 2 Sd� 1:

W 2
2 (� 1; � 2) � SWGG2

2(� 1; � 2; � ) � B � W 2
2 (� 1; � 2)2=15 8� i 2 P 2(Rd) (45)

whereB depends on� i ; i 2 f 1; 2g; � and the dimensiond. This bound is suf�cient to prove that
SWGG metrizes the weak convergence in this context. We refer to [41] for more details.

10.3 Proof of Translation property (Proposition 4.4)

We prove thatmin-SWGG2
2 has the same behavior w.r.t. the translation asW 2

2 . This property is well
known for Wasserstein and useful in applications such as shape matching.

Let � 1; � 2 2 P n
2 (Rd), and letTu (resp.T v ) be the mapx 7! x � u (resp.x 7! x � v), with u ; v

vectors ofRd.

To ease the notations, let de�ne~� 1 = Tu
# � 1 and~� 2 = T v

# � 2.

Let remind that in the case of Wasserstein distance we have [53](Remark 2.19):

W 2
2 (~� 1; ~� 2) def= W 2

2 (Tu
# � 1; T v

# � 2) = W 2
2 (� 1; � 2) � 2hu � v; m 1 � m 2i + ku � vk2

2 (46)

with m 1 =
R

Rd x d� 1(x ) andm 2 =
R

Rd x d� 2(x ).

We aim to compute min-SWGG22(~� 1; ~� 2) def= min-SWGG2
2(Tu

# � 1; T v
# � 2). Let express �rst

SWGG2
2(~� 1; ~� 2) = 2 W 2

2 (~� 1; ~� 1! 2
� ) + 2 W 2

2 (~� 2; ~� 1! 2
� ) � 4W 2

2 (~� 1! 2
g;� ; ~� 1! 2

� ) (47)

where~� 1! 2
� is the Wasserstein mean of the projections along� of the shifted measures~� 1 = Tu

# � 1

and~� 2 = T v
# � 2 as in Proposition 2. The generalized Wasserstein mean~� 1! 2

g;� is de�ned accordingly
(see also Proposition 11).

We have:

W 2
2 (~� 1; ~� 1! 2

� ) = W 2
2 (� 1; � 1! 2

� ) � 2hu ; m 1 � m 3i + kuk2
2 (48)

wherem 3 =
R

Rd x d~� 1! 2
� (x ).

Similarly W 2
2 (~� 2; ~� 1! 2

� ) = W 2
2 (� 2; � 1! 2

� ) � 2hv; m 2 � m 3i + kvk2
2.
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Let express now the third term in eq.(47). For that we require to de�ne the generalized Wasserstein
mean~� 1! 2

g;� with pivot measure~� 1! 2
� . By the virtue of eq. (11) in the main paper, we have:

~� 1! 2
g;� =

�
1
2

T ~� 1! 2
� ! ~� 1 +

1
2

T ~� 1! 2
� ! ~� 2

�

#
~� 1! 2

� (49)

=
�

1
2

T � 1! 2
� ! � 1 +

1
2

T � 1! 2
� ! � 2 � T

u + v
2

�

#
~� 1! 2

� (50)

= T
u + v

2
#

 �
1
2

T � 1! 2
� ! � 1 +

1
2

T � 1! 2
� ! � 2

�

#
� 1! 2

�

!

(51)

Hence, the third term in (47) is:

W 2
2 (~� 1! 2

g;� ; ~� 1! 2
� ) = W 2

2 (� 1! 2
g;� ; � 1! 2

� ) � 2
Du + v

2
;

m 1 + m 2

2
� m 3

E
+








u + v
2








2

2
(52)

since the mean of a Wasserstein mean is the mean ofm1, m2.

Putting all together, we have:

min-SWGG2
2(Tu

# � 1; T v
# � 2) = min-SWGG2

2(� 1; � 2) � 4hu ; m 1 � m 3i � 4hv; m 2 � m 3i

(53)

+ 8
Du + v

2
;

m 1 + m 2

2
� m 3

E

+ 2kuk2
2 + 2kvk2

2 � 4







u + v
2








2

2

= min-SWGG2
2(� 1; � 2) +4 hu + v; m 3i (54)

� 4hu + v; m 3i � 4hu ; m 1i � 4hv; m 2i

+ 4hu + v; m 1 + m 2i + ku � vk2
2

(Parallelogram law)

= min-SWGG2
2(� 1; � 2) � 2hu ; m 1i � 2hv; m 2i + 2hu ; m 2i + 2hv; m 1i

(55)

+ ku � vk2
2

= min-SWGG2
2(� 1; � 2) � 2hu � v; m 1 � m 2i + ku � vk2

2 (56)

10.4 Proof of the new closed form of the Wasserstein distance (Lemma 4.6)

We recall and prove the lemma that makes explicit a new closed form for WD. Let� 1; � 2 be in
Pn

2 (Rd) with � 2 a distribution supported on a line whose direction is� 2 Sd� 1. We have:

W 2
2 (� 1; � 2) = W 2

2 (� 1; Q�
# � 1) + W 2

2 (Q�
# � 1; � 2): (57)

Moreover, the optimal map is given byT1! 2 = TQ �
# � 1 ! � 2 � T � 1 ! Q �

# � 1 = TQ �
# � 1 ! � 2 � Q� .

Let � 1; � 2 be inPn
2 (Rd) with � 2 a distribution supported on a line of direction� . We have:

W 2
2 (� 1; � 2) = W 2

2 (� 1; Q�
# � 1) + W 2

2 (Q�
# � 1; � 2) (58)

Moreover, the optimal map is given by:

T1! 2 = TQ �
# � 1 ! 2 � T1! Q �

# � 1 = TQ �
# � 1 ! 2 � Q� (59)

HereQ� is given in Def. 4.1 of the paper.

The proof of the Lemma was �rst inspired by [13](Proposition 2.3), where authors show that
W 2

C (� 1; � 2) = W 2
C 1 (� 1; � ) + W 2

C 2 (�; � 2) , with C1; C2 andC some cost matrices with the con-
straintsCij = min s C1

is + C2
sj .
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Let � 1 = 1
n

P
� x i and� 2 = 1

n � y i
be inPn

2 (Rd) with � 2 a distribution supported on a line with
direction� . Let Q�

# � 1 = � 1 = 1
n

P
� x i 2 P n

2 (Rd). We emphasize here the fact that the atoms of� 1
and� 2 are supported on a line are denoted by the overline symbol.

From one side, we have:

W 2
2 (� 1; � 2) = inf

T 1 s.t. T 1
# � 1 = � 2

Z

Rd
kx � T1(x )k2

2d� 1(x ) (60)

= inf
T 1 s.t. T 1

# � 1 = � 2

Z

Rd
(kx � Q� (x )k2

2 + kQ� (x ) � T1(x )k2
2)d� 1(x ) (61)

=
Z

Rd
kx � Q� (x )k2

2d� 1(x ) + inf
T 1 s.t. T 1

# � 1 = � 2

Z

Rd
kQ� (x ) � T1(x )k2

2d� 1(x ) (62)

� inf
T 2 s.t. T 2

# � 1 = � 1

Z

Rd
kx � T2(x )k2

2d� 1(x ) + inf
T 3 s.t. T 3

# � 1 = � 2

Z

Rd
kx � T3(x )k2

2d� 1(x )

(63)

� W 2
2 (� 1; � 1) + W 2

2 (� 1; � 2) (64)

Equation(61) is obtained thanks to the Pythagorean theorem sincehx i ; Q� (x i ); y i i is a right triangle
81 � i � n. The equation(64) is obtained by taking theinf of the previous �rst term of the previous
equation.

From the other side:

W 2
2 (� 1; � 1) + W 2

2 (� 1; � 2) =
Z

Rd
kx � T3(x )k2

2d� 1(x ) +
Z

Rd
kx � T4(x )k2

2d� 1(x ) (65)

=
Z

Rd
kT3(x ) � T4(x )k2

2d� 1(x ) (66)

= W 2
� 1

(� 1; � 2) � W 2
2 (� 1; � 2) (67)

WhereT3 andT4 are the optimal plan ofW 2
2 (� 1; � 1) and+ W 2

2 (� 1; � 2). Similarly, (65) is obtained
via the Pythagorean theorem. This concludes the proof.

We plot an illustration of the lemma in Figure 9.

Figure 9: Closed form for Wasserstein with Pythagorus theorem

10.5 Details on the ef�cient computation of SWGG

We decompose the second formulation ofSWGG. Let �rst remind thatQ� : Rd ! Rd, x 7! � hx ; � i
andP � : Rd ! R, x 7! hx ; � i are the projections on the subspace generated by� .

We have:
SWGG2

2(� 1; � 2; � ) = 2 W 2
2 (� 1; � 1! 2

� ) + 2 W 2
2 (� 1! 2

� ; � 2) � 4W 2
2 (� 1! 2

g;� ; � 1! 2
� ): (68)
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First, by lemma 4.6,

2W 2
2 (� 1; � 1! 2

� ) = 2 W 2
2 (� 1; Q�

# � 1) + 2 W 2
2 (P �

# � 1; P �
# � 1! 2

� ) (69)

as� 1! 2
� 's support is on a line. Similarly,

2W 2
2 (� 2; � 1! 2

� ) = 2 W 2
2 (� 2; Q�

# � 2) + 2 W 2
2 (P �

# � 2; P �
# � 1! 2

� ): (70)

and

� 4W 2
2 (� 1! 2

g;� ; � 1! 2
� ) = � 4W 2

2 (� 1! 2
g;� ; Q�

# � 1! 2
g;� ) � 4W 2

2 (P �
# � 1! 2

g;� ; P �
# � 1! 2

� ): (71)

We notice that2W 2
2 (P �

# � 1; P �
# � 1! 2

� ) + 2 W 2
2 (P �

# � 1! 2
� ; P �

# � 2) = W 2
2 (P �

# � 1; P �
# � 2) (as

P �
# � 1! 2

� is the Wasserstein mean betweenP �
# � 1 and P �

# � 2). We also notice that
� 4W 2

2 (P �
# � 1! 2

g;� ; P �
# � 1! 2

� ) = 0 (it comes from the fact that the generalized Wasserstein mean
is induced by the permutations on the line), we can put all together to have:

SWGG2
2(� 1; � 2; � ) = 2 W 2

2 (� 1; Q�
# � 1) + 2 W 2

2 (� 2; Q�
# � 2) � 4W 2

2 (� 1! 2
g;� ; Q�

# � 1! 2
g;� ) + W 2

2 (P �
# � 1; P �

# � 2)
(72)

One can show thatSWGGis divided into 3 Wasserstein distances between a distribution and its
projections on a line and 1D Wasserstein problem. This results in a very fast computation ofSWGG.

10.6 Smoothing of SWGG

In this section, we give details on the smoothing procedure ofmin-SWGG, an additional landscape
of SWGGand its smooth counterpart̂SWGGand an empirical heuristic for setting hyperparameters
s and� .

Smoothing Procedure. A natural surrogate would be to add an entropic regularization within the
de�nition of T � 1! 2

� ! � i , i 2 f 1; 2g and to solve an additional optimal transport problem. Nevertheless,
it would lead to an algorithm with anO(n2) complexity. Instead, we build upon the blurred
Wasserstein distance [26] between two distributions� 1 and� 2:

B 2
� (� 1; � 2) def= W 2

2 (k�= 4 � � 1; k�= 4 � � 2)

where� denotes the smoothing (convolution) operator andk�= 4 is the Gaussian kernel of deviation
p

�=2. In our case, it resorts in makings copies of each sorted projectionsP � (x i ) andP � (y i )
respectively, to add a Gaussian noise of deviation

p
�=2 and to compute averages of sorted blurred

copiesx s
� s , y s

� s :

( ]� 1! 2
� ) i =

1
2s

isX

k=( i � 1)s+1

x s
� s (k ) + y s

� s (k ) : (73)

Further, we provide additional examples of the landscape of̂min-SWGG(� 1; � 2) and discuss how to
choose empirically relevants and� values.

[26] has shown that the blurred WD has the same asymptotic properties as the Sinkhorn divergence,
with parameter� the strength of the blurring: it interpolates between WD (when� ! 0) and a
degenerate constant value (when� ! 1 ).

To �nd a minimum of Eq. (16) in the paper (i.e.̂SWGG2
2(� 1; � 2; � )), we iterate over:

� t +1 = � t + � r � ŜWGG2
2(� 1; � 2; � )

� t +1 = � t +1 =k� t +1 k2

where� 2 R+ is the learning rate. This procedure converges towards a local minima with a complexity
of O(snd + sn log(sn)) for each iteration. Once the optimal direction� ? is found, the �nal solution
resorts to be the solution provided bySWGG2

2(� 1; � 2; � ?), where the induced optimal transport map
is an unblurred matrix.
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Heuristic for setting the hyperparameters ofŜWGG We here provide an heuristic for setting
parameterss (number of copies of each points) and� (strength of the blurring). We then give an
example of the behavior of̂SWGG w.r.t. these hyper parameters.

Let � 1 = 1
n

P
� x i and� 2 = 1

n

P
� y i

.

• s 2 N+ represents the number of copies of each sample. We observe empirically that the quantity
sn should be large to provide a smooth landscape. It means that thes values can be small whenn
increases, allowing to keep a competitive algorithm (as the complexity depends onns)

• � 2 R+ represents the variance of the blurred copies of each sample. Empirically,� should depend
on the variance of the distributions projected on the line. Indeed, an� very close to zero will not
smooth enough the discontinuities whereas a large� will give a constant landscape.

As discussed in Section 4.3, �nding an optimal� 2 Sd� 1 is a non convex problem and provides
a discontinuous loss function. We give some examples of the landscape ofŜWGGw.r.t. different
values of the hyperparameters in Fig. 10. The landscapes were computed with a set of projections�
regularly sampled with angles2 [0; 2� ].

We observe that the largers, the smoother̂SWGG. Additionally, raising� tends to �attenŜWGG
w.r.t. � (erasing local minima). Indeed similarly to Sinkhorn, a large� blurred the transport plan and
thus homogenize all the value of SWGG w.r.t.� .

Moreover, we empirically observe that the number of samples for� 1 and� 2 enforces the continuity of
SWGG. We then conjecture that the discontinuities ofSWGGare due to artifact of the sampling and
thus the smoothing operation erases this unwanted behavior. A full investigation of this assumption is
left for future work.

Figure 10: Non-convex landscapes for SWGG andŜWGG with different hyper parameters.

10.7 Inconsequential of the pivot measure

Importantly, only the direction� is of importance for the value ofSWGG. Indeed, whenever
� 2 P n

2 (Rd) is supported on a line of direction� , the position of the atoms is irrelevant forW�
and the associated transport plan whenever the atoms are distinct. Despite the fact that the pivot
measure is inconsequential for the value ofSWGG(at � �xed), we choose it to be� 1! 2

� . This choice
is supported by the fact that� 1! 2

� can be ef�ciently computed (as a 1D Wasserstein mean) and that
some computation can be alleviated:

2W 2
2 (Q�

# � 1; � 1! 2
� ) + 2 W 2

2 (� 1! 2
� ; Q�

# � 2) = W 2
2 (Q�

# � 1; Q�
# � 2) (74)

It is an important comment to derive the property of distance forSWGG; it also allows minimizing
SWGGover� 2 Sd� 1 without consideration for� , since any choice of� supported on the subspace
generated by� give the same result formin-SWGG. This property of irrelevance comes from the
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nature of the subspace where� is supported, which is uni-dimensional. More formally we give the
following proposition and its associated proof.

Proposition 10.1. Let � 1, � 2 2 P n
2 (Rd). Let � 2 Sd� 1. Let � 1; � 2 2 P n

2 (Rd) be two pivot measures
supported on a line with direction� , with disctincs atoms for each measure. We then have:

W 2
� 1

(� 1; � 2) = W 2
� 2

(� 1; � 2) (75)

We give a proof of this proposition.

Thanks to lemma 4.6, we known that the transport mapT1! 2
� is fully induced by the transport

planT
Q �

# � 1 ! Q �
# � 2

� . Let remind thatT
Q �

# � 1 ! Q �
# � 2

� is given byT � ! Q �
# � 2 � TQ �

# � 1 ! � (see equation
(12)). Moreover the two optimal transport plans are obtained via the ordering permutations, i.e. let
�; �; � 2 S(n) s.t:

x � (1) � ::: � x � (n )

y � (1) � ::: � y � (n )

z � (1) � ::: � z � (n )

With x i being the atoms ofQ�
# � 1, y i the atoms ofQ�

# � 2 andz i being the atoms ofQ�
# � .

One haveT � 1 ! � (x � ( i ) ) = z � ( i ) (resp.T � ! � 2 (z � ( i ) ) = x � ( i ) ) 81 � i � n. Composing these two
identities gives:

T1! 2
� (x � ( i ) ) = y � ( i ) 81 � i � n (76)

The last equation shows thatT1! 2
� is in fact independent of� and thus of� .

10.8 Proof that min-SWGG is a distance (generalized geodesic formulation)

This proof has already been established in 7.3. However we rephrase the proof in the context of
generalized geodesics.

We aim to prove thatSWGG2 =
q

2W 2
2 (� 1; � 1! 2

� ) + 2 W 2
2 (� 1! 2

� ; � 2) � 4W 2
2 (� 1! 2

g;� ; � 1! 2
� ) de-

�nes a metric.

Finite and non-negativity.Each term ofSWGG2
2 is �nite thus the sum of the three terms is �nite.

Moreover, being an upper bound of WD makes it non-negative.

Symmetry.We have

SWGG2
2(� 1; � 2; � ) = 2 W 2

2 (� 1; � 1! 2
� ) + 2 W 2

2 (� 2; � 1! 2
� ) � 4W 2

2 (� 1! 2
g;� ; � 1! 2

� )

= 2W 2
2 (� 2; � 1! 2

� ) + 2 W 2
2 (� 1; � 1! 2

� ) � 4W 2
2 (� 1! 2

g;� ; � 1! 2
� )

= SWGG2
2(� 2; � 1; � ):

Identity property.
From one side, when� 1 = � 2 =) T � 1 ! � 1! 2

� = T � 2 ! � 1! 2
� = Id , giving � 1! 2

g;� = � 1 = � 2.
Thus:

SWGG2
2(� 1; � 2; � ) = 2 W 2

2 (� 1; � 1! 2
� ) + 2 W 2

2 (� 1; � 1! 2
� ) � 4W 2

2 (� 1; � 1! 2
� ) = 0 (77)

From another side,SWGG2
2(� 1; � 2; � ) = 0 = ) W 2

2 (� 1; � 2) = 0 = ) � 1 = � 2 (by being an
upper bound of WD).
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Triangle Inequality.We have:

SWGG2
2(� 1; � 2; � ) = 2 W 2

2 (� 1; � 1! 2
� ) + 2 W 2

2 (� 1! 2
� ; � 2) � 4W 2

2 (� 1! 2
g;� ; � 1! 2

� ) (78)

= 2
Z

Rd
kT1

� (x ) � x k2
2d� 1! 2

� (x ) + 2
Z

Rd
kT2

� (x ) � x k2
2d� 1! 2

� (x ) (79)

� 4
Z

Rd
kTg

� (x ) � x k2
2d� 1! 2

� (x )

=
Z

Rd

�
2kT1

� (x ) � x k2
2 + 2kT2

� (x ) � x k2
2 � 4kTg

� (x ) � x k2
2

�
d� 1! 2

� (x )

(80)

=
Z

Rd
kT1

� (x ) � T2
� (x )k2

2d� 1! 2
� (x ) (81)

where, with an abuse of notation for clarity sake,T i
� is the optimal map between� 1! 2

� and� i and
Tg

� is the optimal map between� 1! 2
� and� 1! 2

g;� . The last line comes from the parallelogram rule of
Rd. Thanks to Proposition 10.1 we see that SWGG is simply theL 2(Rd; � ) square norm, i.e.:

SWGG2
2(� 1; � 2; � ) = kT1

� � T2
� k2

�
def=

Z

Rd
kT1

� � T2
� k2

2d� (82)

with � being any arbitrary pivot measure ofPn
2 (Rd). And thusSWGG2 is theL 2(Rd; � ) norm. This

observation is enough to conclude that SWGG2 is a proper distance for� �xed.

11 Experiment details and additional results

WD, SW, Sinkhorn, Factored coupling are computed using thePython OTToolbox [28] and our
code is available athttps://github.com/MaheyG/SWGG . The Sinkhorn divergence for the point
cloud matching experiment was computed thanks to theGeomlosspackage [27].

11.1 Behavior of min-SWGG with the dimension and the number of points

In this section, we draw two experiments to study the behavior ofmin-SWGGw.r.t. the dimension
and to the number of points.

Evolution with d In [20][Theorem of Section 2], authors aim at enumerate the number of permuta-
tions obtained via the projection of point clouds on a line. It appears that the number of permutations
increases with the dimension. They even show that wheneverd � 2n (2n being the total number of
points of the problem), all the possible permutations (n!) are in the scope of a line. Fig. 11 depicts
the number of obtainable permutations as a function of the dimensiond, for n �xed. This theorem
can be applied to min-SWGG to conclude that wheneverd � 2n, we have min-SWGG22 = W 2

2 .

It turns out empirically that the greater the dimension, the better the approximation ofW 2
2 with

min-SWGG(see Fig. 11) for a �xedn. More formally, the set of all possible transport maps is
called the Birkhoff polytope and it is known that the minimum of the Monge problem is attained at
the extremal points (which are exactly the set of permutations matrices, a set ofn! matrices in our
context) [8]. The set of the transport maps in the scope ofSWGGis a subset of the extremal points
of the Birkhoff polytope (there are permutations matrices but not all possibilities are represented).
Theoretically, the set of transport maps in the scope ofSWGGis larger asd grows, giving a subset
that is more and more tight with the extremal points of the Birkhoff polytope. This explains that
min-SWGG can bene�t from higher dimension.

We plot in Fig. 11 the evolution, over 50 repetitions, of the ratiomin-SWGG(� 1 ;� 2 )
W 2

2 ( � 1 ;� 2 ) with d, n = 50 and
� 1 � N (1Rd ; Id ), � 2 � N (� 1Rd ; Id ).

Evolution with n Fig. 12 represents the evolution ofW 2
2 (� 1; � 2) andmin-SWGG2

2(� 1; � 2) for
two distributions� 1 � N (1Rd ; Id ) and� 2 � N (� 1Rd ; Id ), with d = 4 and a varying number of
points. The results are averages over 10 repetitions.
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Figure 11: Evolution ofW 2
2 andmin-SWGG2

2 with the dimensiond for isotropic Gaussian distribu-
tions (left) Number of permutations induced by a direction� 2 Sd� 1 with n = 310 and a varying
dimension (right)

Figure 12: Evolution ofW 2
2 and min-SWGG w.r.t. the number of points

We observe that, whenn is large enough,min-SWGGtends to stabilize around some constant value.

We conjecture that there may exist an upper bound for min-SWGG:

min-SWGG2
2(� 1; � 2) �  (d; n; d0)W 2

2 (� 1; � 2) (83)

Whered0 is the max of the dimensions of the distributions� 1; � 2 [66], and an unknown function.

11.2 Computing min-SWGG

We now provide here more details about the experimental setup of the experiments of Section 5.1.

Choosing the optimal� We compare three variants for choosing the optimal direction� : random
search, simulated annealing and optimization (de�ned in Section 4.3). We choose to compare with
simulated annealing since it is widely used in discrete problem (such as the travelling salesman) and
known to perform well in high dimension [62] [16] [36]. We notice in Fig. 3 of the paper that the
smooth version ofmin-SWGGis always (comparable or) better than the simulated annealing. In
this experiment, we randomly sample 2 Gaussian distributions with different means and covariances
matrices, whose parameters are chosen randomly. For optimizingmin-SWGG, we use the Adam
optimizer of Pytorch, with a �xed learning rate of5e� 2 during100iterations, considerings = 10
and� = 1 .

Fig. 13 provides the timings for computing the random search approximation, simulated annealing
and the optimization scheme. In all cases, we recover the linear complexity ofmin-SWGG(blue
curves) in a log space. For the computation timings we computemin-SWGGwith random search
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with L = 500, simulated annealing (green curves) with 500 iterations with a temperature scheme
(1 � k+1

500 )500
k=1 and the optimization scheme (considerings = 10 with a �xed number of iterations for

the optimization scheme equals to 100).

Figure 13: Considering two Gaussian distributions in dimensionsd equals to: 2 (left), 20 (middle), 200
(right),we computemin-SWGGwith random search, simulated annealing schemes and optimization
procedure and report the timings for varying number of points and �xed number of projections.

Additionally, we reproduce the same setup as in 5.1 for theSW, max-SWandPWD distance. For
sake of readability we compared with min-SWGG optim and report the results in Fig. 14.

Figure 14: Comparison ofmin-SWGGoptim with PWD (left) and withmax-SWandSW (right).
PWD and SW are computed with a growing number of projection

Runtime Evaluation In the paper, on Fig. 3 (Right), we compare the empirical runtime evaluation
on GPU for different methods. We consider Gaussian distributions in dimensiond = 3 and we
samplen points per distribution withn 2 f 102; 103; 104; 5 � 104; 105g. ForSW Monte-Carlo and
min-SWGGrandom search, we useL = 200 projections. For bothmax-SWandmin-SWGGwith
optimization, we use 100 iterations with a learning rate of 1, and we �xs = 50 for min-SWGG. We
use the of�cial implementation of the Subspace Robust Wasserstein (SRW) with the Frank-Wolfe
algorithm [52].

11.3 Gradient Flows

We rely on the code provided with [37] for running the experiment of Section 5.2.

We �x n = 100, the source distribution is taken to be Gaussian and we consider four different target
measures that represent several cases: i) a 2 dimensional Gaussian, ii) a 500 dimensional Gaussian
(high dimensional case), iii) 8 Gaussians (multi-modal distribution) and iv) a two-moons distribution
(non-linear case).

We �x a global learning rate of5e� 3 with an Adam optimizer. ForSW, PWDandSWGG(random
search), we sampleL = 100 directions. For the optimization methodsmax-SW, we set a learning
rate of1e� 3 with a number of 100 iterations for i), iii), and iv) and 200 iterations for ii). For
min-SWGG(optimization), we took a learning rate of i)1e� 1, ii)1e� 3, iii) 5e� 2, and iv)1e� 3. The
hyper parameters for the optimization ofmin-SWGGare s = 10 and � = 0 :5, except for the
500-dimensional Gaussian for which we pick� = 10 .

Each experiment is run 10 times and shaded areas in Fig. 4 (see the main paper) represent the mean
� the standard deviation.
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