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ASDL: A Unified Interface for Gradient Preconditioning in PyTorch

Gradient Preconditioning in Deep Learning

Case Studies with ASDL“KF-io”: input-output Kronecker-factored. “KF-dim": dimension-wise Kronecker-factored. “RR”: rank reduction. “SMW”: Sherman-Morrison-
Woodbury formula. “L”: local = one mini-batch at one time step. “G”: global = multiple mini-batches at multiple time steps. “iter”: iterative.
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Preconditioned gradient

GradientPreconditioning matrix

Gradient-based optimization

Parameter

Loss sharpness
• Hessian
• Absolute Hessian
• BFGS Hessian
• Gauss-Newton matrix
Gradient covariance
• Fisher information matrix
• FIM est. by MC samples
Gradient 2nd moment
• Empirical Fisher
• Batched empirical Fisher
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3. Solver for "# ≈ !!"#
Local iterative (matrix-free)
• Conjugate gradient
• Krylov subspace
• Neumann series
Global iterative
• BFGS
• Learning by SGD
Local/global direct
• Cholesky inverse/solve
• Eigendecomposition
• SMW formula
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2. Representation of !
Full
• Dense/sparse/low-rank
• Matrix-free/Gram
Layer-wise (block-diagonal)
• Dense/sparse/low-rank
• Gram/Kronecker-factored
Unit-wise (block-diagonal)
• Dense/sparse/low-rank
• Gram
Element-wise (diagonal)
• Dense/sparse
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Background & problem: A diverse set of gradient preconditioning methods

✘ Each requires algorithm-specific and complex implementations.
✘ The compute performance, prediction accuracy, and feasibility (time and memory) 

are highly dependent on neural network architectures and specific training settings. 

ü ASDL offers various implementations and a unified 
interface for gradient preconditioning in PyTorch (an 
automatic-differentiation library). 

ü ASDL enables an easy integration of gradient 
preconditioning into a training with procedures that 
are algorithm-independent and as simple (same 
logical structure) as the standard training pipeline 
(see the figure on the right.)

ü ASDL works with arbitrary deep neural networks
defined with basic building blocks (e.g., nn.Linear, 
nn.Conv2d, nn.BatchNormNd, nn.LayerNorm, 
nn.Embedding) in PyTorch.

ASDL enables flexible switching and structured 
comparison of gradient preconditioning methods in DL
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★: methods to be analyzed in this study

The ratio of peak memory (>= 1) (top) and throughput [image/s] (<= 1) (middle, bottom) of gradient 
preconditioning methods compared to SGD with various mini-batch sizes  B and matrix (C and P) update intervals 
T, measured on a NVIDIA A100 GPU. For the middle row, T=1. For the bottom row, B=128. Missing points are due 
to the GPU memory limitation.

Sensitivity of the mini-batch size and matrix update interval to the test accuracy (the best value 
among different learning rates for each pair is shown). The type of the solver (“Global” or “Local”) is 
indicated at the top of each column. For SENG at ViT-tiny, the plot is not shown because it is not feasible 
with large mini-batch sizes and only B=32 results are available. 

The test accuracy for models achieving the best validation accuracy. For each task, 
the best accuracy is bolded. “w”: width. For ResNet18, the results with 20 and 100 
epochs are shown (the number of epochs is fixed for the others). SENG consumes 
lots of memory and is infeasible with MLP-Mixer-base. 

Unified interface for gradient preconditioning in PyTorch. XXXGradientMaker (“XXX”: algorithm name), 
offered by ASDL, hides algorithm-specific and complex operations for Pg in a unified way. For training without 
gradient preconditioning, GradientMaker computes g with the same interface (i.e., no need to switch scripts). 

• SENG achieves a high throughput w/ a low memory cost w/ a small 
mini-batch (and vice versa). For PSGD, K-BFGS, K-FAC, and 
Shampoo, memory and throughput ratios improve w/ a large mini-
batch (Shampoo is particularly slow for most networks otherwise). 

• Increasing the matrix update interval significantly improves the 
throughput, but the degree of speedup depends on methods.

• “Global” methods (PSGD, K-BFGS, Shampoo) tend to perform 
better w/ a smaller mini-batch size while a “Local” one (K-FAC) 
tends to perform better w/ a larger mini-batch size.

• The best test accuracy for each task is achieved by one of the 
gradient preconditioning methods, but the best performing method 
depends on the task.
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Automatic Second-order Differentiation Library (ASDL)
Our solution: A unified interface by ASDL

v Key observations

How to deal with nonconvexity,  stochasticity, and high dimensionality in Deep Learning?

https://github.com/kazukiosawa/asdfghjkl

