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Abstract

Synthetic data serves as an alternative in training machine learning models, par-
ticularly when real-world data is limited or inaccessible. However, ensuring that
synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper addresses this issue by exploring the potential of integrating data-centric
AI techniques which profile the data to guide the synthetic data generation process.
Moreover, we shed light on the often ignored consequences of neglecting these
data profiles during synthetic data generation — despite seemingly high statistical
fidelity. Subsequently, we propose a novel framework to evaluate the integration
of data profiles to guide the creation of more representative synthetic data. In
an empirical study, we evaluate the performance of five state-of-the-art models
for tabular data generation on eleven distinct tabular datasets. The findings offer
critical insights into the successes and limitations of current synthetic data gener-
ation techniques. Finally, we provide practical recommendations for integrating
data-centric insights into the synthetic data generation process, with a specific
focus on classification performance, model selection, and feature selection. This
study aims to reevaluate conventional approaches to synthetic data generation and
promote the application of data-centric AI techniques in improving the quality and
effectiveness of synthetic data.

1 Introduction

Machine learning has become an essential tool across various industries, with high-quality data
representative of the real world being a crucial component for training accurate models that generalize
[1, 2, 3]. In cases where data access is restricted or insufficient synthetic data has emerged as a
viable alternative [4, 5]. The purpose of synthetic data is to generate training data that closely mirrors
real-world data, enabling the effective use of models trained on synthetic data on real data. Moreover,
synthetic data is used for a variety of different uses, including privacy (i.e. to enable data sharing,
[6, 7]), competitions [8] fairness [9, 10], and improving downstream models [11, 12, 13, 14].
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Figure 1: Measures of data-centric profiling (A) better reflect the downstream performance of
generative models (B) than measures of statistical fidelity (C). Assessed on the Adult dataset [16]
using five different generative models A) Proportion easy examples in the generated datasets identified
by Cleanlab, B) Supervised classification performance when training on synthetic, testing on real
data, C) Inverse KL-divergence. (bn=bayesian_network)

However, generating high-quality synthetic data that adequately captures the nuances of real-world
data, remains a challenging task. Despite significant strides in synthetic data with generative models,
they sometimes fall short in replicating the complex subtleties of real-world data, particularly when
dealing with messy, mislabeled or biased data. For instance, regarding fairness, [15] have shown
that such gaps can lead to flawed conclusions and unreliable predictions on subpopulations, thereby
restricting the practical usage of synthetic data.

The ability of synthetic data to capture the subtle complexities of real-world data is crucial, particularly
in contexts where these issues might surface during deployment. Inaccurate synthetic data can not only
hamper predictive performance but also result in improper model selection and distorted assessments
of feature importance, thereby undermining the overall analysis. These challenges underscore the
need to improve the synthetic data generation process.

One might wonder, surely, assessing fidelity via statistical divergence metrics [17, 5] such as MMD
or KL-divergence is sufficient? We argue that such high-level metrics tell one aspect of the story. An
overlooked dimension is the characterization of data profiles. In this approach, samples are assigned
to profiles that reflect their usefulness for an ML task. Specifically, samples are typically categorized
as easy to learn, ambiguous, or hard, which are proxies for data issues like mislabeling, data shift, or
under-represented samples. In methods such as Data-IQ [18]and Data Maps [19] this is referred to as
"groups of the data", however, we use "data profiles" for clarity.

While this issue has been well-studied for supervised tasks, it has not been explored in the generative
setting. We highlight the issues of overlooking such data profiling in Figure 1, where despite
near-perfect statistical fidelity (inverse KLD), we show the differing proportion of ’easy’ examples
identified in synthetic data generated by different generative models trained on the Adult dataset [16].
On the other hand, this data profile correlates with downstream classification performance.

To address this challenge of the representativeness of synthetic data, we explore the potential
of integrating data-centric AI techniques and their insights to improve synthetic data generation.
Specifically, we propose characterizing individual samples in the data and subsequently using the
different data profiles to guide synthetic data generation in a way that better reflects the real world.
While our work is applicable across modalities, our primary focus is tabular data given the ubiquity
of tabular data in real-world applications [20, 21], with approximately 79% of data scientists working
with it on a daily basis, vastly surpassing other modalities [22].

Contributions:
1⃝ Conceptually, we delve into the understanding of fundamental properties of data with respect to

synthetic data generation, casting light on the impact of overlooking data characteristics and profiles
when generating synthetic data.
2⃝ Technically, we bring the idea of data profiles in data-centric AI to the generative setting and

explore its role in guiding synthetic data generation. We introduce a comprehensive framework to
facilitate this evaluation across various generative models.
3⃝ Empirically, we benchmark the performance of five state-of-the-art models for tabular data

generation on eleven distinct tabular datasets and investigate the practical integration of data-centric
profiles to guide synthetic data generation. We provide practical recommendations for enhancing
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synthetic data generation, particularly with respect to the 3 categories of synthetic data utility (i)
predictive performance, (ii) model selection and (iii) feature selection.

We hope the insights of this paper spur the reconsideration of the conventional approaches to synthetic
data generation and encourage experimentation on how data-centric AI could help synthetic data
generation deliver on its promises.

2 Related work
This work engages with synthetic data generation and data characterization in data-centric AI.

Synthetic Tabular Data Generation uses generative models to create artificial data that mimics the
structure and statistical properties of real data, and is particularly useful when real data is scarce or
inaccessible [23, 24, 4]. In the following, we describe the broad classes of synthetic data generators
applicable to the tabular domain. Bayesian networks [25] are a traditional approach for synthetic data
generation, that represent probabilistic relationships using graphical models. Conditional Tabular
Generative Adversarial Network (CTGAN) [26] is a deep learning method for modeling tabular data.
It uses a conditional GAN to capture complex non-linear relationships. The Tabular Variational
Autoencoder (TVAE) is a specialized Variational Autoencoder, designed for the tabular setting [26].

Normalizing flow models [27, 28] provide an invertible mapping between data and a known distribu-
tion, and offer a flexible approach for generative modeling. Diffusion models, which have gained
recent popularity, offer a different paradigm for generative modeling. TabDDPM [29] is a diffusion
model proposed for the tabular data domain. In this work, we evaluate these classes of generative
models, considering various aspects of synthetic data evaluation.

Evaluation of Synthetic Data is a multifaceted task [17, 30], involving various dimensions such as
data utility with respect to a downstream task, statistical fidelity, and privacy preservation [17, 30]. In
this work, we focus on dimensions that impact model performance and hence, while important, we
do not consider privacy aspects.

(1) Data Utility: refers to how well the synthetic data can be used in place of the real data for a given
task. Typically, utility is assessed by training predictive models on synthetic data and testing them on
real data [4, 17, 31, 32, 5]. We posit that beyond matching predictive performance, we also desire to
retain both model ranking and feature importance rankings. We empirically assess these aspects in
Sec. 5.

(2) Statistical Fidelity: measures the degree of similarity between synthetic data and the original
data in terms of statistical properties, including the marginal and joint distributions of variables [17].
Statistical tests like the Kolmogorov-Smirnov test or divergence measures like Maximum Mean
Discrepancy, KL-divergence or Wasserstein distance are commonly used for evaluation[17, 5].

Beyond statistical measures, the concept of data characterization and profiles of easy and hard
examples has emerged in data-centric AI. These profiles serve as proxies for understanding real-world
data, which is often not "perfect" due to mislabeling, noise, etc.The impact of these profiles on
supervised models has been demonstrated in the data-centric literature [33, 34, 18]. In Figure 1,
we show that data profiles are similarly important in the generative setting. Despite having almost
perfect statistical fidelity, different generative models capture different data profiles (e.g. proportion
of easy examples), leading to varying data utility as reflected in different performances. Consequently,
we propose considering data profiles as an important dimension when creating synthetic data. We
describe current data-centric methods that can facilitate this next.

Data profiling is a growing field in Data-Centric AI that aims to evaluate the characteristics of data
samples for specific tasks [35, 36]. In the supervised learning setting, various methods have been
developed to assign samples to groups, which we refer to as data profiles. These profiles, such as easy,
ambiguous, or hard, often reveal issues such as mislabeling, data shifts, or under-represented groups
[34, 18, 33, 37, 19, 38]. Various mechanisms are used in different methods for data characterization.
For example, Cleanlab [34] models relationships between instances based on confidence, while
Data Maps and Data-IQ [18] assess uncertainty through training dynamics. However, many existing
methods are designed for neural networks and are unsuitable for non-differentiable models like
XGBoost, which are commonly used in tabular data settings. Consequently, we focus on data
characterization approaches such as Cleanlab, Data-IQ, and Data Maps which are more applicable to
tabular data.
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Figure 2: Illustration of the framework’s process flow. Data partitioning: the dataset is divided
into a training set, Dtrain, and a testing set, Dtest. Data profiling: a data-centric preprocessing
approach is employed on a duplicate of Dtrain to produce Dpre

train. A generative model, trained on
Dpre

train, is then utilized to synthesize a dataset, Dsynth, which is further processed using a data-centric
postprocessing method to achieve the final synthetic dataset, Dpost

synth. Classification model training:
various classification models are separately trained on Dtrain and Dpost

synth and applied to Dtest. Evaluation:
the generative and supervised models are appraised for their statistical fidelity and utility, focusing on
classification accuracy, model selection, and feature selection.

3 Framework

We propose a unified framework that enables a thorough assessment of generative models and the
synthetic data they produce. The framework encompasses the evaluation of the synthetic data based
on established statistical fidelity metrics as well as three distinct tasks encompassing data utility.

At a high level, the framework proceeds as visualized in 2. The dataset is first divided into a
training set, denoted as Dtrain, and a testing set, denoted as Dtest. A duplicate of the training set
(Dtrain) undergoes a data-centric preprocessing approach to produce a preprocessed version of the
training set, referred to as Dpre

train. A generative model is then trained on Dpre
train. This model is used

to synthesize a new dataset, denoted as Dsynth. The synthetic dataset is further processed using a
data-centric postprocessing method to create the final synthetic dataset, denoted as Dpost

synth. Various
classification modelsM are then trained separately on the original training set Dtrain and the synthetic
dataset Dpost

synth. These models are then applied to the testing set Dtest for evaluation. The generative
and supervised models are evaluated for their statistical fidelity and data utility. The focus is on
classification performance, model selection, and feature selection. Further details on each process
within the framework can be found in the following subsections.

3.1 Data profiling

Assume we have a dataset D = f(xn; yn) j n 2 [N ]g. Data profiling aims to assign a score S to
samples in D. On the basis of the score, a threshold � is typically used to assign a specific profile
group pn 2P , where P = fEasy;Ambigious;Hardg to each sample xn.

Our framework supports three recent data characterization methods applicable to tabular data: Clean-
lab [34], Data-IQ [18], and Data Maps [33]. They primarily differ based on their scoring mechanism
S. For instance, Cleanlab [34] uses the predicted probabilities as S to estimate a noise matrix,
Data-IQ [18] uses confidence and aleatoric uncertainty as S, and Data Maps uses confidence and
variability (epistemic uncertainty) as S. Moreover, they differ in the categories in the data profiles
derived from their scores. Data-IQ and Data Maps provide three categories of data profiles: easy;
samples that are easy for the model to predict, ambiguous; samples with high uncertainty, and hard;
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samples that are wrongly predicted with high certainty. Cleanlab provides two pro�les:easyandhard
examples.

We create data pro�les with these three data-centric methods to evaluate the value of data-centric
methods to improve synthetic data generation, bothex-anteandpost hoc. We use the pro�les in
multiple preprocessing and postprocessing strategies applied to the original and synthetic data.

3.1.1 Preprocessing

Preprocessing strategies are applied to the original dataDtrain i.e., before feeding to a generative
model. We investigate three preprocessing strategies: (1)baseline , which applies no processing,
and simply feeds theDtrain to the generative model. (2)easy_hard: Let Sc : Dtrain ! [0; 1] denote
the scoring function for data-centric methodc. We partitionDtrain into Deasy

train andDhard
train data pro�les

using a threshold� , such thatDeasy
train = f xn j Sc(xn ) � � g andDhard

train = f xn j Sc(xn ) > � g. (3)
Analogously,easy_ambiguous_hard2 splits theDtrain on the easy, ambiguous, and hard examples.
Further details are provided in Appendix A.

3.1.2 Generative model

We utilize the data pro�les identi�ed in the preprocessing step to train a speci�c generative model
for each data segment, e.g. easy and hard examples separately. LetG : Dtrain ! Dsynth denote
the generative model trained on a datasetDtrain, which produces synthetic datasetDsynth. In our
framework, for each data pro�le in preprocessed datasetDpre

train, we train a separate generative model.
We generate data using each generative model and the combined synthetic data is thenDsynth =
Geasy(D

easy
train) [ Ghard(Dhard

train), with generation preserving the ratio of the data segments, to re�ect their
distribution in the initial dataset.

3.1.3 Postprocessing

We de�ne postprocessing strategies as processing applied to the synthetic data after data generation
but before supervised model training and task evaluation. We denote the set of postprocessing
strategies asH. Given the synthetic datasetDsynth, each postprocessing strategyh 2 H mapsDsynth to
a processed datasetDpost

synth = h(Dsynth). Two different postprocessing strategies were used:baseline :
This is the identity functionhbaseline(Dsynth) = Dsynth. no_hard: We remove the hard examples from
the synthetic data,Dpost

synth = Dsynth n f xn
synth j Sc(xn

synth) > � g, wherexn
synth is generated synthetic

data.

3.2 Classi�cation model training

The training procedure of the supervised classi�cation modelsM comprises two steps, each mini-
mizing a cost functionL . (1) Train on the real data, i.e.,M real = arg min L (M (Dtrain)) . (2) Train
on synthetic data, i.e.M syn = arg min L (M (Dpost

synth)) We then compare utility ofM real andM syn

in the evaluation procedure. Our framework supports any machine learning modelM compatible
with the Scikit-Learn API.

3.3 Evaluation

Finally, the framework includes automated evaluation tools for the generated synthetic data to evaluate
the effect of pre- and postprocessing strategies, across datasets, random seeds, and generative models.
To thoroughly assess our framework, we establish evaluation metrics that extend beyond statistical
�delity, encapsulating data utility through the inclusion of three tasks.

3.3.1 Statistical �delity

The quality of synthetic data is commonly assessed using divergence measures between the real and
synthetic data [5, 30]. Our framework allows for this assessment using widely adopted methods
including inverse KL-Divergence [5], Maximum Mean Discrepancy [39], Wasserstein distance, as

2Only de�ned for data-centric methods that identify ambiguous examples, i.e. Data-IQ and Data Maps.
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well as Alpha-precision and Beta-Recall [30]. However, as shown in Figure 1, such measures can only
tell one aspect of the story. Indeed, despite all generative models providing near-perfect statistical
�delity based on divergence measures, the synthetic data captures the nuances of real data differently,
as re�ected in the varying data pro�les (e.g. proportion easy examples). This motivates us to also
assess the data utility and the potential implications of this variability.

3.3.2 Data utility

Three speci�c metrics were employed to assess data utility: classi�cation performance, model
selection, and feature selection.

Classi�cation performance To explore the usefulness of the generated synthetic data for model
training, we use the train-on-synthetic, test-on-real paradigm to �t a set of machine learning models
M on the synthetic data,Dsynth, and subsequently evaluate their performance on a real, held-out test
dataset,Dtest. By usingDtest we avoid potential issues from data leakage that might occur from an
evaluation on the real training sets,Dtrain.

Model selectionWhen using synthetic data for model selection, it is imperative that the ranking of
classi�cation modelsM trained on synthetic data aligns closely with the ranking of classi�cation
models trained on the original data. To evaluate this, we �rst train a set ofM real onDtrain and evaluate
their classi�cation performance onDtest. Next, we �t the same set ofM synth onDpost

synth and evaluate
their classi�cation performance onDtest. The rank-ordering of theM real in terms of a performance
metric (e.g. AUROC) is compared with the ranking-order of theM synth using Spearman's Rank
Correlation.

Feature selectionFeature selection is a crucial task in data analysis and machine learning, aiming to
identify the most relevant and informative features that contribute to a model's predictive power. To
evaluate the utility of using synthetic data for feature selection, a similar approach is followed as for
model selection. First, a modelM real with inherent feature importance (e.g. random forest) is trained
onDtrain and the rank-ordering of the most important features is determined. This ranking is then
compared to the rank ordering of the most important features obtained from the same model type
M synth trained onDpost

synth using Spearman's Rank Correlation.

3.4 Extending the framework

The framework presented in this paper is intentionally designed to be modular and highly adaptable,
allowing for seamless integration of various generative models, pre- and postprocessing strategies,
and diverse tasks. This �exibility enables researchers and practitioners to explore and evaluate e.g.
different combinations of generative models alongside various pre- and post-processing strategies.
Further, the framework is extensible, allowing for the incorporation of additional generative models,
novel processing methods, and emerging tasks, ensuring that it remains up-to-date and capable of
accommodating future advancements in the �eld of synthetic data generation.

4 Experiments

To demonstrate the framework, we conduct multiple experiments, aiming to answer the following
subquestions in order to investigate:Can data-centric ML improve synthetic data generation?:

Q1: Is statistical �delity suf�cient to quantify the utility of synthetic data?

Q2: Can we trust results from supervised classi�cation models trained on synthetic data to generalize
to real data?

Q3: Can data-centric approaches be integrated with synthetic data generation to create more realistic
synthetic data?

Q4: Does the level of label noise in�uence the effect of data-centric processing for synthetic data
generation?

All code for running the analysis and creating tables and graphs can be found at the following
links: https://github.com/HLasse/data-centric-synthetic-data or https://github.
com/vanderschaarlab/data-centric-synthetic-data .
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Table 1: Summarised performance for the baseline condition (no data-centric processing) across all
datasets. Classi�cation is measured by AUROC, model selection and feature selection by Spearman's
Rank Correlation, and statistical �delity by inverse KL divergence. Numbers show bootstrapped
mean and 95% CI. The best-performing model by task is in bold.

Generative Model Classi�cation Model Selection Feature Selection Statistical �delity

Real data 0.866 (0.855, 0.877) 1.0 1.0 1.0

bayesian_network 0.622 (0.588, 0.656) 0.155 (0.055, 0.264) 0.091 (-0.001, 0.188) 0.998 (0.998, 0.999)
ctgan 0.797 (0.769, 0.823) 0.519(0.457, 0.579) 0.63 (0.557, 0.691) 0.979 (0.967, 0.987)
ddpm 0.813(0.781, 0.844) 0.508 (0.446, 0.573) 0.635 (0.546, 0.718) 0.846 (0.668, 0.972)
nflow 0.737 (0.713, 0.761) 0.354 (0.288, 0.427) 0.415 (0.34, 0.485) 0.975 (0.968, 0.981)
tvae 0.792 (0.764, 0.818) 0.506 (0.436, 0.565)0.675(0.63, 0.722) 0.966 (0.953, 0.978)

4.1 Data

We assess our framework on a �ltered version of the Tabular Classi�cation from Numerical features
benchmark suite from [40]. To reduce computational costs, we �lter the benchmark suite to only
include datasets with less than 100.000 samples and less than 50 features which reduced the number
of datasets from 16 to 11. The datasets span several domains and contain a highly varied number of
samples and features (see B for more details.). Notably, the datasets have been preprocessed to meet
a series of criteria to ensure their suitability for benchmarking tasks. For instance, the datasets have
at least 5 features and 3000 samples, are not too easy to classify, have missing values removed, have
balanced classes, and only contain low cardinality features.

4.2 Generative models

To cover a representative sample of the space of generative models, we evaluate 5 different models
with different architectures as reviewed in 2: bayesian networks (bayesian_network ), conditional
tabular generative adversarial network (ctgan ), tabular variational autoencoder (tvae ), normalizing
�ow ( nflow ), diffusion model for tabular data (ddpm).

4.3 Supervised classi�cation model training

The variety of models employed in our study includes: extreme gradient boosting (xgboost), random
forest, logistic regression, decision tree, k-nearest neighbors, support vector classi�er, gaussian naive
bayes, and multi-layer perception. It is the ranking of these models that is evaluated for the model
selection task. Given the large number of models, we restrict the classi�cation results in the main
paper to be from the xgboost model. Feature selection results are reported for xgboost models.
Classi�cation and feature selection results for the other classi�ers can be found in Appendix C.

4.4 Experimental procedure

Main study The experimental process followed the structure outlined in Sec. 3 and Figure 2, repeated
for each of the 11 datasets, 5 generative models, 10 random seeds, and all permutations of pre- and
postprocessing methods for each of the three data-centric methods (Cleanlab, Data-IQ, and Data
Maps). We comprehensively evaluate the results across classi�cation performance, model selection,
feature selection, and statistical �delity. In total, we �t more than8000generative models.

Impact of label noiseTo assess the impact of label noise on the effect of data-centric pre- and
postprocessing, we carried out an analogous experiment to the main study, on the Covid mortality
dataset [41]. Here, we introduce label noise toDtrain before applying any processing. We study the
impact of adding[0, 2, 4, 6, 8, 10] percent label noise.

All results reported in the main paper use Cleanlab as the data-centric method for both pre- and
postprocessing. This decision was made to ensure clarity in the reported results and because Cleanlab
was found to outperform Data-IQ and Data Maps in a simulated benchmark. For the benchmark of
the data-centric methods as well as results using Data-IQ and Data Maps, we refer to Appendix C.
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Table 2: Percentage increase in performance from baseline, i.e., no data-centric pre- or postprocessing
(as seen in Table 1), per generative model for each pre- and postprocessing strategy, averaged across
all datasets and seeds.

Generative Model Preprocessing
Strategy

Postprocessing
Strategy

Classi�cation Model Selection Feature Selection Statistical Fidelity

bayesian_network baseline no_hard 0.31 (-4.89, 5.98)" -27.73 (-86.26, 32.7)# -52.26 (-166.02, 47.61)# -0.007 (-0.054, 0.046)#
easy_hard baseline 0.35 (-4.98, 6.03)" 92.18 (31.99, 151.42)" 9.79 (-110.47, 129.68)" -0.013 (-0.054, 0.027)#

no_hard 0.8 (-4.4, 6.34)" 27.25 (-31.99, 90.28)" -9.39 (-132.22, 107.39)# -0.023 (-0.067, 0.021)#

ctgan baseline no_hard 1.23 (-2.03, 4.44)" 11.47 (-1.92, 24.28)" 3.66 (-6.48, 12.61)" -0.054 (-1.423, 0.805)#
easy_hard baseline -0.78 (-4.14, 2.88)# -1.12 (-13.34, 11.47)# 0.15 (-10.66, 10.13)" -0.006 (-1.061, 0.804)#

no_hard 0.37 (-2.96, 3.8)" 14.73 (2.13, 26.68)" 0.18 (-10.04, 9.43)" -0.119 (-1.218, 0.701)#

ddpm baseline no_hard 0.63 (-3.55, 4.24)" -6.35 (-20.41, 7.86)# 1.7 (-10.67, 13.37)" -0.166 (-19.424, 15.964)#
easy_hard baseline 0.65 (-2.84, 4.06)" 7.0 (-5.87, 20.19)" 1.58 (-10.92, 13.92)" 0.356 (-16.583, 13.893)"

no_hard 1.32 (-2.06, 4.68)" 5.98 (-7.27, 18.63)" 4.19 (-6.95, 16.16)" 0.284 (-16.721, 14.567)"

nflow baseline no_hard 1.05 (-2.45, 3.97)" 1.22 (-16.88, 18.41)" 5.82 (-11.28, 21.68)" 0.035 (-0.743, 0.688)"
easy_hard baseline 0.7 (-2.64, 3.81)" 2.37 (-15.28, 20.63)" 9.63 (-8.01, 25.65)" 0.022 (-0.752, 0.625)"

no_hard 1.64 (-1.76, 4.81)" 4.66 (-13.67, 22.84)" 7.28 (-11.54, 25.04)" 0.052 (-0.705, 0.654)"

tvae baseline no_hard 1.1 (-2.29, 4.38)" -3.58 (-18.44, 11.01)# -0.13 (-6.84, 6.38)# -0.053 (-1.418, 1.113)#
easy_hard baseline -0.25 (-3.46, 3.16)# -5.83 (-19.45, 6.73)# 1.67 (-6.03, 8.17)" 0.24 (-0.941, 1.296)"

no_hard 0.71 (-2.59, 3.95)" 0.11 (-13.79, 14.38)" 3.41 (-3.38, 9.89)" 0.199 (-0.929, 1.285)"

4.4.1 Evaluation metrics

The classi�cation performance is evaluated in terms of the area under the receiver operating char-
acteristic curve (AUROC), model selection performance as Spearman's Rank Correlation between
the ranking of the supervised classi�cation models trained on the original data and the supervised
classi�cation models trained on the synthetic data, and feature selection performance as Spearman's
Rank Correlation between the ranking of features in an xgboost model trained on the original data
and an xgboost model trained on the synthetic data.

5 Results

Statistical �delity is insuf�cient for evaluating generative models. Measures of statistical �delity
fail to capture variability in performance on downstream tasks, as shown in Table 1. Surprisingly, the
worst performing model across all tasks (bayesian network), has the highest inverse KL-divergence
of all synthetic datasets, which should indicate a strong resemblance to the original data. Conversely,
the lowest inverse KL-divergence is found forddpmwhich is one of the consistently best performing
models.

Practical guidance: The benchmarking results illustrate that when selecting a generative model,
even if the statistical �delity appears similar, different generative models may perform differently on
the 3 downstream tasks (classi�cation, model selection, feature selection). Hence, beyond statistical
�delity, practitioners should understand which aspect is most crucial for their purpose to guide
selection of the generative model.

Different generative models for different tasks.As shown in Table 1, training on synthetic data
leads to a marked decline in classi�cation performance compared to real data, as well as highly
differing model and feature rankings. The effect differs largely by generative model, where CTGAN,
TabDDPM, and TVAE most closely retain the characteristics of the real data. No one model is
superior across all tasks. Speci�cally, TabDPPM achieves the highest classi�cation performance,
CTGAN performs best in model selection, and TVAE excels in feature selection. These �ndings
indicate that one should test a range of generative models and consider the trade-offs in data utility
before publishing synthetic data. Additionally, Appendix C reveals that although there are slight
differences in performance based on the supervised model type, the overall pattern of results remains
consistent across generative models.

Practical guidance: No generative model reigns supreme (highlighting the inherent challenge of
synthetic tabular data). However, over tabular data sets, we show thatCTGANandTVAEoffer the
best trade-off between high statistical �delity and strong performance on the three downstream tasks.

Data-centric methods can improve the utility of synthetic data.The addition of data-centric
pre- and postprocessing strategies has a generally positive effect across all tasks as seen in Table 2
and Figure 3, despite resulting in lower statistical �delity. In terms of classi�cation performance,
13 out of 15 evaluations showed a net improvement, with gains up to 1.64% better classi�cation
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performance compared to not processing the data. Model selection exhibited more pronounced effects,
particularly for bayesian networks, which demonstrated the greatest variability overall. While the
model selection results for TVAE decreased following data-centric processing, the other generative
models saw positive effects, with performance improvements ranging from 4.66% to 92%. Regarding
feature selection, 12 out of 15 evaluations demonstrated a net bene�t of data-centric processing,
resulting in improvements of 3.41% to 9.79% in Spearman's rank correlation. The bene�t of data-
centric processing was found to be statistically signi�cant for classi�cation and feature selection (see
Appendix D for details).

Practical guidance: Before releasing a synthetic dataset, practitioners are advised to apply the
data-centric methods studied in this paper as an add-on. This will ensure enhanced utility of the
synthetic data in terms of classi�cation performance, model selection, and feature selection.

Data-centric processing provides bene�ts across levels of label noise.Data-centric pre- and
postprocessing lead to consistently higher performance across tasks for all augmented datasets. As
shown in Figure 4, the magnitude of the effect of data-centric processing decreases with higher levels
of label noise, particularly above 8%, although this effect is not statistically signi�cant. Even though
the level of statistical �delity decreased marginally by applying data-centric processing, data-centric
processing led to statistically signi�cant increases in performance on all three tasks.

Practical guidance:Fitting generative models on noisy "real-world" data can lead to sub-optimal
downstream performance despite seemingly high statistical �delity. Data-centric methods are espe-
cially useful at reasonable levels of label noise, typically below 8%. Therefore, we recommend their
application when �tting generative models on real-world datasets.

5.1 Limitations and future work

Our work delves into the performance-driven aspects of synthetic data generation, focusing primarily
on data utility and statistical �delity, particularly within the realm of tabular data. While tabular
data is highly diverse and contains many intricacies, we also recognize several directions for further
exploration. Our current framework, while rooted in tabular data, hints at the broader applicability
to other data types such as text and images. Accommodating our framework to these modalities
would require further work on modality-speci�c tasks. For instance, images or text do not possess a
direct analog to feature selection. Such disparities underscore the need for a bespoke benchmarking
methodology tailored to each speci�c data type.

Figure 3: Average performance across all datasets for each generative model by pre- and postprocess-
ing method.
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Figure 4: Performance of a single generative model (TabDDPM) on the Covid mortality dataset with
varying levels of label noise across the pre- and postprocessing conditions.

6 Conclusion

This research provides novel insights into integrating data-centric AI techniques into synthetic tabular
data generation. First, we introduce a framework to evaluate the integration of data pro�les for
creating more representative synthetic data. Second, we con�rm that statistical �delity alone is
insuf�cient for assessing synthetic data's utility, as it may overlook important nuances impacting
downstream tasks. Third, the choice of generative model signi�cantly in�uences synthetic data quality
and utility. Last, incorporating data-centric methods consistently improves the utility of synthetic
data across varying levels of label noise. Our study demonstrates the potential of data-centric AI
techniques to enhance synthetic data's representation of real-world complexities, opening avenues for
further exploration at their intersection.
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Appendix

A Additional details

This appendix provides additional details on the data-centric methods used in our study, as well as
outlining limitations and future work.

A.1 Data-centric AI methods

Our paper considers different data-centric AI methods to perform data characterization, which forms
the basis of our data pro�les. As discussed in the main manuscript, the primary difference between
these methods is their scoring mechanismS. The three approaches considered in this paper next, i.e.
Cleanlab, Data-IQ and Data Maps will be described next. Importantly, these methods are applicable
to tabular data models like XGBoost, unlike several other data-centric methods which are only
applicable to differentiable models. Recall that the data characterization methods apply a threshold�
to S. The implementation of� in this work is described in Appendix C.3.

Cleanlab [34]. Cleanlab estimates the joint distribution of noisy and true labels, thereby character-
izing data into pro�les easy and hard, where hard data points might indicate mislabeling. It operates
on the output of classi�cation models and can be applied to any modality. We focus on Cleanlab in
the main manuscript, however, our framework could be applied with any of the following data-centric
tools.

Data-IQ [18]. Data-IQ is a training dynamics-based method, which characterizes data based on the
aleatoric uncertainty (inherent data uncertainty), i.e.E[P(x; #)(1 � P (x; #))] . We are able to extract
three data pro�les: easy, ambiguous and hard. Typically, these “ambiguous” and “hard” examples are
harmful to model performance and might be mislabeled or “dirty”.

Data Maps [33]. Data Maps is a training dynamics-based method, which characterizes data based
on the variability/epistemic uncertainty (model uncertainty), i.e.V[P(x; #)]. We are able to extract
three data pro�les: easy, ambiguous and hard. Typically, these “ambiguous” and “hard” examples are
harmful to model performance and might be mislabeled or “dirty”.

B Experimental details

By accident, the results reported in the main paper were based on data from 8 random seeds instead
of the intended 10, as stated in the paper. To maintain consistency in the results, the results reported
in the Appendix are also presented with 8 seeds.

B.1 Computational resources

All experiments were conducted using NVIDIA T4 16GB GPUs. The total number of GPU hours
spent across all experiments is approximately 1000. All experiments were performed on the UCloud
platform.

B.2 Hyperparameter tuning of generative models

In order to reduce the computational costs of running the main experiment, we conducted a hy-
perparameter search on the Adult dataset instead of tuning the parameters for each dataset in our
benchmark. For each model (bayesian_network , ctgan , ddpm, nflow , tvae ), we conducted a
search over the hyperparameter space de�ned for each model in the synthcity [5] implementation.
We used Optuna [42] to conduct 20 trials for each model. The best hyperparameters for each model
are listed in Table 3.

B.3 Classi�cation model set

Throughout the experiments, we �t a set of models from the scikit-learn li-
brary, namely, XGBClassifier , RandomForestClassifier , LogisticRegression ,
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Table 3: Hyperparameters used for the generative models.
Model Parameters
bayesian_network struct_learning_search_method: hillclimb,

struct_learning_score: bic
ctgan generator_n_layers_hidden: 2,

generator_n_units_hidden: 50,
generator_nonlin: tanh, n_iter: 1000,
generator_dropout: 0.0575,
discriminator_n_layers_hidden: 4,
discriminator_n_units_hidden: 150,
discriminator_nonlin: relu

ddpm lr: 0.0009375080542687667,
batch_size: 2929,
num_timesteps: 998,
n_iter: 1051,
is_classi�cation: True

nflow n_iter: 1000,
n_layers_hidden: 10,
n_units_hidden: 98,
dropout: 0.11496088236749386,
batch_norm: True,
lr: 0.0001,
linear_transform_type: permutation,
base_transform_type: rq-autoregressive,
batch_size: 512,

tvae n_iter: 300,
lr: 0.0002,
decoder_n_layers_hidden: 4,
weight_decay: 0.001,
batch_size: 256,
n_units_embedding: 200,
decoder_n_units_hidden: 300,
decoder_nonlin: elu,
decoder_dropout: 0.194325119117226,
encoder_n_layers_hidden: 1,
encoder_n_units_hidden: 450,
encoder_nonlin: leaky_relu,
encoder_dropout: 0.04288563703094718,

DecisionTreeClassifier , KNeighborsClassifier , SVC, GaussianNB, andMLPClassifier .
All hyperparameters were kept at their default value.

B.4 Datasets

Main experimentsAs described in Sec 4.1. we used the "Tabular benchmark numerical classi�cation"
downloaded from OpenML (suite id 337), �ltered to only include datasets with less than 100.000
samples and less than 50 features for our main experiments. The number of samples, features, and
links to the datasets are provided in Table 4.

Noise datasetThe dataset used to investigate the impact of label noise was the Covid mortality
dataset from [41]. The data includes data on patients with Covid with a label for whether the patient
will die within 14 days. The dataset contains 6882 samples and 21 features.

Adult dataset The adult dataset is a classic machine learning dataset, containing 48842 and 14
samples, with the task of predicting whether an individual's income exceeds $50k per year based on
census data.
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