
Acknowledgements

The authors thank Kazuki Osawa for fruitful discussions and support with using and extending the
ASDL library. The authors also thank Wu Lin for pointing out a mistake in the original equation of
the K-FAC-expand approximation. Finally, the authors thank Felix Dangel for helpful comments
on this manuscript. Runa Eschenhagen is supported by ARM and the Cambridge Trust. Alexander
Immer is funded by the Max Planck ETH Center for Learning Systems (CLS). Richard E. Turner is
supported by Google, Amazon, ARM, Improbable and EPSRC grant EP/T005386/1. Frank Schneider
and Philipp Hennig are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) in the frame of the priority programme SPP 2298 “Theoretical Foundations of Deep
Learning” - HE 7114/5-1, as well as the DFG Cluster of Excellence “Machine Learning - New
Perspectives for Science”, EXC 2064/1, project number 390727645; the German Federal Ministry of
Education and Research (BMBF) through the Tübingen AI Center (FKZ: 01IS18039A); and funds
from the Ministry of Science, Research and Arts of the State of Baden-Württemberg.

References

Amari, S. Natural gradient works efficiently in learning. Neural computation, 10(2), 1998.

Ba, L. J., Kiros, J. R., and Hinton, G. E. Layer normalization, 2016.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine translation by jointly learning to align and
translate. In ICLR, 2015.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V. F., Malinowski, M.,
Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gülçehre, Ç., Song, H. F., Ballard, A. J.,
Gilmer, J., Dahl, G. E., Vaswani, A., Allen, K. R., Nash, C., Langston, V., Dyer, C., Heess, N.,
Wierstra, D., Kohli, P., Botvinick, M. M., Vinyals, O., Li, Y., and Pascanu, R. Relational inductive
biases, deep learning, and graph networks. arXiv 1806.01261, 2018.

Benzing, F. Gradient descent on neurons and its link to approximate second-order optimization. In
ICML, 2022.

Bernacchia, A., Lengyel, M., and Hennequin, G. Exact natural gradient in deep linear networks and
its application to the nonlinear case. In NeurIPS, 2018.

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q. Pangu-weather: A 3d high-resolution
model for fast and accurate global weather forecast. arXiv 2211.02556, 2022.

Botev, A. and Martens, J. KFAC-JAX, 2022. URL http://github.com/deepmind/kfac-jax.

Botev, A., Ritter, H., and Barber, D. Practical Gauss-Newton optimisation for deep learning. In
ICML, 2017.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke,
A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,
Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray,
S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D.
Language models are few-shot learners. In NeurIPS, 2020.

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi, C., Borgs, C., Chayes, J. T., Sagun,
L., and Zecchina, R. Entropy-SGD: Biasing gradient descent into wide valleys. In ICLR, 2017.

Dahl, G. E., Schneider, F., Nado, Z., Agarwal, N., Sastry, C. S., Hennig, P., Medapati, S., Eschenhagen,
R., Kasimbeg, P., Suo, D., Bae, J., Gilmer, J., Peirson, A. L., Khan, B., Anil, R., Rabbat, M.,
Krishnan, S., Snider, D., Amid, E., Chen, K., Maddison, C. J., Vasudev, R., Badura, M., Garg, A.,
and Mattson, P. Benchmarking neural network training algorithms. arXiv 2306.07179, 2023.

Dangel, F. Convolutions through the lens of tensor networks. arXiv 2307.02275, 2023.

11

http://github.com/deepmind/kfac-jax
http://github.com/google/jax

Dangel, F., Kunstner, F., and Hennig, P. BackPACK: Packing more into backprop. In ICLR, 2020.

Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R., Bauer, M., and Hennig, P. Laplace
redux–effortless Bayesian deep learning. In NeurIPS, 2021.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An image is worth 16x16
words: Transformers for image recognition at scale. In ICLR, 2021.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient methods for online learning and stochastic
optimization. JMLR, 12(61), 2011.

Goldfarb, D., Ren, Y., and Bahamou, A. Practical Quasi-Newton methods for training deep neural
networks. In NeurIPS, 2020.

Graves, A. Practical variational inference for neural networks. In NIPS, 2011.

Grosse, R., Bae, J., Anil, C., Elhage, N., Tamkin, A., Tajdini, A., Steiner, B., Li, D., Durmus, E.,
Perez, E., Hubinger, E., Lukošiūtė, K., Nguyen, K., Joseph, N., McCandlish, S., Kaplan, J., and
Bowman, S. R. Studying large language model generalization with influence functions. arXiv
2308.03296, 2023.

Grosse, R. B. and Martens, J. A Kronecker-factored approximate Fisher matrix for convolution layers.
In ICML, 2016.

Gupta, V., Koren, T., and Singer, Y. Shampoo: Preconditioned stochastic tensor optimization. In
ICML, 2018.

Heskes, T. On “natural” learning and pruning in multilayered perceptrons. Neural Computation, 12
(4), 2000.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. Improving neural
networks by preventing co-adaptation of feature detectors. arXiv 1207.0580, 2012.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., and Leskovec, J. Open graph
benchmark: Datasets for machine learning on graphs. In NeurIPS, 2020.

Immer, A., Bauer, M., Fortuin, V., Rätsch, G., and Khan, M. E. Scalable marginal likelihood
estimation for model selection in deep learning. In ICML, 2021.

Immer, A., van der Ouderaa, T. F., Rätsch, G., Fortuin, V., and van der Wilk, M. Invariance learning
in deep neural networks with differentiable Laplace approximations. In NeurIPS, 2022.

Izadi, M. R., Fang, Y., Stevenson, R., and Lin, L. Optimization of graph neural networks with natural
gradient descent. In IEEE BigData, 2020.

Karpathy, A. nanoGPT, 2023. URL https://github.com/karpathy/nanoGPT.

Khan, M., Nielsen, D., Tangkaratt, V., Lin, W., Gal, Y., and Srivastava, A. Fast and scalable Bayesian
deep learning by weight-perturbation in Adam. In ICML, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In ICLR, 2015.

Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks. In
ICLR, 2016.

Kunstner, F., Balles, L., and Hennig, P. Limitations of the empirical Fisher approximation for natural
gradient descent. In NeurIPS, 2019.

Lin, W., Duruisseaux, V., Leok, M., Nielsen, F., Khan, M. E., and Schmidt, M. Simplifying
momentum-based positive-definite submanifold optimization with applications to deep learning.
In ICML, 2023.

Liu, K., Ding, R., Zou, Z., Wang, L., and Tang, W. A comprehensive study of weight sharing in graph
networks for 3d human pose estimation. In Computer Vision ECCV, 2020.

12

https://github.com/karpathy/nanoGPT

Loshchilov, I. and Hutter, F. Decoupled weight decay regularization. In ICLR, 2019.

MacKay, D. J. Bayesian interpolation. Neural computation, 4(3), 1992.

Martens, J. Deep learning via Hessian-free optimization. In ICML, 2010.

Martens, J. New insights and perspectives on the natural gradient method. JMLR, 21(146), 2014.

Martens, J. and Grosse, R. Optimizing neural networks with Kronecker-factored approximate
curvature. In ICML, 2015.

Martens, J., Ba, J., and Johnson, M. Kronecker-factored curvature approximations for recurrent
neural networks. In ICLR, 2018.

MLCommons. Algorithms Working Group, 2022. https://mlcommons.org/en/groups/
research-algorithms/, Last accessed: 20.12.2022.

Nan, L., Radev, D. R., Zhang, R., Rau, A., Sivaprasad, A., Hsieh, C., Tang, X., Vyas, A., Verma, N.,
Krishna, P., Liu, Y., Irwanto, N., Pan, J., Rahman, F., Zaidi, A., Mutuma, M., Tarabar, Y., Gupta,
A., Yu, T., Tan, Y. C., Lin, X. V., Xiong, C., Socher, R., and Rajani, N. F. DART: open-domain
structured data record to text generation. In NAACL-HLT, 2021.

Osawa, K., Li, S., and Hoefler, T. PipeFisher: Efficient training of large language models using
pipelining and Fisher information matrices. arXiv 2211.14133, 2022.

Osawa, K., Ishikawa, S., Yokota, R., Li, S., and Hoefler, T. ASDL: A unified interface for gradient
preconditioning in PyTorch. arXiv 2305.04684, 2023.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., et al. PyTorch: An imperative style, high-performance deep learning library. In
NeurIPS, 2019.

Pauloski, J. G., Huang, Q., Huang, L., Venkataraman, S., Chard, K., Foster, I. T., and Zhang, Z.
KAISA: an adaptive second-order optimizer framework for deep neural networks. In International

Conference for High Performance Computing, Networking, Storage and Analysis (SC21), 2021.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. Language models are
unsupervised multitask learners. 2019.

Ren, Y. and Goldfarb, D. Tensor normal training for deep learning models. In NeurIPS, 2021.

Ritter, H., Botev, A., and Barber, D. A scalable Laplace approximation for neural networks. In ICLR,
2018.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla,
A., Bernstein, M., Berg, A. C., and Fei-Fei, L. ImageNet large scale visual recognition challenge.
IJCV, 115, 2015.

Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact solutions to the nonlinear dynamics of learning
in deep linear neural networks. In ICLR, 2014.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. The graph neural network
model. IEEE Transactions on Neural Networks, 20, 2009.

Schraudolph, N. N. Fast curvature matrix-vector products for second-order gradient descent. Neural

computation, 14(7), 2002.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., and Eliassi-Rad, T. Collective classification
in network data. AI Magazine, 29(3), 2008.

Tang, Z., Jiang, F., Gong, M., Li, H., Wu, Y., Yu, F., Wang, Z., and Wang, M. SKFAC: Training
neural networks with faster Kronecker-factored approximate curvature. In CVPR, 2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. Attention is all you need. In NIPS, 2017.

13

https://mlcommons.org/en/groups/research-algorithms/
https://mlcommons.org/en/groups/research-algorithms/

Wang, Y. Fisher scoring: An interpolation family and its Monte Carlo implementations. Comput.

Stat. Data Anal., 54(7), 2010.

Yang, G. Tensor programs i: Wide feedforward or recurrent neural networks of any architecture are
gaussian processes. In NeurIPS, 2019.

Yang, M., Xu, D., Wen, Z., Chen, M., and Xu, P. Sketch-based empirical natural gradient methods
for deep learning. Journal of Scientific Computing, 92(3), 2022.

Yang, M., Xu, D., Cui, Q., Wen, Z., and Xu, P. An efficient Fisher matrix approximation method
for large-scale neural network optimization. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 45(5), 2023.

Yao, Z., Gholami, A., Shen, S., Mustafa, M., Keutzer, K., and Mahoney, M. W. ADAHESSIAN: an
adaptive second order optimizer for machine learning. In AAAI, 2021.

Zagoruyko, S. and Komodakis, N. Wide residual networks. In BMVC, 2016.

Zhang, G., Sun, S., Duvenaud, D., and Grosse, R. Noisy natural gradient as variational inference. In
ICML, 2018.

Zhang, G., Li, L., Nado, Z., Martens, J., Sachdeva, S., Dahl, G. E., Shallue, C. J., and Grosse, R. B.
Which algorithmic choices matter at which batch sizes? Insights from a noisy quadratic model. In
NeurIPS, 2019a.

Zhang, H., Dauphin, Y. N., and Ma, T. Fixup initialization: Residual learning without normalization.
In ICLR, 2019b.

14

A Weight-sharing in graph neural networks

In this section, we expand on the third example in Section 2.2 on graph neural networks (GNNs) and
show how they use linear layers with weight-sharing.

Graph convolutional network for node classification. A popular type of GNN is called graph
convolutional network (Kipf & Welling, 2016, GCN). A GCN defines a convolution operation on
graph structures, by repeatedly aggregating feature information over the neighbourhood of a node.
As a regular convolutional neural network, it also uses weight-sharing; see Liu et al. (2020) for a
comprehensive discussion on weight-sharing in GCNs. However, in contrast to the other models
presented here, they utilise a slightly different type of weight-sharing, which will become apparent in
Equation (12). Nevertheless, we briefly mention this case here, since the only work on K-FAC for
GNNs has been on this model architecture and we will explicitly show how K-FAC was applied in
this case in Appendix B.3.2; this relies on the notation introduced here.

A graph is defined as G := (V, E), where V is the set of N nodes and E the set of edges. The edges
can be encoded relative to the nodes in an adjacency matrix C 2 RN⇥N with Cij = 0 if there is no
edge and Cij = 1 if there is one. Typically, they are used for node and graph classification tasks.
Here, we focus on node classification, e.g. classifying scientific publications which are represented as
nodes in a citation network into topics (Sen et al., 2008).

The `-th GCN layer is defined as

f✓`(X) = �(ĈXW
|
`
) (11)

which is identical to a regular dense linear layer from Section 2.2, but the input matrix X 2 RN⇥P`,in ,
which has the N node features xn of size P`,in stacked in the rows, is first transformed by the
normalised adjacency matrix Ĉ := (D + IN)�

1
2 (C + IN)(D + IN)�

1
2 , where D is the diagonal

node degree matrix of the graph and IN is the N ⇥N identity matrix.

Defining

x̃n :=
NX

j=1

Ĉnjxj =
X

j2N (n)

Ĉnjxj , (12)

we can express the forward pass for a single node and layer as

f✓`(x̃n) = �(W`x̃n), (13)

where N (n) := {j 2 {1, . . . , N}|Ĉnj 6= 0} is the neighbourhood of the node with index n. Notably,
the forward pass for a single node xn depends on its neighbourhood, i.e. we cannot express the
forward pass for the node without access to the feature information of the nodes in its neighbourhood
N (n). Moreover, we can now see that the forward pass through the linear layer, i.e. the matrix
multiplication of the weight matrix W` with the transformed input x̃n, does not need the notion of
weight-sharing anymore, in the sense, that we do not need a batched matrix-vector product over a
weight-sharing dimension. This is because we aggregate over each node’s neighbourhood, over which
the weights are shared, before the matrix-vector product. Hence, in contrast to the GraphNetwork
introduced in the next paragraph, this model does not require special consideration when applying
K-FAC (c.f. setting (i) in Section 3.1).

GraphNetwork for graph classification. One more general formulation of a GNN is an instance
of the GraphNetwork introduced in Battaglia et al. (2018). The GraphNetwork in its general form
takes a graph G = (u,V, E) where u 2 RDu are the global features of the graph, and V and E

are the sets of nodes and edges, respectively, just as before. We can also write the i-th graph of a
dataset of N graphs as a 5-tuple XG

n
:= (xu

n
,XV

n
,XE

n
, rn, sn), with global features xu

n
2 RDu ,

node features XV

n
2 RN

V
n ⇥DV , and edge features XE

n
2 RN

E
n ⇥DE for all n = 1, . . . , N . The

two vectors rn 2 RN
E
n and sn 2 RN

E
n contain the indices of the receiving and sending nodes of

each edge, respectively. Using these indices, we define XV

n,rn
2 RN

E
n ⇥DV and XV

n,sn
2 RN

E
n ⇥DV

which contain the node features XV

n
at indices sn and rn, respectively. Note, that these graph inputs

unfortunately cannot trivially be batched by stacking them, since the number of nodes NV

n
or edges

N
E

n
are not necessarily the same for all n 2 {1, . . . , N}.

15

A GraphNetwork block updates the 3-tuple (xu

n
,XV

n
,XE

n
) by using three update functions �,

XE

n
 �

E(XE

n
,XV

n,rn
,XV

n,sn
,xu

n
)

XV

n
 �

V (XV

n
, X̃E

n
,xu

n
)

xu

n
 �

u(xu

n
, X̄V

n
, X̄E

n
),

(14)

and three permutation-invariant aggregation functions ⇢

X̃E

n
 ⇢

E!V (XE

n
)

X̄E

n
 ⇢

E!u(XE

n
)

X̄V

n
 ⇢

V !u(XV

n
).

(15)

Examples of these aggregation functions include element-wise summation, mean, or maximum.

One forward pass through a GraphNetwork block corresponds to the following steps, where each
step is executed for all n 2 {1, . . . , N}:

1. Update edges XE

n
with �

E(XE

n
,XV

n,rn
,XV

n,sn
,xu

n
).

2. Aggregate updated edges over all nodes in X̃E

n
2 RN

V
n ⇥DE using ⇢

E!V (XE

n
).

3. Update nodes XV

n
using �

V (XV

n
, X̃E

n
,xu

n
).

4. Aggregate updated edges over all graphs in X̄E

n
2 RDE using ⇢

E!u(XE

n
).

5. Aggregate updated nodes over all graphs in X̄V

n
2 RDV using ⇢

V !u(XV

n
).

6. Update global features xu

n
with �

u(xu

n
, X̄V

n
, X̄E

n
).

In this work, we consider graph classification; for example, molecules can be represented as graphs
and we could classify them according to some chemical property (e.g. the ogbg-molpcba dataset used
in Section 4.2). We specifically consider a GraphNetwork instance with simple MLPs for all update
functions � and an element-wise sum for the aggregation functions ⇢. Moreover, multiple of these
GraphNetwork blocks can be stacked on top of each other. To classify the input graphs, an MLP is
applied to the global features xu

n
after they are updated by the last GraphNetwork block.

To be more precise, the update functions are in this case specified as

�
E(XE

n
,XV

n,rn
,XV

n,sn
,xu

n
) := concat(XE

n
,XV

n,rn
,XV

n,sn
, repeat

NE
n
(xu

n
))WE

|

�
V (XV

n
, X̃E

n
,xu

n
) := concat(XV

n
, X̃E

n
, repeat

NV
n
(xu

n
))W V

|

�
u(xu

n
, X̄V

n
, X̄E

n
) := W uconcat(xu

n
, X̄V

n
, X̄E

n
)

(16)

with WE
2 RDE⇥(DE+2DV +Du)

,W V
2 RDV ⇥(DV +DE+Du), and W u

2 RDu⇥3Du .

Note, that this is a simplification since in reality, the update functions � are MLPs with ReLU
activations, layer normalisation (Ba et al., 2016), and dropout (Hinton et al., 2012). Also, we omit the
potential bias vectors. However, these components are not relevant for deriving K-FAC for the linear
layers within these networks, which is why we can omit them here for simplicity.

Most importantly, we can now observe that this type of GNN shares its weights over each graph’s
edges and nodes: just as for the attention or convolution operations described in Section 2.2, we apply
the transposed weight matrices from the right side of the input of the layers of type �

E and �
V , i.e.

for updating the edge and node features. However, since the number of edges NE

n
and the number of

nodes NV

n
is not necessarily the same for all N graphs, we now have a weight-sharing dimension of

size Rn, which depends on the n-th input. Also, note that the update function �
u used to update the

global features xu

n
does not use any weight-sharing, as there is just one feature vector per data point.

We have specifically introduced this notation of the inputs to show that the edge and node feature
update functions are exactly examples of the concept of a linear weight-sharing layer, as introduced
in Section 2.2. This might not be immediately obvious when only looking at the original notation
used in Battaglia et al. (2018); therefore, this can be seen as an instructive example for expressing a
neural network architecture in terms of linear weight-sharing layers. Consequently, our framework
for K-FAC can directly be applied to this architecture, as we show in Appendix B.3.2.

16

B Extended derivation and discussion of K-FAC-expand and K-FAC-reduce

B.1 Background: K-FAC for regular linear layers

Kronecker-Factored Approximate Curvature (Heskes, 2000; Martens & Grosse, 2015, K-FAC) was
proposed as an efficient approximation to a neural network’s Fisher information matrix. The Fisher
information matrix is defined as6

F (✓) = �
NX

n=1

Ey⇠p(y|f✓(xn))[r
2
✓ log p(y|f✓(xn))]

=
NX

n=1

Ey⇠p(y|f✓(xn))[r✓ log p(y|f✓(xn))(r✓ log p(y|f✓(xn)))
|
].

(17)

Notably, the labels y are samples from the predictive distribution of the model and are not the
empirical labels from the data. Replacing y with yn leads to the empirical Fisher (EF), which
is simply the uncentered covariance of the empirical gradient. While it is commonly used as a
replacement for the Fisher (Chaudhari et al., 2017; Graves, 2011; Kingma & Ba, 2015), it can give
rise to very different downstream behaviour when used for optimisation (Kunstner et al., 2019).

First, in all of this work, we focus on a layer-wise K-FAC approximation of the Fisher, i.e. it is
approximated by a block-diagonal matrix

F (✓) ⇡ diag(F (✓1), . . . ,F (✓`), . . . ,F (✓L)) 2 RP⇥P
, (18)

where F (✓`) 2 RP`⇥P` and diag(·, . . . , ·) build a block-diagonal matrix with the input matrices as
blocks.

To derive K-FAC, we first note that the pre-activation for layer ` and the n-th data point xn can be
expressed as s`,n = W`a`,n, with W` 2 RP`,out⇥P`,in and a`,n 2 RP`,in , the input to the `-th layer
(or equivalently, the activation of the `� 1-th layer). We have omitted an explicit bias parameter b`,

since it can always be subsumed in W`. Hence, by applying the chain rule, the gradient of the loss
w.r.t. the weights of the `-th layer can be written asrW`L(y, f✓(xn)) = rs`,nL(y, f✓(xn))a

|
`,n

=:

g`,na
|
`,n
2 RP`,out⇥P`,in .

Using these insights, K-FAC then replaces the sum of expectations over Kronecker products with a
Kronecker product of two sums of expectations, i.e.

F (✓`) =
NX

n=1

Ey⇠p(y|f✓(xn))[vec(rW`L(y, f✓(xn)))vec(rW`L(y, f✓(xn)))
|
] (19a)

=
NX

n=1

Ey⇠p(y|f✓(xn))[vec(g`,na
|
`,n

)vec(g`,na
|
`,n

)
|
] (19b)

=
NX

n=1

Ey⇠p(y|f✓(xn))[(a`,n ⌦ g`,n)(a
|
`,n
⌦ g

|
`,n

)] (19c)

=
NX

n=1

Ey⇠p(y|f✓(xn))[a`,na
|
`,n
⌦ g`,ng

|
`,n

] (19d)

⇡

"
1

N

NX

n=1

a`,na
|
`,n

#

| {z }
=:A`

⌦

"
NX

n=1

Ey⇠p(y|f✓(xn))[g`,ng
|
`,n

]

#

| {z }
=:G`

, (19e)

where A` 2 RP`,in⇥P`,in and G` 2 RP`,out⇥P`,out . For this derivation, we have used three convenient
properties of the Kronecker product (using matrices A,B,C,D with appropriate dimensions):
vec(ABC) = (C|

⌦A)vec(B) and (A⌦B)| = A|
⌦B| for Equation (19c), and (A⌦B)(C⌦

D) = AC ⌦BD for Equation (19d).
6More generally, it is defined with an expectation over x ⇠ p(x) as well.

17

We can see that the approximation is exact in the trivial case of a single data point, i.e. N = 1.
Moreover, it is also exact in the case of a single linear layer or a deep linear network and a Gaussian
likelihood (Bernacchia et al., 2018).

K-FAC is more efficient than a naive block-wise approximation because we only have to store
and invert two Kronecker factors instead of a larger dense matrix for each layer, which reduces the
memory complexity from O(P 2

`,inP
2
`,out) to O(P 2

`,in+P
2
`,out) and the computational complexity of the

preconditioning of the gradient with the approximate Fisher from O(P 3
`,inP

3
`,out) to O(P 3

`,in+P
3
`,out),

since
F (✓`)

�1g(✓`) ⇡ (A` ⌦G`)
�1g(✓`)

= vec
�
G�1

`
rW`L(y, f✓(xn))A

�1
`

� (20)

with g(✓`) = vec (rW`L(y, f✓(xn))) and the property (A⌦B)�1 = A�1
⌦B�1

.

Alternatively, we can derive K-FAC for the GGN (Botev et al., 2017), which will recover the
same result as for the Fisher in Equation (5) for many common loss functions, as we have learned
Section 2.3. We define J✓`(xn) := J✓`f✓(xn) = Js`,nf✓(xn)J✓`s`,n 2 RC⇥P` as the Jacobian of
the model outputs w.r.t. the parameters of the `-th layer and ⇤(f✓(xn)) := Hf✓L(yn, f✓(xn)) 2
RC⇥C as the Hessian of the loss w.r.t. the model outputs. Now we can write s`,n = W`a`,n =
(a|

`,n
⌦ IP`,out)vec(W`) and with this we have J✓`s`,n = a|

`,n
⌦ IP`,out . Additionally, by defining

b`,n := Js`,nf✓(xn)
|
2 RP`,out⇥C as the transposed Jacobian of the model outputs w.r.t. to the

pre-activations of the `-th layer, we note that J✓`(xn)
| = (a|

`,n
⌦ IP`,out)

|b`,n = a`,n ⌦ b`,n.

Replacing the (transposed) Jacobians in the definition of the GGN by this expression, we have

GGN(✓`) =
NX

n=1

J✓`(xn)
|
⇤(f✓(xn))J✓`(xn)

=
NX

n=1

(a`,n ⌦ b`,n)⇤(f✓(xn))(a`,n ⌦ b`,n)
|

=
NX

n=1

(a`,na
|
`,n

)⌦ (b`,n⇤(f✓(xn))b
|
`,n

)

⇡

"
1

N

NX

n=1

a`,na
|
`,n

#

| {z }
=:A`

⌦

"
NX

n=1

b`,n⇤(f✓(xn))b
|
`,n

#

| {z }
=:B`

.

(21)

This derivation is a bit more convenient for our purposes, as it does not require us to keep track of the
expectation over the labels y, while still being equivalent to the Fisher for common loss functions
(c.f. Section 2.3). Moreover, in our context, it will be useful to have the Jacobians J✓`(xn) separate
from the loss; therefore, we will only explicitly write our results for the GGN.

B.2 K-FAC for linear weight-sharing layers

B.2.1 The expand setting and K-FAC-expand

The expand setting can be identified by a loss with N · R terms, which corresponds to assuming
N ·R i.i.d. examples,

The Expand Setting

Lexpand(f✓,D) := �
NX

n=1

RX

r=1

log p(yn,r|f✓(xn)r), (22)

where f✓(xn)r is the r-th row of the model output f✓(xn) 2 RR⇥C and yn,r is the r-th row of the
label Yn2RR⇥C . A typical example of this type of loss function is language translation, where N is
the number of training examples and R is the sequence length.

18

Note that we are not assuming our inputs xn to have an additional weight-sharing dimension since
we only require that the input to the `-th layer has this additional dimension, i.e. A`,n 2 RR⇥D.
This obviously does not exclude the case where xn already has this weight-sharing dimension, e.g. a
sequence of tokens in translation tasks.

We can express the Jacobian of the r-th row of the model output f✓(xn) 2 RR⇥C w.r.t. the parameters
✓` as

(J✓`(xn)r)ij =
RX

m=1

P`,outX

p=1

@f✓(xn)ri

@S`,n,mp

@S`,n,mp

@✓`,j

(23)

or in matrix form

J✓`(xn)r =
RX

m=1

Js`,n,mf✓(xn)rJ✓`s`,n,m. (24)

Since the weights ✓` are shared across the weight-sharing dimension of size R, we can write the r-th
row of S`,n as s`,n,r = W`a`,n,r and we have J✓`s`,n,r = a|

`,n,r
⌦ IP`,out , as for regular K-FAC

(c.f. Appendix B.1). We denote b`,n,r,k := Js`,n,kf✓(xn)
|
r

. Hence, we have

J✓`(xn)
|
r
=

RX

m=1

b
|
`,n,r,m

(a
|
`,n,m

⌦ IP`,out)

!|

=
RX

m=1

a`,n,m ⌦ b`,n,r,m.

(25)

On a high level, applying K-FAC to a model trained with this type of loss just requires treating the
problem as if we had N ·R independent examples and deriving the approximation in the same way
as we would with N examples (c.f. Appendix B.1),

GGN(✓`) =
NX

n=1

RX

r=1

J✓`(xn)
|
r
⇤(f✓(xn)r)J✓`(xn)r

=
NX

n=1

RX

r=1

RX

m=1

a`,n,m ⌦ b`,n,r,m

!
⇤(f✓(xn)r)

RX

m0=1

a
|
`,n,m0 ⌦ b

|
`,n,r,m0

!
.

(26)

However, we cannot directly write each of the N ·R loss terms as a Kronecker product without any
approximation. One approach could be to approximate each J✓`(xn)r with a Kronecker product of
sums, as the K-FAC approximation does for the sum of the N data points, but then we would have
to be able to access

P
R

m=1 b`,n,r,m. Moreover, this would not even be exact in the simple settings
we consider later. In contrast, what can be implemented in practice without additional backward
passes (c.f. Appendix B.4) and what has been used for convolutional neural networks (Grosse &
Martens, 2016) and language transformers (Grosse et al., 2023; Osawa et al., 2022; Pauloski et al.,
2021; Zhang et al., 2019a) is

GGN(✓`) ⇡
NX

n=1

RX

r=1

RX

m=1

(a`,n,m ⌦ b`,n,r,m)⇤(f✓(xn)r)
�
a
|
`,n,m

⌦ b
|
`,n,r,m

�

=
NX

n=1

RX

m=1

�
a`,n,ma

|
`,n,m

�
⌦

RX

r=1

b`,n,r,m⇤(f✓(xn)r)b
|
`,n,r,m

!
,

(27)

where we ignore all the terms with m 6= m
0, which allows us to express each of the N ·R terms as a

Kronecker product.7 Consequently, we can apply the regular K-FAC approximation over N ·R terms
instead of just N terms as usual. We call the resulting approximation K-FAC-expand:

7However, the authors of the work on transformers do not discuss this extension of K-FAC at all; although
Zhang et al. (2018) do explicitly discuss the tying of the embedding and linear output layer weights.

19

K-FAC-expand

ˆGGN
expand

✓`
:=

"
1

NR

NX

n=1

RX

m=1

a`,n,ma
|
`,n,m

#

| {z }
=A`

⌦

"
NX

n=1

RX

m=1

RX

r=1

b`,n,r,m⇤(f✓(xn)r)b
|
`,n,r,m

#

| {z }
=B`

(28)

There is one simple case where the exact expression in Equation (26) is identical to the approximation
in Equation (27). When b`,n,r,m = 0 for all r 6= m, both expression are equivalent to

NX

n=1

RX

r=1

(a`,n,r ⌦ b`,n,r,r)⇤(f✓(xn)r)
�
a
|
`,n,r
⌦ b

|
`,n,r,r

�
. (29)

With other words, when f✓(xn)r is independent of all pre-activations s`,n,m with m 6= r the
two expressions coincide. This does not even hold for simplistic transformer models since the
self-attention mechanism (Section 2.2) in transformers directly correlates elements across the weight-
sharing dimension – we discuss this in more detail in Appendix B.3.1. Alternatively, we could also
scale Equation (27) by R, which leads to a scaling of 1/N instead of 1/NR in Equation (28). This
might be a better approximation when b`,n,r,m 6= 0 for r 6= m and is also what has been used by
previous work on transformers (Grosse et al., 2023; Osawa et al., 2022; Pauloski et al., 2021; Zhang
et al., 2019a). However, we choose to use the scaling in Equation (28) since the condition above
holds for networks that simply stack multiple linear weight-sharing layers; this allows us to show that
the approximation in Equation (28) is exact in the same simple cases as regular K-FAC.

For a typical neural network with nonlinear activation functions, K-FAC is only an approximation.
However, for regular individual linear layers and deep linear networks, K-FAC is known to be exact
assuming a Gaussian likelihood (Bernacchia et al., 2018). While this holds for the full GGN/Fisher,
we only focus on the block-diagonal case here. To motivate K-FAC-expand, we want to show
that similar statements hold for a single linear weight-sharing layer and deep linear networks with
weight-sharing in the expand setting. First, we state a simple condition for which the approximation
is indeed exact; this line of reasoning could also be applied to K-FAC for regular linear layers since
only the effective number of data points changes from N · R to N . Note, that we could also state
more trivial sufficient conditions for the exactness of the approximation, i.e. N = R = 1 and when
all inputs to a layer a`,n,r are the same for all n 2 {1, . . . , N} and r 2 {1, . . . , R}. We do not state
these types of conditions explicitly from now on.
Lemma 3 (Sufficient condition for exactness of K-FAC-expand in the expand setting). Let

C` 2 RP`,out⇥P`,out be a constant matrix for layer `. If b`,n,r,m = 0 for all r 6= m and

b`,n,m,m⇤(f✓(xn)m)b|
`,n,m,m

= C` for all n 2 {1, . . . , N} and m 2 {1, . . . , R}, then the K-

FAC approximation in Equation (7) is equal to the exact GGN/Fisher of the `-th layer in the expand

setting.

Proof. As mentioned before, when b`,n,r,m = 0 for all r 6= m the last line of Equation (26) and
the first line of Equation (27) both simplify to Equation (29). Hence, we can directly show that the
second and third approximation in Equation (27) equal the exact expression for the GGN of layer `
from there. We have

1

NR

NX

n=1

RX

r=1

a`,n,ra
|
`,n,r

!
⌦

NX

n=1

RX

r=1

b`,n,r,r⇤(f✓(xn)r)b
|
`,n,r,r

!

=

1

NR

NX

n=1

RX

r=1

a`,n,ra
|
`,n,r

!
⌦ (NRC`)

=

NX

n=1

RX

r=1

a`,n,ra
|
`,n,r

!
⌦C`

=
NX

n=1

RX

r=1

�
a`,n,ra

|
`,n,r

�
⌦
�
b`,n,r,r⇤(f✓(xn)r)b

|
`,n,r,r

�
,

(30)

20

where we have used the assumption that b`,n,m,m⇤(f✓(xn)m)b|
`,n,m,m

= C` is the same for all
n 2 {1, . . . , N} and m 2 {1, . . . , R}.

Leveraging this simple insight, we can provide an example of a single layer where the assumptions of
Lemma 3 are fulfilled.
Proposition 4 (Exactness of K-FAC-expand for single linear layer in the expand setting). For a

single linear weight-sharing layer and a Gaussian likelihood with p.d. covariance matrix ⌃ 2 RC⇥C
,

K-FAC-expand is exact in the expand setting.

Proof. We can write f✓(xn)r = W`xn,r and hence b`,n,r,m = 0 for r 6= m. Moreover, we have
⇤(f✓(xn)r) = ⌃�1 and b`,n,m,m = IC (P`,out = C for a single layer). Hence,

b`,n,m,m⇤(f✓(xn)r)b
|
`,n,m,m

= IC⌃
�1IC = ⌃�1

for all n 2 {1, . . . , N} and m 2 {1, . . . , R}. Therefore, the desired result follows from Lemma 3.

A natural question might be if the same result also holds for deep linear networks. A deep linear
network is here defined as a model of the form

f✓(x) = WL . . .W` . . .W1x = Wx, (31)

where x 2 RD and WL 2 RC⇥PL,in ,W` 2 RP`,out⇥P`,in (with P`,in = P`�1,out), and W1 2

RP1,out⇥D. Decomposing a single weight matrix W into L separate ones is a common framework for
theoretical analysis since it creates nonlinear training dynamics for gradient-based training algorithms,
while still having analytical solutions (Bernacchia et al., 2018; Saxe et al., 2014). We adopt the
notation of Bernacchia et al. (2018) and define

W a

`
:= WL . . .W`+1 (32)

as the product of the weight matrices ahead of W` and

W b

`
:= W`�1 . . .W1 (33)

as the product of the weight matrices behind of W`. Hence, we can write f✓(x) = W a

`
W`W b

`
x.

Note, that now
a`,n,r = W b

`
xn,r 2 RP`,in (34)

and
b`,n,r,r = W a

|
`
2 RP`,out⇥C

. (35)
Using these insights, we can now easily state the result for deep linear networks.
Proposition 1 (Exactness of K-FAC-expand for deep linear network in the expand setting).
For layer ` of a deep linear network defined as in Equation (8) and a Gaussian likelihood with p.d.

covariance matrix ⌃2RC⇥C
, K-FAC-expand is exact in the expand setting.

Proof. We can write f✓(xn)r = Wxn,r and hence b`,n,r,m = 0 for r 6= m. We have ⇤(f✓(xn)r) =

⌃�1 and b`,n,r,r = W a
|

`
. Hence, b`,n,m,m⇤(f✓(xn)m)b|

`,n,m,m
= W a

|
`

⌃�1W a

`
for all n 2

{1, . . . , N} and m 2 {1, . . . , R}. Therefore, the desired result follows from Lemma 3.

B.2.2 The reduce setting and K-FAC-reduce

The reduce setting is characterized by a loss with just N loss terms, i.e.

The Reduce Setting

Lreduce(f✓,D) := �
NX

n=1

log p(yn|f✓(xn)), (36)

where the crucial observation is that the weight-sharing dimension must have been reduced somewhere
in the forward pass of the neural network f✓. A typical instance where this type of loss is used together

21

with a model with linear weight-sharing layers is image classification with a vision transformer or a
convolutional neural network. Note, that the inputs xn and labels yn do not have a weight-sharing
dimension here; in general, it is also possible for the inputs to have this additional dimension of size
R already.

Since A`,n 2 RR⇥P`,in is now a matrix, we have S`,n = A`,nW
|
`
2 RR⇥P`,out . Hence, J✓`S`,n

and JS`,nf✓(xn) are now both multi-dimensional arrays. Luckily, we can simplify this by writing

(J✓`f✓(xn))ij =
RX

r=1

P`,outX

p=1

@f✓(xn)i
@S`,n,rp

@S`,n,rp

@✓`,j

, (37)

or in matrix form

J✓`f✓(xn) =
RX

r=1

Js`,n,rf✓(xn)J✓`s`,n,r, (38)

where s`,n,r 2 RP`,out is the r-th row of S`,n and s`,n,r = W`a`,n,r.

Using this equivalence we can approximate the GGN for layer ` as

GGN(✓`) =
NX

n=1

J✓`(xn)
|
⇤(f✓(xn))J✓`(xn)

=
NX

n=1

RX

r=1

Js`,n,rf✓(xn)J✓`s`,n,r

!|

⇤(f✓(xn))

RX

r=1

Js`,n,rf✓(xn)J✓`s`,n,r

!

=
NX

n=1

RX

r=1

a`,n,r ⌦ b`,n,r

!
⇤(f✓(xn))

RX

r=1

a`,n,r ⌦ b`,n,r

!|

⇡

NX

n=1

"
1

R

RX

r=1

a`,n,r

#

| {z }
=:â`,n

⌦

"
RX

r=1

b`,n,r

#

| {z }
=:b̂`,n

⇤(f✓(xn))

"
1

R

RX

r=1

a
|
`,n,r

#
⌦

"
RX

r=1

b
|
`,n,r

#

=
NX

n=1

�
â`,nâ

|
`,n

�
⌦

⇣
b̂`,n⇤(f✓(xn))b̂

|
`,n

⌘

⇡

"
1

N

NX

n=1

â`,nâ
|
`,n

#

| {z }
=:Â`

⌦

"
NX

n=1

b̂`,n⇤(f✓(xn))b̂
|
`,n

#

| {z }
=:B̂`

,

(39)

where we have approximated the sum over the R Kronecker products with a Kronecker product of
sums for each of the N per-input Jacobians, before applying the same type of approximation as usual
to the sum over the N data points. This approximation has been proposed in Tang et al. (2021) to
improve the efficiency of their proposed K-FAC variation (SKFAC) for convolutions by reducing the
spatial dimension, purely based on the empirical observation that it works well in practice. The idea
to approximate the Jacobians within the GGN with a Kronecker-product has also been proposed in the
context of invariance learning with deep neural networks via differentiable Laplace approximations
in Immer et al. (2022). We call the approximation in Equation (39) K-FAC-reduce and to highlight
the difference to K-FAC-expand, we can rewrite it as

22

K-FAC-reduce

ˆGGN
reduce

✓`
:=

"
1

NR2

NX

n=1

RX

r=1

a`,n,r

!
RX

r=1

a
|
`,n,r

!#

| {z }
=Â`

⌦

"
NX

n=1

RX

r=1

b`,n,r

!
⇤(f✓(Xn))

RX

r=1

b
|
`,n,r

!#

| {z }
=B̂`

.

(40)

As for K-FAC-expand, we want to show that this approximation can be exact in the case of a single
layer or a deep linear network and a Gaussian likelihood. First, we state an analogous condition to
Lemma 3.

Lemma 5 (Sufficient condition for exactness of K-FAC-reduce in the reduce setting). Let D`,n 2

RP`,out⇥C
be a constant matrix for layer ` and data point xn. Further, let C` 2 RP`,out⇥P`,out

be a constant matrix for layer `. If it holds for each n that b`,n,r = D`,n for all r 2 {1, . . . , R}

and b̂`,n⇤(f✓(xn))b̂
|
`,n

= C` for all n 2 {1, . . . , N}, then the K-FAC-reduce approximation in

Equation (10) is equal to the exact GGN of the `-th layer in the reduce setting.

Proof. We start with the first approximation and derive the exactness of this step under our assump-
tions. We have

NX

n=1

1

R

RX

r=1

a`,n,r ⌦

RX

r=1

b`,n,r

!
⇤(f✓(xn))

1

R

RX

r=1

a`,n,r ⌦

RX

r=1

b`,n,r

!|

=
NX

n=1

1

R

RX

r=1

a`,n,r ⌦RD`,n

!
⇤(f✓(xn))

1

R

RX

r=1

a`,n,r ⌦RD`,n

!|

=
NX

n=1

RX

r=1

a`,n,r ⌦ b`,n,r

!
⇤(f✓(xn))

RX

r=1

a`,n,r ⌦ b`,n,r

!|

,

(41)

where we have used the assumption that for each n, we have b`,n,r = D`,n for all r 2 {1, . . . , R}.
Now we consider the second approximation in Equation (39). Analogously, we have

1

N

NX

n=1

â`,nâ
|
`,n

!
⌦

NX

n=1

b̂`,n⇤(f✓(xn))b̂
|
`,n

!

=

1

N

NX

n=1

â`,nâ
|
`,n

!
⌦NC`

=
NX

n=1

�
â`,nâ

|
`,n

�
⌦

⇣
b̂`,n⇤(f✓(xn))b̂

|
`,n

⌘
,

(42)

where we have used that b̂`,n⇤(f✓(xn))b̂
|
`,n

= C` for all n 2 {1, . . . , N}.

Until now, we did not have to explicitly take the aggregation function z : RR⇥P`,out ! RP`,out

into account, since its Jacobian is simply subsumed in b`,n,r. Since we want to verify that the
approximation in the reduce case is also exact in the simple scenarios from Proposition 1 and
Proposition 2, we now have to also check if the Jacobian Js`,n,rz`,n with z`,n := z(S`,n) 2 RP`,out

is the same for all r 2 {1, . . . , R}, to make sure the first condition in Lemma 5 is fulfilled. Maybe

23

the simplest case where this holds is a scaled sum, i.e.

z(S`,n) = c

RX

r=1

s`,n,r

= cS
|
`,n

1R

=
�
1
|
R
⌦ cIP`,out

�
vec(S

|
`,n

)

=
�
1
|
R
⌦ cIP`,out

�
K(R,P`,out)vec(S`,n)

(43)

with c 2 R and the commutation matrix

K(R,P`,out) :=
RX

r=1

P`,outX

p=1

(eR,re
|
P`,out,p

)⌦ (eP`,out,pe
|
R,r

), (44)

where ei,j is the j-th canonical vector of dimension i. This is a linear function in vec(S`,n) and
we have Js`,n,rz`,n = cIP`,out for all r 2 {1, . . . , R}. In particular, when c = 1 the aggregation
function is a simple sum and when c = 1/R it is the mean. Notably, it is not sufficient for z to be
linear in vec(S`,n), because as soon as we have a weighted sum with weights cr 2 R and they are
not the same for all r 2 {1, . . . , R}, the Jacobians Js`,n,rz`,n will also not be the same anymore.
Both vision transformers and convolutional neural networks with average pooling use scaled sums as
the aggregation function (with c=1/R).

After clarifying the role of the aggregation function in the exactness of K-FAC-reduce, we can now
state a similar statement to Proposition 4.
Proposition 6 (Exactness of K-FAC-reduce for single linear layer in the reduce setting). For a

single linear layer, a Gaussian likelihood with p.d. covariance matrix ⌃ 2 RC⇥C
, and a scaled sum

as defined in Equation (43) as the aggregation function applied to the output of the linear function,

K-FAC-reduce is exact in the reduce setting.

Proof. We have ⇤(f✓(xn)) = ⌃�1 and b`,n,r =
�
Jz`,nf✓(xn)Js`,n,rz`,n

�|
= cIC for all r 2

{1, . . . , R} and n 2 {1, . . . , N} (P`,out = C for a single layer). Hence, b̂`,n⇤(f✓(xn))b̂
|
`,n

=
c
2
R

2IC⌃�1IC = c
2
R

2⌃�1 for all n 2 {1, . . . , N}. Therefore, the desired result follows from
Lemma 5.

Just as for K-FAC-expand, we can extend this result to deep linear networks.
Proposition 2 (Exactness of K-FAC-reduce for deep linear network in the reduce setting). For

layer ` of a deep linear network (Equation (8)), a Gaussian likelihood with p.d. covariance matrix

⌃2RC⇥C
, and a scaled sum aggregation function, K-FAC-reduce is exact in the reduce setting.

Proof. We have ⇤(f✓(xn)r) = ⌃�1 and b`,n,r =
�
Jz`,nf✓(xn)Js`,n,rz`,n

�|
= cW a

|
`

for all
r 2 {1, . . . , R} and n 2 {1, . . . , N}. Hence,

b̂`,n⇤(f✓(xn))b̂
|
`,n

= c
2
R

2W a
|

`
⌃�1W a

`

for all n 2 {1, . . . , N}. Therefore, the desired result follows from Lemma 5.

To summarise, the difference between the expand and the reduce setting is at what point the aggre-
gation over the additional weight-sharing dimension happens. If this dimension is not aggregated
before the per-example loss, i.e. if the loss can be expanded to N ·R instead of N terms, we call it
the expand setting. If the aggregation happens inside the model, we call it the reduce setting. Both
settings motivate an approximation each, K-FAC-expand and K-FAC-reduce. Moreover, we presented
simple cases where the approximations are exact. In Figure 1 and Figure 2 we verify this numerically,
and also show that using the inappropriate approximation results in an inexact computation.
Remark 1. In practice, however, both approximations can be applied in each of the two settings.

24

B.3 Examples of K-FAC for linear weight-sharing layers in the wild

B.3.1 K-FAC for self-attention

While we have mentioned (vision) transformers for translation and image classification as prototypical
examples for the expand and the reduce setting, we have mostly ignored how linear weight-sharing
layers are used within the architecture and how this affects the approximation quality of K-FAC-
expand and K-FAC-reduce. Linear weight-sharing layers are crucial for the self-attention mechanism
in Section 2.2. To gain some intuition for models using this type of attention mechanism, we look
at a network that only consists of one simplified variation of the self-attention mechanism used in
transformers (we ignore the softmax function, but also consider a linear projection of the output with
weight matrix W V), i.e.

f✓(Xn) = XnW
Q

|

| {z }
=:SQ,n

WKX
|
n| {z }

=:S|
K,n

XnW
V

|

| {z }
=:SV,n

. (45)

We can observe that it is no longer a linear function in the input Xn 2 RR⇥D and that we have three
linear weight-sharing layers involved in this operation. First, we consider the expand setting, i.e. the
output f✓(Xn) is not reduced before the loss is applied.

Simplified self-attention in the expand setting. Since we want to understand if K-FAC-expand
can be exact in this case, we first derive the Jacobians appearing in the derivation of K-FAC-expand
in Equation (27) for all three involved layers, i.e. JsQ,n,mf✓(Xn)r for the layer with weights WQ,
JsK,n,mf✓(Xn)r for the layer with weights WK , and JsV,n,mf✓(Xn)r for the layer with weights
W V .

We can simply write the r-th row of the output of the layer with the weight matrix WQ as a function
of sQ,n,r as

f✓(Xn)r = s
|
Q,n,r

S
|
K,n

SV,n. (46)
Therefore, we have

JsQ,n,rf✓(Xn)r = S
|
V,n

SK,n = b
|
Q,n,r

2 RC⇥PK,out , (47)
with C = PV,out and bQ,n,r,m = 0 for all m 6= r, which is the first assumption necessary for
Lemma 3 to hold. While bQ,n,r is not the same for all n 2 {1, . . . , N}, it is the same for all
r 2 {1, . . . , R} and hence, under the same assumptions as in Proposition 4, K-FAC-expand is exact
for the layer with weights WQ in the special case of a single data point, N = 1.

For the other two involved linear layers, we cannot express the r-th row of f✓(Xn) as a function
of the r-th row of SK/V,n, i.e. elements from all rows of SK/V,n contribute to the r-th row of the
output matrix. We can also see this by directly deriving JsK/V,n,m

f✓(Xn)r which will be generally
non-zero and dependent on r and m. We omit the explicit derivation by taking the partial derivatives
and directly state the results. For the second layer with weight matrix WK , we have

JsK,n,mf✓(Xn)r = sV,n,ms
|
Q,n,r

2 RC⇥PQ,out . (48)
Moreover, for the third layer with weight matrix W V , we have

JsV,n,mf✓(Xn)r = s
|
Q,n,r

sK,n,mIC 2 RC⇥C
. (49)

This means that the assumption of Lemma 3 that the R elements along the weight-sharing dimension
are independent does not hold, since the Jacobians depend on r and m. The approximation leads to
an inexact computation, even though only linear layers are involved and a Gaussian likelihood is used.
Similarly, we can inspect the corresponding reduce case.

Simplified self-attention in the reduce setting. Assuming we use a scaled sum z with factor c as the
aggregation function, we can further rewrite the Jacobians occurring in Equation (39) as

J✓`z(f✓(Xn)) =
RX

r=1

Js`,n,rz(f✓(Xn))J✓`s`,n,r

=
RX

r=1

a`,n,r ⌦ b`,n,r

=
RX

r=1

a`,n,r ⌦

c

RX

m=1

Js`,n,rf✓(Xn)m

!
,

(50)

25

where Js`,n,rf✓(Xn)m are the same Jacobians we have derived for the expand case. Since according
to Lemma 5 we need all b`,n,r to be the same for all r 2 {1, . . . , R} for the first approximation to be
exact under the assumptions of Proposition 6, K-FAC-reduce is only exact when N = 1 and only for
the layer with weights WQ – just as K-FAC-expand in the expand setting.

When we extend this scenario to a network consisting of L blocks as defined in Equation (45), the
above statements regarding the special case where K-FAC-expand and K-FAC-reduce are exact for the
layer with weights WQ only hold for the last block. While we omit an explicit derivation, intuitively,
this can be seen by the fact that we cannot rewrite the r-th row of this model’s output as a function of
only the r-th row of the layer’s output S`,Q,n of all layers with weights WQ

`
, besides for the layer in

the last block, i.e. the layer in the L-th block with weights WQ

L
.

This shows that even without explicit nonlinear activation functions, the self-attention mechanism in
transformer models breaks the two approximations. Hence, it is not inherently clear how useful it
is to consider the corresponding approximation in the expand and reduce setting. This is especially
relevant given that we know that the computational complexity of K-FAC-reduce is generally smaller
than of K-FAC-expand and given the similar downstream optimisation performance we report in
Section 4.

B.3.2 K-FAC for GNNs

Beyond transformers, we have introduced GNNs as a class of models that also use linear weight-
sharing layers. There are many types of GNNs and we will only explicitly cover two of them
here.

Related work: node classification with GCN. We first consider a GCN layer, described in Ap-
pendix A. This specification of K-FAC for GNNs has been previously derived for semi-supervised
node classification in Izadi et al. (2020) and we include it for completeness, since it is, to the best of
our knowledge, the only case where K-FAC has been applied to a GNN. The only difference to the
normal derivation of K-FAC is that the inputs ã`,n to the `-th layer for the node with index n now
depend on its neighbourhood N (n), since

ã`,n :=
X

j2N (n)

Ĉnja`,j 2 RP`,in . (51)

Using this notation, the definition of the K-FAC GGN for node classification is simply

GGN(✓`) =
NX

n=1

J✓`(X)
|
n
⇤(f✓(X)n)J✓`(X)n

⇡
⇥ 1
N

NX

n=1

ã`,nã
|
`,n

⇤

| {z }
=:Ã`

⌦
⇥ NX

n=1

b̃`,n⇤(f✓(X)n)b̃
|
`,n

⇤

| {z }
=:B̃`

,

(52)

where X 2 RN⇥D, b̃`,n := Js̃`,nf✓`(X)|
n

, and s̃`,n := W`ã`,n. Again, it is important to note
that we need to have access to the whole neighbourhood of xn to be able to write the n-th term of
the GGN, which is why the input to the model is the matrix X containing all nodes for each loss
term. Also, depending on the sparsity of Ĉ, i.e. the size of neighbourhoods, we might have multiple
identical terms. In the extreme case of all neighbourhoods being the same, e.g. in the case of a fully
connected graph, i.e. are values of Ĉ are the same, all terms of the GGN will be the same.

According to the first of the three cases in Section 3.1, we do not need to think in terms of the expand
and reduce settings here – as opposed to the case of the GraphNetwork we consider next, because we
aggregate over each node’s neighbourhood before the forward pass through a linear layer.

Graph classification with GraphNetwork. Now, we want to look at a more general architecture, an
instance of the GraphNetwork introduced in Battaglia et al. (2018) and described in Appendix A. It is
important to note that while the inputs and the GraphNetwork block structure look different from
our standard input and linear layer, this case can be treated the same. This architecture is therefore a
good didactic example of how to apply the presented framework of thinking about K-FAC for linear
weight-sharing layers to new model architectures. In contrast to the original description in Battaglia

26

et al. (2018), we already defined the inputs to a GraphNetwork block according to our definition of an
input that leads to weight-sharing, i.e. with an additional weight-sharing dimension of size R. This is
in fact the crucial step to be able to apply our framework in this setting. As noted in Appendix A, the
inputs cannot be trivially batched in this formulation. This is not an issue for our derivation, but it
requires special consideration in the implementation, which we will consider in Appendix B.4.

First, we note that we consider the task of graph classification. Hence, our loss has the same form
as Equation (36), which means that the weight-sharing dimensions have to be reduced at some
point during the forward pass and we are in the reduce setting. Notably, this is the setting of the
ogbg-molpcba workload of the AlgoPerf benchmark from the experiment in Section 4.2. Following
this line of reasoning, we would simply have to apply the corresponding K-FAC approximation. Since
the inputs take a more complex form than in our description of the reduce case, we still have to adopt
the notation from Appendix A to concretely write down the approximation.

To recap, the weight-sharing dimension of size Rn of graph XG

n
depends on the input graph itself

(indicated by the index n) and which update function within a GraphNetwork block we want to derive
K-FAC-reduce for. For �E this dimension is going to be Rn = N

E

n
, whereas it will be Rn = N

V

n

for �V . In the case of �u we do not have a weight-sharing dimension, as it has been reduced before
this layer is applied, and we can simply apply the regular K-FAC approximation. We can define the
inputs to layer ` of type �

E as

A`,n = concat(XE

n
,XV

n,rn
,XV

n,sn
, repeat

NE
n
(xu

n
)) 2 RN

E
n ⇥(DE+2DV +Du) (53)

and as
A`,n = concat(XV

n
, X̃E

n
, repeat

NV
n
(xu

n
)) 2 RN

V
n ⇥(DV +DE+Du) (54)

for �
V . Correspondingly, we have b`,n = JS`,nf✓(XG

n
)| 2 RN

E
n ⇥DE⇥C for �

E and b`,n =

JS`,nf✓(XG

n
)| 2 RN

V
n ⇥DV ⇥C , with S`,n = A`,nWE

|
`
2 RN

E
n ⇥DE and S`,n = A`,nW V

|
`
2

RN
V
n ⇥DV , respectively.

Using this notation, we can approximate the GGN for layer `, assuming its type is either �E or �V , as

GGN(✓`) =
NX

n=1

J✓`(XG

n
)
|
⇤(f✓(XG

n
))J✓`(XG

n
)

⇡

NX

n=1

"
RnX

r=1

1
p
Rn

a`,n,r

#

| {z }
=:â`,n

⌦

"
RnX

r=1

1
p
Rn

b`,n,r

#

| {z }
=:b̂`,n

⇤(f✓(XG

n
))

"
RnX

r=1

1
p
Rn

a`,n,r

#
⌦

"
RnX

r=1

1
p
Rn

b`,n,r

#|

⇡

"
1

N

NX

n=1

â`,nâ
|
`,n

#

| {z }
=:Â`

⌦

"
NX

n=1

b̂`,n⇤(f✓(XG

n
))b̂

|
`,n

#

| {z }
=:B̂`

,

(55)

analogously to Equation (39). However, there is one important difference: since Rn now depends on
the n-th data point, it makes a difference where we insert the scaling by 1/Rn, since Â` and/or B̂`

are now weighted sums. To avoid having one potentially non-uniformly weighted and one unweighted
sum, we choose to not just include the scaling by 1/Rn in â`,n as in Equation (39), or in b̂`,n. Instead,
to try to keep the overall scale and the weighting of the N terms balanced, we simply include a
scaling by 1/

p
Rn in both, â`,n and b̂`,n.

B.4 Practical Considerations

While we have discussed theoretically how to apply K-FAC to linear weight-sharing layers, we now
turn to implementation details and computational considerations that are crucial for the practical
application of the approximations.

Implementation details. There are multiple libraries that implement K-FAC for popular deep learning
frameworks like Jax (Bradbury et al., 2018) and PyTorch (Paszke et al., 2019), e.g. KFAC-JAX

27

1 # Check if there even is a weight-sharing dimension; if not, the Kronecker
2 # factors can directly be calculated.
3 if in_data.ndim == 3:
4 # Mini-batch size M, weight-sharing dimension R, feature dimension P`,in/out.
5 M, R, P_in = in_data.shape
6 P_out = out_grads.shape[2]
7 if approximation == 'expand':
8 # Flatten the weight-sharing dimension into the mini-batch dimension.
9 in_data = in_data.view(M*R, P_in) / math.sqrt(R)

10 out_grads = out_grads.view(M*R, P_out)
11 elif approximation == 'reduce':
12 # Reduce the weight-sharing dimension with mean and sum.
13 in_data = in_data.mean(dim=1)
14 out_grads = out_grads.sum(dim=1)
15 # Calculate Kronecker factors A`/Â` and B`/B̂`.
16 A = torch.matmul(in_data.T, in_data) / M
17 B = torch.matmul(out_grads.T, out_grads)

Listing 1: Illustration of K-FAC-expand and K-FAC-reduce with code. This piece of code
calculates the approximations on one mini-batch and for one layer. We receive the inputs to the layer,
in_data, from a forward hook and the gradients of the loss w.r.t. the outputs of the layer, out_grads,
from a backward hook. Here we assume that only one additional weight-sharing dimension exists and
that the first dimension is always the mini-batch dimension. Note that the dimensions of in_data
and out_grads are the same, independently of the setting we are in (c.f. Section 3.1). This illustrates
why we can choose to use either approximation, K-FAC-expand or K-FAC-reduce, in each setting.
The actual implementation in ASDL is very similar for torch.nn.Linear modules, the logic is just
separated into multiple functions and allows for multiple weight-sharing dimensions. However, the
adjustments for the GraphNetwork are more involved.

(Botev & Martens, 2022) for Jax and BackPACK (Dangel et al., 2020), ASDL (Osawa et al., 2023),
and KFAC-PyTorch (Pauloski et al., 2021) for PyTorch. We focus on the implementation of K-
FAC-expand and K-FAC-reduce within ASDL, which we also use for the experiments in Section 4.
K-FAC is implemented using forward and backward hooks, which allow us to get the inputs to a
specific layer and the gradients of the loss w.r.t. the layer outputs – which are the ingredients we
need for all K-FAC approximations. Notably, this requires that linear layers are implemented with
torch.nn.Linear instances, since otherwise, the implementation with hooks does not work. The
default implementation of multi-head attention in PyTorch does indeed not use the required linear
modules, so the implementation has to be adjusted to work with common K-FAC implementations
like ASDL. In contrast, other methods like Shampoo (Gupta et al., 2018) and Tensor Normal Training
(Ren & Goldfarb, 2021) are agnostic to the architecture. Assuming the implementation of the model is
appropriate, K-FAC-expand and K-FAC-reduce in their simplest form only require a minor adjustment
in the code base for regular K-FAC, which is presented in Listing 1.

However, if we wanted to use K-FAC-expand in the expand and K-FAC-reduce in the reduce setting,
we would need to find a way of automatically determining the setting we are in. For all models
considered here, i.e. the (vision) transformer and GNN, only one of the two settings applies to all
linear layers with weight-sharing. Hence, using a single additional forward pass, we could check if
any linear weight-sharing layers are used and what the shape of the model output is. From this, we
can deduce if the expand or the reduce case applies. As we mentioned before, this might not even be
desirable, as it is unclear if we should always use the approximation theoretically motivated by the
setting. Alternatively, a single flag set by the user can determine if K-FAC-expand or K-FAC-reduce
is applied to all linear weight-sharing layers.

This implementation obviously assumes that we even have an explicit weight-sharing dimension. In
the case of K-FAC-reduce for the GraphNetwork introduced in Appendix A, we have to adopt our
implementation due to the batching technique that is employed for graph inputs in practice. Since
each graph in a mini-batch M of size M might have a different weight-sharing dimension Rm,
i.e. the number of nodes and the number of edges of each graph, we cannot batch them trivially.
As a solution, the inputs for each graph as stated in Equation (53) and Equation (54) are simply
concatenated in the first dimension, which results in a dimension of size RM :=

P
M

m=1 Rm. To
apply K-FAC-expand here, we do not have to modify anything, besides scaling the approximation for

28

each mini-batch by 1/RM instead of 1/M .8 To apply K-FAC-reduce, we can use a scatter mean,
which aggregates tensor elements according to indices, to implement the mean (with the square
root scaling from Equation (55)) operation without having an explicit weight-sharing dimension.
Unfortunately, this creates two issues. First, we have to know that this adjustment to K-FAC is even
required for a specific layer since we cannot deduce it from the shape of the layer inputs. Second, the
scatter mean requires additional information, since we need to know to which graphs the nodes/edges
in the input belong. One approach to resolve these issues is to define a custom layer type for this type
of linear layer, which has an attribute containing the indices of all nodes/edges for each graph in the
batch. However, this requires changes to the model architecture implementation, because additional
attributes have to be set for the regular linear modules.

Besides the changes necessary for K-FAC-expand and K-FAC-reduce, we can use the same additional
algorithmic tools often used for optimisation with K-FAC. Typically, damping is used (Martens &
Grosse, 2015), i.e. a scalar is added to the diagonal of the two Kronecker factors A and B or the
diagonal of their product – the latter corresponds to adding the Hessian of an isotropic Gaussian
prior over the weights. Also, since we usually operate in the stochastic setting and only compute
the K-FAC approximation on mini-batches, sometimes an exponential moving average over the
Kronecker factors is used. However, in our experiments, we do not use such a moving average and
only compute K-FAC for a single mini-batch (besides for Figure 5, as mentioned in Appendix C.4)
and still reduce the update frequency of the K-FAC statistics and the preconditioner.

Computational considerations. Besides the implementation details, we also have to consider the
computational cost when deploying K-FAC approximations in practice. Here, we have to respect the
same constraints as with regular K-FAC. When we have a large output dimension C, it is expensive
or even unfeasible to propagate the C ⇥ C loss Hessian Hf✓`(yn, f✓(xn)) for each of the N data
points through the computation graph. Instead, we use the fact that we have

Ey⇠p(y|f✓(xn))[rf✓ log p(y|f✓(xn))rf✓ log p(y|f✓(xn))
|
] = Hf✓`(yn, f✓(xn)) (56)

and take S Monte Carlo (MC) samples from the model’s predictive distribution ys ⇠ p(y|f✓(xn).
Taking a single sample results in a rank-1 MC approximation of the true loss Hessian and only
requires the propagation of a single vector through the computation graph for each data point.

C Additional experimental details and results

C.1 MLCommons’ AlgoPerf benchmark for training algorithms

The goal of the AlgoPerf benchmark for training algorithms (Dahl et al., 2023) is to measure “train-
ing speedups due to algorithmic improvements” (MLCommons, 2022). Specifically, the benchmark
defines multiple workloads, where one workload is defined by the combination of a dataset, a neural
network model, a loss function, and a target performance defined by some evaluation metric. For
example, training a ViT on ImageNet using the cross-entropy loss until a target validation accuracy of
77.309% has been reached constitutes a workload. In the AlgoPerf benchmark, training algorithms
are compared on fixed hardware in terms of the wall-clock time they require to reach the fixed
validation target performance.

For our experiments, we use two of the workloads of the AlgoPerf benchmark as realistic deep
learning problems, to showcase the optimisation behaviour of our two K-FAC variations (Sections 4.2
and 4.3). Similar to the benchmark, we measure both the number of steps and the wall-clock time
necessary to reach the target validation metric. To put the training behaviour of K-FAC-expand
and K-FAC-reduce into perspective, we compare them to the target-setting run of the AlgoPerf
benchmark, denoted reference run in the experiments (Sections 4.2 and 4.3). To determine the
fixed validation target for each workload, four standard algorithms (AdamW, NAdamW, SGD with
Nesterov momentum (Nesterov), and SGD with heavy ball momentum) were each tuned with a
budget of 200 trials for every workload. The combination of algorithm and hyperparameters that
reached the highest validation performance within a fixed time was then run 20 times and the median
of the best achieved validation metric was set as the validation target. As our reference run, we use the
workload-specific, best-performing algorithm and hyperparameter combination. Note that this should

8As explained below Equation (55), we could also choose a different way of scaling here. We choose this
one as it enables a simple implementation in contrast to K-FAC-reduce.

29

Table 3: Results from Table 1 with standard errors over 10 epochs.

K-FAC Batch size
128 256 512 1024 2048

expand 0.24± 0.01 0.38± 0.02 0.75± 0.03 1.36± 0.05 OOM

reduce 0.17± 0.01 0.24± 0.02 0.43± 0.03 0.63± 0.04 1.17± 0.08

not be confused with the baseline algorithms in the AlgoPerf benchmark, since the target-setting
runs are tuned for the best possible validation performance on each workload.

K-FAC is run with most of the hyperparameters of the reference run and a tuning budget of 15 runs for
tuning the learning rate and damping. This means that most hyperparameters are not directly tuned for
K-FAC. To enable a fairer comparison, we also use the same additional budget for tuning the learning
rate of the reference run, the same learning rate schedule, and tuning goal as K-FAC. However, none
of these runs reaches the validation metric target, which is why the reference runs correspond to the
original target-setting runs. Despite this, the experiments presented in Sections 4.2 and 4.3 are not

meant to demonstrate that K-FAC is a superior training algorithm. To provide actual evidence for this
claim we would have to run a valid and optimised submission on the entire AlgoPerf benchmark or
a benchmark of comparable rigour. Nevertheless, using the well-tuned reference run allows us to put
K-FAC’s training performance into perspective.

The two AlgoPerf workloads used in this paper are:

Graph neural network on ogbg-molpcba. The workload consists of a (binary) cross-entropy loss,
the GraphNetwork instance described in Appendix A, and the ogbg-molpcba molecular property
prediction dataset (Hu et al., 2020). Each molecule is represented as a graph, where atoms are nodes
and edges are chemical bonds. The task is to predict whether or not a molecule has certain chemical
properties; there are 128 different properties. For training, we have about 350k examples and almost
44k for validation and testing. The validation target mean average precision (mAP) determined by
the target-setting runs is 0.28098 and the best performing reference run algorithm is Nesterov.

Vision transformer on ImageNet. This workload also uses the cross-entropy loss, a vision trans-
former architecture, and the LSVRC-2012 ImageNet (short: ImageNet) image dataset (Russakovsky
et al., 2015). The goal is to classify images into one of 1000 classes. There are about 1.3 million
training, 50k validation, and 10k test examples. The validation target accuracy determined by the
target-setting runs is 0.77309 and the best performing reference run algorithm is NAdamW.

C.2 Update step speed with K-FAC-expand and K-FAC-reduce

Table 4: Timing of K-FAC GGN approx-
imation for GPT-2 on full DART dataset.

K-FAC Absolute time [min] # Relative time [%] #

expand 9.55± 0.13 100
reduce 6.68± 0.04 70

We provide the full results of the update step timing exper-
iment with standard errors over 10 epochs in Table 3. The
model architecture, optimiser, and data setup are exactly
the same as described in Appendix C.5. The full results of
the GPT-2 (nanoGPT) timing experiment are presented in
Table 4; the mean and standard error are computed based
on three runs.

C.3 Graph neural network on ogbg-molpcba

For this workload, we use a training batch size of 512 and a single NVIDIA V100 32GB GPU for
each run. The reference run algorithm (Nesterov) uses a learning rate of 2.4917728606918423, �1

equal to 0.9449369031171744, weight decay set to 1.285 964 054 102 592 8e�7, and linear warmup
for 3,000 steps and a polynomial schedule with a decay steps factor of 0.861509027839639 and
an end factor of 1e�3. The two K-FAC variations use the exact same hyperparameters, but the
warmup and expected number of steps (60,000) are multiplied by 0.75 and the learning rate and the
damping are tuned via random search. The search space for the learning rate is log uniform values
in [0.1, 10] and for the damping in [1e�3, 1]. We choose the hyperparameters of the run that first
reaches the validation target. This setting is a learning rate of 9.96871902194967 and damping of
0.7881965339190345 for K-FAC-expand and a learning rate of 0.5885756514016359 and damping

30

of 0.0579230193904011 for K-FAC-reduce. We then repeated each run five times. The Kronecker
factors and the preconditioner are computed every 10 iterations and we use a single sample MC
approximation of the Fisher, as explained in Appendix B.4.

C.4 Vision transformer on ImageNet

We use a training batch size of 1,024, ✏ = 1e�8 for NAdamW, and 4⇥ NVIDIA V100 32 GPUs
for all runs on this workload. The reference run algorithm (NAdamW) is using a learning rate of
0.0008445074561975979, �1 equal to 0.8895758153482813, �2 to 0.9978504782314613, weight
decay set to 0.08135402759553023, linear warmup for 6999 steps, and a cosine decay schedule.
The two K-FAC variations use the exact same hyperparameters, but the warmup and expected
number of steps (140,000) is multiplied by 0.75 and the learning rate and the damping are tuned
via random search. The search space for the learning rate and the damping is log uniform values in
[1e�4, 1e�2]. We choose the hyperparameters of the run that first reaches the validation target. For
both K-FAC variations, the best setting is a learning rate of 0.0012662938340704357 and damping
of 0.00016524019235426572. The Kronecker factors and the preconditioner are computed every 50
iterations and we use a single sample MC approximation of the Fisher, as explained in Appendix B.4.

We also conduct a run where we update the Kronecker factors every step, use an exponential moving
average with a factor (ema_decay in ASDL) equal to �2, update the preconditioner every 10 steps,
set the damping to 1e�5, and use all the other hyperparameters of a reference run setting, including
the learning rate. The reference run setting corresponds to an earlier target-setting run result from
the AlgoPerf repository and uses a learning rate of about 2e�3, �1 = 0.7132,�2 = 0.9982, and
the weight decay is set to 0.026595. Moreover, it clips the gradients to keep their norm below 1.
As before, we also multiply the number of warmup and expected number of steps by 0.75. Due
to the high update frequency of the Kronecker factors, we can see the significant wall-clock time
difference between K-FAC-expand and K-FAC-reduce in Figure 5. Both variations are similar in
terms of steps to the target, K-FAC-expand takes about 92.6k and K-FAC-reduce takes about 93.7k
steps, but whereas K-FAC-expand takes about 50 hours, K-FAC-reduce reaches the target after about
37 hours. Note, that both variations are still significantly slower than the NAdamW reference run
which only takes about 25 hours, but 117.4k steps.

C.5 K-FAC for automatic hyperparameter selection via marginal likelihood optimisation

K-FAC is used for the Hessian approximation within the Laplace approximation by first accumulating
it over the entire data set and using the eigendecomposition of Kronecker factors as in Immer et al.
(2021). This is done every five epochs during training to update the weight decay parameters per layer
of the neural network. Therefore, the computation time of K-FAC makes a significant contribution
to the overall training time: reduce takes on average 75% of the overall time of expand, a result of
reducing the wall-clock time of a single marginal likelihood update step by about 50%, as shown in
Table 2. Here, we provide additional experimental details and the full table with standard errors.

For the marginal likelihood optimisation experiment, we use the same settings as Daxberger et al.
(2021), i.e., a Wide ResNet 16-4 with Fixup initialisation and parameters instead of batch normalisa-
tion (Zagoruyko & Komodakis, 2016; Zhang et al., 2019b). We use a batch size of 128, an initial
learning rate of 0.1 cosine decayed to 1e�6 and weight decay of 5e�3 training for 100 epochs. We
use standard data augmentation with horizontal flips and random crops. Results are averaged over
three seeds and the timings are obtained running all runs on a single NVIDIA A100 GPU and locally
measuring the hyperparameter update time. The full results with standard errors are presented in
Table 5.

31

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

�

Reference (NAdamW)
K-FAC-expand
K-FAC-reduce
Training
Validation
Validation target

20 40 60 80 100 120

Step ⇥103

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y
�

10 20 30 40 50

Wall-clock time [hours]

Figure 5: Training results for a vision transformer on ImageNet. This is similar to Figure 4, but
the K-FAC statistics are updated every step and different hyperparameters are used. Due to K-FAC’s
overhead, the wall-clock time is not reduced in this setting. Moreover, the discrepancy in speed
between K-FAC-expand and K-FAC-reduce becomes apparent.

Table 5: Results from Table 2 with standard errors over three random seeds. The update time is the
average time per full K-FAC Laplace approximation to the marginal likelihood, which requires a full
data set pass with computation and eigendecomposition of the Kronecker factors.

K-FAC Data Augmentation NLL # Accuracy [%] " Update Time [s] #

expand 7 0.422 ± 0.013 88.89 ± 0.24 196 ± 22
3 0.244 ± 0.004 92.52 ± 0.12

reduce 7 0.703 ± 0.012 86.71 ± 0.13 99 ± 23
3 0.352 ± 0.008 93.50 ± 0.06

32

	Introduction
	Background
	Second-order optimisation in deep learning
	Linear weight-sharing layers
	The generalised Gauss–Newton and the Fisher matrix
	Kronecker-Factored Approximate Curvature

	K-FAC for linear weight-sharing layers
	The expand and reduce settings
	K-FAC-expand
	K-FAC-reduce

	Experiments
	Update step speed with K-FAC-expand and K-FAC-reduce
	Graph neural network on ogbg-molpcba
	Vision transformer on ImageNet
	K-FAC for automatic hyperparameter selection via marginal likelihood optimisation

	Discussion and conclusion
	Weight-sharing in graph neural networks
	Extended derivation and discussion of K-FAC-expand and K-FAC-reduce
	Background: K-FAC for regular linear layers
	K-FAC for linear weight-sharing layers
	The expand setting and K-FAC-expand
	The reduce setting and K-FAC-reduce

	Examples of K-FAC for linear weight-sharing layers in the wild
	K-FAC for self-attention
	K-FAC for GNNs

	Practical Considerations

	Additional experimental details and results
	MLCommons' AlgoPerf benchmark for training algorithms
	Update step speed with K-FAC-expand and K-FAC-reduce
	Graph neural network on ogbg-molpcba
	Vision transformer on ImageNet
	K-FAC for automatic hyperparameter selection via marginal likelihood optimisation

