
!!"# ← !! − η%!&!

ASDL: A Unified Interface for Gradient Preconditioning in PyTorch

Gradient Preconditioning in Deep Learning

Case Studies with ASDL“KF-io”: input-output Kronecker-factored. “KF-dim": dimension-wise Kronecker-factored. “RR”: rank reduction. “SMW”: Sherman-Morrison-
Woodbury formula. “L”: local = one mini-batch at one time step. “G”: global = multiple mini-batches at multiple time steps. “iter”: iterative.

Kazuki Osawa1, Satoki Ishikawa2, Rio Yokota2, Shigang Li3, and Torsten Hoefler1

1: ETH Zurich (Scalable Parallel Computing Lab), 2: Tokyo Institute of Technology, 3: Beijing University of Posts and Telecommunications

https://github.com/kazukiosawa/asdl

Preconditioned gradient

GradientPreconditioning matrix

Gradient-based optimization

Parameter

Loss sharpness
• Hessian
• Absolute Hessian
• BFGS Hessian
• Gauss-Newton matrix
Gradient covariance
• Fisher information matrix
• FIM est. by MC samples
Gradient 2nd moment
• Empirical Fisher
• Batched empirical Fisher

1. Curvature matrix !

!

"

!|"|#!#$%&
$

%"'()
%"*(+ %"*(+#,-).

3. Solver for "# ≈ !!"#
Local iterative (matrix-free)
• Conjugate gradient
• Krylov subspace
• Neumann series
Global iterative
• BFGS
• Learning by SGD
Local/global direct
• Cholesky inverse/solve
• Eigendecomposition
• SMW formula

−1

=

2 + 1 2
←

2. Representation of !
Full
• Dense/sparse/low-rank
• Matrix-free/Gram
Layer-wise (block-diagonal)
• Dense/sparse/low-rank
• Gram/Kronecker-factored
Unit-wise (block-diagonal)
• Dense/sparse/low-rank
• Gram
Element-wise (diagonal)
• Dense/sparse

−1 −1

Background & problem: A diverse set of gradient preconditioning methods

✘ Each requires algorithm-specific and complex implementations.
✘ The compute performance, prediction accuracy, and feasibility (time and memory)

are highly dependent on neural network architectures and specific training settings.

ü ASDL offers various implementations and a unified
interface for gradient preconditioning in PyTorch (an
automatic-differentiation library).

ü ASDL enables an easy integration of gradient
preconditioning into a training with procedures that
are algorithm-independent and as simple (same
logical structure) as the standard training pipeline
(see the figure on the right.)

ü ASDL works with arbitrary deep neural networks
defined with basic building blocks (e.g., nn.Linear,
nn.Conv2d, nn.BatchNormNd, nn.LayerNorm,
nn.Embedding) in PyTorch.

ASDL enables flexible switching and structured
comparison of gradient preconditioning methods in DL

★
★
★

★
★

★: methods to be analyzed in this study

The ratio of peak memory (>= 1) (top) and throughput [image/s] (<= 1) (middle, bottom) of gradient
preconditioning methods compared to SGD with various mini-batch sizes B and matrix (C and P) update intervals
T, measured on a NVIDIA A100 GPU. For the middle row, T=1. For the bottom row, B=128. Missing points are due
to the GPU memory limitation.

Sensitivity of the mini-batch size and matrix update interval to the test accuracy (the best value
among different learning rates for each pair is shown). The type of the solver (“Global” or “Local”) is
indicated at the top of each column. For SENG at ViT-tiny, the plot is not shown because it is not feasible
with large mini-batch sizes and only B=32 results are available.

The test accuracy for models achieving the best validation accuracy. For each task,
the best accuracy is bolded. “w”: width. For ResNet18, the results with 20 and 100
epochs are shown (the number of epochs is fixed for the others). SENG consumes
lots of memory and is infeasible with MLP-Mixer-base.

Unified interface for gradient preconditioning in PyTorch. XXXGradientMaker (“XXX”: algorithm name),
offered by ASDL, hides algorithm-specific and complex operations for Pg in a unified way. For training without
gradient preconditioning, GradientMaker computes g with the same interface (i.e., no need to switch scripts).

• SENG achieves a high throughput w/ a low memory cost w/ a small
mini-batch (and vice versa). For PSGD, K-BFGS, K-FAC, and
Shampoo, memory and throughput ratios improve w/ a large mini-
batch (Shampoo is particularly slow for most networks otherwise).

• Increasing the matrix update interval significantly improves the
throughput, but the degree of speedup depends on methods.

• “Global” methods (PSGD, K-BFGS, Shampoo) tend to perform
better w/ a smaller mini-batch size while a “Local” one (K-FAC)
tends to perform better w/ a larger mini-batch size.

• The best test accuracy for each task is achieved by one of the
gradient preconditioning methods, but the best performing method
depends on the task.

①

①

②

③

②

③

④

④

Automatic Second-order Differentiation Library (ASDL)
Our solution: A unified interface by ASDL

v Key observations

How to deal with nonconvexity, stochasticity, and high dimensionality in Deep Learning?

https://github.com/kazukiosawa/asdfghjkl

