
Architecture Matters: Uncovering Implicit
Mechanisms in Graph Contrastive Learning

Xiaojun Guo1∗ Yifei Wang2∗ Zeming Wei2 Yisen Wang1, 3†
1National Key Lab of General Artificial Intelligence,

School of Intelligence Science and Technology, Peking University
2School of Mathematical Sciences, Peking University
3Institute for Artificial Intelligence, Peking University

Abstract

With the prosperity of contrastive learning for visual representation learning (VCL),
it is also adapted to the graph domain and yields promising performance. However,
through a systematic study of various graph contrastive learning (GCL) methods,
we observe that some common phenomena among existing GCL methods that are
quite different from the original VCL methods, including 1) positive samples are
not a must for GCL; 2) negative samples are not necessary for graph classification,
neither for node classification when adopting specific normalization modules; 3)
data augmentations have much less influence on GCL, as simple domain-agnostic
augmentations (e.g., Gaussian noise) can also attain fairly good performance.
By uncovering how the implicit inductive bias of GNNs works in contrastive
learning, we theoretically provide insights into the above intriguing properties of
GCL. Rather than directly porting existing VCL methods to GCL, we advocate
for more attention toward the unique architecture of graph learning and consider
its implicit influence when designing GCL methods. Code is available at https:
//github.com/PKU-ML/ArchitectureMattersGCL.

1 Introduction

Over the past few years, Self-Supervised Learning (SSL) has emerged as a promising approach
towards utilizing abundant real-world data without costly human-annotated information [34, 9, 54, 35].
Among various SSL techniques, contrastive learning (CL) has established itself as the avant-garde
framework for self-supervised visual representation learning [5]. By pulling similar samples near
and pushing dissimilar samples far apart, contrastive learning is able to learn semantically expressive
representations and achieves huge success on multiple downstream tasks [5, 17, 4].

Inspired by the success of contrastive learning in the visual domain, contrastive learning is also
extensively explored on graph data and achieves competitive performance to supervised ones [40, 26,
65]. Despite technical varieties, most graph contrastive learning (GCL) methods share the same high-
level skeleton as visual contrastive learning (VCL). Generally speaking, GCL applies augmentations to
generate different views of the original graph, and learn node or graph representations by contrasting
positive and negative data pairs. Though some works argue that GCL requires domain-specific
designs for graph [29, 59, 10], the design of GCL generally obeys the same paradigm as VCL with
three key components: data augmentations, positive pairs for feature alignment, and negative pairs
for feature uniformity.

∗Equal Contribution.
†Corresponding Author: Yisen Wang (yisen.wang@pku.edu.cn)

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/PKU-ML/ArchitectureMattersGCL
https://github.com/PKU-ML/ArchitectureMattersGCL

In this paper, we challenge the commonly held beliefs regarding GCL by revealing its distinct
characteristics in comparison to VCL. Specifically, we perform a systematic study with a wide range
of representative GCL methods on well-known benchmarks and find three intriguing properties: 1)
for the positive pair part, we demonstrate that GCL can achieve competitive performance without
adopting any positive pairs. This finding stands in stark contrast to VCL, which dramatically
fails in the absence of positive samples. 2) for the negative pair part, we observe that for the
graph classification task, GCL performs well without any special designs in the no-negative setting,
which is a notable departure from VCL. 3) for the data augmentation part, for VCL, elaborate data
augmentations are indispensable in boosting performance [5, 55]. However, we find that GCL is
relatively robust under vanilla domain-agnostic data augmentations (e.g., random Gaussian noise).

To explain these intriguing properties of GCL, we delve deep into the model architecture, and uncover
the interesting interplay between model components and graph contrastive objectives. First, we
shed light on the implicit regularization mechanism of graph convolution in GCL. As is known,
graph convolution encourages neighbor nodes to have similar features during propagation. We
rigorously show that graph convolution implicitly minimizes a neighbor-induced alignment loss,
which reveals its complementary relationship with the learning objective and elucidates the positive-
free GCL. Second, we highlight the role of the projection head in GCL without negative samples or
any specific designs, where we find for graph classification, the projection head implicitly selects a
low-rank feature subspace to satisfy the loss. Third, for the node classification, by incorporating a
normalization layer capable of driving nearby node features apart, we show that, without uniformity
loss, a GCN encoder alone can prevent features from collapsing to a single point. We theoretically
characterize this by connecting this normalization layer with a neighbor-induced uniformity loss.

These intriguing distinctive properties of GCL reveal that the design of contrastive learning can
be very domain-specific. Importantly, as also shown in previous works [48, 37], the contrastive
algorithm has an implicit interaction with the architecture. Therefore, experiences obtained from one
domain (e.g., images) should not be directly considered universal. Instead, when designing graph
self-supervised learning methods, we should consider the unique properties of graphs and graph-based
models. We hope that our findings could inspire a better understanding of graph contrastive learning
and pave the way for new approaches to self-supervised learning on graphs.

We summarize our main contributions below:

• We perform comprehensive evaluations of popular GCL methods across various benchmarks,
and find intriguing and general properties of GCL compared with VCL: 1) GCL works
without positive samples; 2) GCL works without negative samples on graph classification
task; 3) GCL shows less dependence on delicately designed augmentations, where random
Gaussian noise even works.

• We reveal the reasons behind the intriguing properties of GCL by theoretically uncovering the
interplay between contrastive learning objectives and model architectures: 1) We shed light
on the implicit regularization mechanism of graph convolution by establishing its connection
with a neighbor-induced alignment objective; 2) We show the collapse-preventing effect of
ContraNorm in the no-negative setting by theoretically characterizing its connection with a
neighbor-induced uniformity loss.

• Our findings appeal to a re-examination of the real effectiveness of each component in GCL,
and provide new insights for designing graph-specific self-supervised learning.

2 Related Work

Contrastive Learning. Contrastive learning has attracted intensive attention in self-supervised
learning. Its primary objective is to learn a space where similar pairs are closely clustered while
dissimilar pairs are far apart. The introduction of Information Noise Contrastive Estimation (InfoNCE)
[32] propels contrastive learning to a new climax in the vision domain. Methods such as SimCLR [5]
have achieved performance comparable to supervised methods on vision tasks by leveraging stronger
augmentations, larger batch size, and a non-linear projection head. MoCo [17] employs a dynamic
queue and a moving-averaged encoder to generate more negative samples. The heavy computational
burden imposed by a large number of negative pairs prompts the search for alternatives in contrastive
learning. BYOL [11] addresses this by enforcing diversity in representations through an asymmetric

2

architecture and stop-gradient techniques. Barlow-Twins [69] proposes a feature regularization
method that maximizes agreements between different views of a sample while eliminating redundancy.
On the understanding of contrastive learning, Wang and Isola [53] highlight alignment and uniformity
as key properties of contrastive loss, where alignment refers to the closeness of positive pairs and
uniformity pertains to the uniform distribution of normalized features on the hypersphere. Wang
et al. [56] establish the relationship between contrastive learning and graph neural networks. Zhuo
et al. [80] analyze one kind of contrastive learning without negative samples like BYOL from the
perspective of rank difference. Zhang et al. [72] reveal the connection between contrastive learning
and masked image modeling. There are also other works studying how extra information helps
contrastive learning [7, 73].

Graph Contrastive Learning. Stimulated by the success of contrastive learning on images, assorted
contrastive attempts are applied to graphs. Motivated by Deep InfoMax (DIM) [19], DGI [51]
learns by maximizing mutual information between node representations and corresponding high-level
summaries of graphs. InfoGraph [42] adopts the DIM principle on the graph classification task.
Inspired by SimCLR, GRACE [77] maximizes the agreement of corresponding node representations
in two augmented views for a graph. Similarly, GraphCL [66] learns graph-level representations by
maximizing the global representations of two views for a graph. Building upon these pioneer efforts,
a plethora of GCL methods have been proposed recently [59, 30, 10, 45, 79]. Inspired by the sparsest
cut problem, SCE [74] introduces a Laplacian smoothing trick and then proposes a model without
positive samples but only using negative samples for training. It is noted that SCE adopts a specific
design of the backbone network and learning objectives (details in Appendix A.2). Different from
the above methods, our work does not focus on designing a specific graph contrastive method but
generally discusses whether components like positive samples and negative samples are needed in
the context of graph contrastive learning.

To relieve the learning from negative samples, some methods are also been proposed. Borrowing
the idea of BYOL, BGRL [46] scales up graph contrastive learning to large-scale datasets. Along
another line, Bielak et al. [2], Zhang et al. [71] add feature regularization objectives to make the cross-
correlation matrix between two views close to an identity matrix, ensuring the two representations
are distinguishable. However, these works are all proposed as a specific design that can not be
straightforwardly transferred to other GCL methods.

In GCL, augmentations have also emerged as a subject of intensive research. Basic augmentations
depend on the node features and topology information, e.g., node feature masking, edge perturbation,
and subgraph sampling. Existing methods mostly adopt an empirical combination of basic graph
augmentations [77, 66], which is found to benefit more than augmentation of a single type [66].
Adaptive selections of augmentations with learnable strategies have also been proposed [43, 15, 30,
68]. Moreover, some works infuse domain knowledge in finding proper augmentations [44, 41], or
design advanced augmentations from the spectral perspective [10, 75, 28, 29]. There are also works
identifying limitations in existing task-irrelevant graph augmentations, and expect better practices
in augmentations considering the graph-domain knowledge [47, 48, 52]. However, our works are
not intended to design stronger data augmentations, but we go another way that finding simple
augmentations like random Gaussian noise also work on real-world graph datasets in GCL, while it
causes a steep performance drop in VCL.

Inductive Bias of Architecture to Contrastive Learning. For the inductive bias of architecture,
Saunshi et al. [37] proposes a general theoretical framework showing the importance of architecture
inductive bias to standard contrastive learning. Trivedi et al. [48] presents comparable performances
between GCL and untrained GCNs on some relatively simple benchmarks, showing the existence of
inductive bias of GCL. In contrast, our work firstly uncovers what exactly the inductive bias of GNNs
is by exploring the dynamic interplay between the GNN architecture and the contrastive optimization
objective during training.

3 Preliminaries

Let G = (V, E) be a graph with n nodes, where V and E are the node set and edge set. We denote
X ∈ Rn×h as the node attribute matrix with input dimension h and A ∈ Rn×n as the adjacency
matrix. Given augmentation functions τ1, τ2 ∈ Γ, where Γ is the set of all possible augmentations
defined on graphs, GCL generates two augmented views G̃1 = τ1(G) and G̃2 = τ2(G). These

3

augmented views are then embedded into representations via an encoder f , which is often followed by
a projection head g. We denote the backbone features output by the encoder as H = f(X) ∈ Rn×m,
and the projection output as Z = g(H) ∈ Rn×d, where the dimension d is often smaller than m.
During the evaluation, the projection head is removed and only H is used for downstream tasks. For
graph-level tasks, a global representation can be further obtained by applying a pooling operation r.
The aim of GCL is to learn neural networks that embed a graph into representations by maximizing
the representation consistency between different views of the input graph.

For the training objective, the InfoNCE loss [32] is widely used in GCL. Given an anchor view
u, which can be a node representation u = g(f(G̃))i or the global representation of a graph
u = r(g(f(G̃))), we denote its corresponding positive pair as v. Then, the InfoNCE loss of u is
defined as

LInfoNCE(u) = − log
exp(s(u,v)/t)∑

q∈Nneg
exp(s(u,q)/t)

, (1)

where Nneg is the set comprising negative samples of u, s(·, ·) denotes the cosine similarity, and t is
the temperature scale. The InfoNCE loss can be decoupled into two non-overlapping parts, each of
which includes only positives or negatives, named as alignment loss and uniformity loss [53]:

Lalign(u) = −s(u,v)/t, Luniform(u) = log
∑

q∈Nneg

exp(s(u,q)/t). (2)

4 How GCL Works without Positive Samples

In this section, we investigate intriguing phenomena of GCL in the absence of positive samples,
which are greatly different from the common understanding and practice in VCL. Specifically, we find
that positive samples are not necessary for GCL. We highlight the importance of graph convolution
in such discrepancy and provide theoretical insights for explaining the success of positive-free GCL.
To ensure the validity of our conclusion, we choose seven highly cited GCL methods and evaluate
on well-known benchmarks for both node classification and graph classification tasks. Following
the convention of GCL, we use the linear-probing protocol for evaluation. We also report the results
of the fine-tuning protocol in Appendix K. More details about the adopted methods, experimental
settings, and benchmarks can be found in Appendix A. The proof of theorems is attached to Appendix
F.

4.1 Positive Samples Are NOT a Must in GCL

Upon examining existing approaches like SimCLR [5] and MoCo [17], it becomes evident that posi-
tive samples play a vital role in VCL. By maximizing the agreement between positive samples, the neu-
ral networks can effectively learn semantic information relevant to downstream tasks [55]. It is widely

Table 1: Linear probing accuracy (%)
of VCL with SimCLR on CIFAR-10:
InfoNCE loss, uniformity loss (no posi-
tives), alignment loss (no negatives) and
no training (random initialization).

Loss Accuracy (%)

NO Training 27.20 ± 0.9
InfoNCE 83.51 ± 0.3

Uniformity 27.51 ± 0.5
Alignment 29.67 ± 0.8

recognized that without this alignment effect, learned rep-
resentations may lose meaning and incur poor performance
[53, 55]. To illustrate this, we conduct experiments on the
CIFAR-10 dataset [25], comparing the InfoNCE loss (in-
cluding positive samples) and the uniformity loss (exclud-
ing positive samples). As shown in Table 1, optimizing only
the uniformity loss significantly degrades performance.

Considering the practice in VCL, one would naturally as-
sume that positive samples are equally important and nec-
essary in GCL. However, we unexpectedly find that many
existing GCL methods achieve decent performance even
without using any positive pairs. To demonstrate this, we
conduct comprehensive experiments on both node classi-
fication and graph classification tasks. As shown in Table
2, the accuracy gap between the contrastive loss (Contrast) and the loss without positives (NO
Pos) is relatively narrow across most node classification datasets. Similarly, in Table 3, we observe
similar phenomena in graph classification, where using loss without positive samples sometimes
even outperforms the contrastive loss. Additionally, we perform experiments on randomly initialized

4

Table 2: Test accuracy (%) of node classification benchmarks using GCL methods. We compare the
performances of models trained with InfoNCE loss (Contrast), uniformity loss (NO Pos), alignment
loss (NO Neg), and no optimization objective (NO Training). Mean accuracy with standard derivation
is reported after 10 runs. Average accuracy across datasets is reported. We conduct significance
testing using Wilcoxon Signed Rank Test [57], comparing the contrastive loss and other loss types.
The p-value is averaged across datasets. A value below 0.05 denotes significant accuracy difference
(red), while a value above 0.05 denotes insignificance (green). OOM denotes out of memory.

Method Loss Cora CiteSeer PubMed Photo Computers Avg Avg p-value

GRACE [77]

Contrast 84.67 ± 1.39 73.47 ± 2.32 85.80 ± 0.16 91.42 ± 1.27 89.01 ± 0.60 84.87 -

NO Training 69.12 ± 4.18 60.60 ± 2.59 80.65 ± 0.80 68.37 ± 3.76 57.02 ± 1.93 67.15 0.0020

NO Pos 82.65 ± 1.18 73.50 ± 2.41 85.28 ± 0.79 91.32 ± 1.10 84.40 ± 0.43 83.43 0.2270

NO Neg 29.85 ± 1.45 20.42 ± 2.26 39.63 ± 0.81 25.10 ± 1.74 36.84 ± 1.30 30.37 0.0020

GCA [79]

Contrast 84.04 ± 1.55 72.63 ± 2.68 85.92 ± 0.69 93.07 ± 0.66 86.58 ± 0.75 84.45 -

NO Training 71.25 ± 2.32 58.50 ± 1.32 80.07 ± 0.47 84.92 ± 1.60 68.33 ± 1.23 72.61 0.0020

NO Pos 83.09 ± 2.03 70.42 ± 3.07 84.68 ± 0.63 91.50 ± 0.26 85.19 ± 0.93 82.98 0.1465

NO Neg 31.40 ± 3.61 22.16 ± 3.01 39.58 ± 0.83 28.13 ± 1.14 37.34 ± 0.95 31.72 0.0020

ProGCL [59]

Contrast 85.42 ± 3.41 72.85 ± 2.99 OOM 93.81 ± 0.48 86.35 ± 1.28 84.61 -

NO Training 79.41 ± 0.90 58.08 ± 1.27 83.54 ± 0.83 84.84 ± 1.98 68.39 ± 1.49 74.85 0.0023

NO Pos 86.76 ± 0.52 70.76 ± 1.63 OOM 92.59 ± 0.16 85.71 ± 1.32 83.96 0.2523

NO Neg 30.15 ± 2.70 21.08 ± 1.45 21.13 ± 1.20 4.88 ± 0.33 3.11 ± 0.65 16.07 0.0020

Table 3: Test accuracy (%) of graph classification benchmarks using GCL methods. We compare the
performances of models trained with InfoNCE loss (Contrast), uniformity loss (NO Pos), alignment
loss (NO Neg), and no optimization objective (NO Training). Mean accuracy with standard derivation
is reported after 10 runs. Average accuracy across datasets is reported. We conduct significance
testing using Wilcoxon Signed Rank Test [57], comparing the contrastive loss with other loss types.
The p-value is averaged across datasets. A value below 0.05 denotes significant accuracy difference
(red), while a value above 0.05 indicates insignificance (green).

Method Loss MUTAG PTC-MR PROTEINS IMDB-B IMDB-M REDDIT-B Avg Avg p-value

GraphCL [66]

Contrast 86.36 ± 1.74 61.73 ± 1.40 72.98 ± 0.52 71.96 ± 0.29 49.80 ± 0.23 84.92 ± 0.40 71.29 -

NO Training 80.85 ± 2.99 57.60 ± 0.66 56.97 ± 4.08 59.24 ± 1.64 34.65 ± 0.67 80.05 ± 0.35 61.56 0.0039

NO Pos 87.97 ± 1.85 62.27 ± 1.29 73.44 ± 0.97 72.38 ± 0.83 48.72 ± 0.68 82.05 ± 0.89 71.14 0.3281

NO Neg 88.73 ± 0.52 58.03 ± 2.24 73.60 ± 0.79 72.10 ± 0.32 49.61 ± 0.33 82.56 ± 0.76 70.77 0.1650

ADGCL [45]

Contrast 90.43 ± 1.18 57.05 ± 2.58 74.29 ± 1.02 71.96 ± 0.15 50.16 ± 0.17 84.84 ± 0.45 71.46 -

NO Training 59.99 ± 0.43 53.80 ± 0.82 55.26 ± 4.30 50.98 ± 0.91 33.55 ± 0.46 59.08 ± 3.49 52.11 0.0026

NO Pos 89.47 ± 0.77 57.54 ± 1.93 72.81 ± 0.63 71.72 ± 0.27 49.89 ± 0.46 84.35 ± 0.49 70.96 0.2419

NO Neg 88.51 ± 0.85 56.14 ± 2.49 73.98 ± 0.32 71.74 ± 0.12 48.93 ± 0.33 74.81 ± 0.35 69.02 0.1631

JOAO [67]

Contrast 86.17 ± 1.55 61.47 ± 1.53 73.15 ± 0.92 71.86 ± 0.32 48.80 ± 0.52 82.51 ± 0.87 70.66 -

NO Training 78.54 ± 2.76 55.48 ± 1.85 56.78 ± 2.91 55.08 ± 1.55 34.93 ± 0.67 52.35 ± 1.19 55.53 0.0020

NO Pos 85.42 ± 1.33 60.36 ± 2.19 73.98 ± 0.53 71.06 ± 0.52 48.11 ± 0.61 83.14 ± 0.34 70.35 0.3057

NO Neg 85.19 ± 0.84 58.13 ± 0.92 73.64 ± 0.73 69.46 ± 0.52 47.93 ± 0.56 82.31 ± 1.47 69.44 0.1211

InfoGraph [42]

Contrast 89.75 ± 1.35 64.26 ± 0.30 72.22 ± 0.51 72.04 ± 0.54 49.49 ± 0.31 82.46 ± 0.52 71.70 -

NO Training 85.63 ± 0.32 54.84 ± 1.56 56.93 ± 0.30 58.44 ± 1.66 35.79 ± 0.81 56.61 ± 2.07 58.04 0.0020

NO Pos 88.58 ± 1.49 62.28 ± 1.34 70.58 ± 0.54 73.98 ± 0.60 49.37 ± 0.54 81.55 ± 0.88 71.06 0.2975

NO Neg 88.19 ± 0.90 62.23 ± 1.62 68.88 ± 0.98 72.34 ± 0.66 49.19 ± 0.63 80.46 ± 0.87 70.22 0.1680

AutoGCL [64]

Contrast 86.26 ± 1.14 61.67 ± 0.60 67.44 ± 1.16 72.50 ± 0.68 49.89 ± 0.45 81.43 ± 1.89 69.87 -

NO Training 85.80 ± 4.25 56.27 ± 3.86 53.98 ± 4.40 57.96 ± 0.76 34.61 ± 0.82 66.30 ± 0.05 59.15 0.0052

NO Pos 87.23 ± 1.13 59.15 ± 0.76 66.57 ± 1.53 70.60 ± 1.13 49.31 ± 0.52 79.61 ± 1.05 68.75 0.1566

NO Neg 87.12 ± 1.71 60.35 ± 1.14 70.51 ± 1.18 73.20 ± 0.32 50.08 ± 0.54 82.33 ± 0.90 70.60 0.1403

models without training (NO Training) for comparison, which result in poor representations. These
findings suggest that the removal of positive samples in GCL has minimal impact on the performance
of downstream benchmarks, in stark contrast to the results in VCL (Table 1). For further illustration,
we visualize the representations learned with contrastive loss and uniformity loss using T-SNE [49]
in Appendix B. We also conduct extensive experiments on heteophily datasets and large benchmark
OGB-arxiv [20] (See Appendix C).

5

Table 4: Test accuracy (%) of node classification benchmarks using GRACE method with MLP
encoder. We compare the performances of models trained with InfoNCE loss (Contrast), uniformity
loss (NO Pos), alignment loss (NO Neg), and no training objective (NO Training). Mean accuracy
with standard derivation is reported after 10 runs. Average accuracy across datasets is reported.
We conduct significance testing using Wilcoxon Signed Rank Test [57], comparing the contrastive
loss with other loss types. The p-value is averaged across datasets. A value below 0.05 denotes a
significant accuracy difference (red), while a value above 0.05 indicates insignificance (green).

Method Loss Encoder Cora CiteSeer PubMed Photo Computers Avg Avg p-value

GRACE [77]

Contrast MLP 67.72 ± 0.88 65.51 ± 2.63 83.29 ± 0.49 87.92 ± 0.59 80.89 ± 1.21 77.07 -

NO Training MLP 40.66 ± 2.49 42.81 ± 4.82 78.53 ± 0.90 62.12 ± 0.97 57.97 ± 1.13 56.42 0.0020

NO Pos MLP 56.10 ± 1.08 49.82 ± 3.76 81.32 ± 0.77 65.25 ± 1.13 61.37 ± 0.74 62.77 0.0020

NO Neg MLP 51.69 ± 3.04 50.36 ± 1.14 79.00 ± 0.63 61.33 ± 0.75 55.07 ± 0.99 59.49 0.0020

4.2 The Implicit Regularization of Graph Convolution in GCL

The intriguing property of positive samples in GCL encourages us to explore the underlying reasons
behind this phenomenon. It is worth noting that all the GCL methods analyzed above adopt message-
passing graph neural networks (GNNs) like GCN [24] as backbone encoders. We aim to demonstrate
that these GNNs inherently possess an implicit regularization effect that facilitates the aggregation
of positive samples. This finding helps elucidate why GCL can achieve satisfactory performance
without explicitly incorporating an alignment objective.

To simplify the explanation, we focus on the vanilla graph convolution module proposed in GCN as an
illustrative example. At the l-th layer, node representations are aggregated through two interleaving
steps:

(Graph Convolution) H′ = ÂH(l), (3)

(Feature Transformation) H(l+1) = σ(H′W(l)), (4)

where σ is the activation function, and W(l) denotes the weight matrix. Â = D̄−1/2ĀD̄−1/2 is the
symmetrically normalized version of the self-loop augmented adjacency matrix Ā = A+ I, where D̄
is the diagonal degree matrix of Ā. While various variants of GCN have been proposed, most include
generalized graph convolution (GraphConv) operators that bring neighbor features closer through
message passing [50]. For comparison, we also consider a vanilla MLP encoder, which extracts
features from each node individually and can be seen as only applying the feature transformation
step.

Importantly, we notice that the utilization of GraphConv within encoders is the key for most existing
GCL methods to generalize well in the absence of positive samples. To demonstrate this, we compare
two backbones: GCN (with GraphConv) and MLP (without GraphConv), on the node-classification
task. The results are presented in Table 4. Remarkably, we observe that the distinctive property of
GCL disappears under the MLP backbone. Compared to the performance achieved with the standard
contrastive loss (e.g., 67.72% on Cora), the MLP-based GCL exhibits significantly lower performance
(56.10%) under the no-positive setting. This highlights the importance of the feature propagation
process in GraphConv, which underlies the unique positive-free behavior observed in GCL.

Here we provide theoretical insights into this phenomenon by uncovering the implicit regularization
mechanism of GraphConv in graph contrastive learning. Through formal connections established
between GraphConv and a neighbor-induced alignment objective, we demonstrate that GraphConv
has the capability to replace the positive alignment loss in GCL. Consequently, GCL attains favorable
performance even in the absence of explicit positive sample training.
Theorem 4.1. Suppose the positive node pairs (x, x+) ∼ PG is drawn from the following distribution
defined via the normalized connection weight of the graph G

PG(x, x
+) =

Âx,x+∑
u,v Âu,v

, ∀x, x′ ∈ [N], (5)

then a step of GraphConv (Eq 3) will decrease the following feature alignment loss between positive
samples (here hx refers to the x-th row of a feature matrix H):

L̃align(hx) = −Ex,x+∼PG(x,x+)[h
⊤
x hx+]. (6)

6

Theorem 4.1 reveals that GraphConv implicitly achieves feature alignment among neighborhood
samples. This alignment process is particularly effective in homophilic graphs, where neighbors
predominantly belong to the same class. In this context, the neighbors essentially act as high-quality
positive samples. As a result, the neighbor-induced alignment loss can effectively cluster intra-class
samples together, providing a plausible explanation for the success of positive-free GCL. Interestingly,
the connection between graph convolution and the alignment objective can also provide a natural
explanation for why Yang et al. [63] works, which applies graph convolution to a trained MLP and
observes improved performance. This strategy, from our perspective, is amount to further training
the MLP features with a neighbor-induced alignment loss for a few steps (thus no severe feature
collapse), thus helps improve MLP’s performance.

5 How GCL Works without Negative Samples

In this section, we investigate intriguing phenomena of GCL in the absence of negative samples.
There are works showing contrastive learning can get rid of negative samples by specific designs
on architectures [46, 80] or objective functions [71, 2]. However, we observe that negative samples
are dispensable without any specific designs for the graph classification task, whereas in the node
classification task, simply removing them may not be sufficient. From the perspective of feature
collapse, we emphasize the significant role played by the projection head in the graph classification
task. Building upon this insight, we address the collapse issue in the node classification task by
modifying the backbone encoder with a specialized normalization technique, and further give a
theoretical explanation. The experimental settings are identical to those in Section 4, and the proof of
theorems is attached to Appendix F.

5.1 Graph Classification: Both Negative Samples and Specific Designs Are Not Needed

In the context of VCL, it is widely recognized that the removal of negative samples alone leads to
the failure of methods. This is primarily attributed to the fact that without negative samples, the
alignment loss can be easily minimized by adopting a shortcut solution where the encoder generates
a constant feature for all samples, i.e., f(x) = c,∀ x. As a consequence, this collapsed feature lacks
discriminative power for downstream tasks, resulting in a phenomenon referred to as feature collapse
[21]. To empirically demonstrate this issue, we present the evident performance degradation observed
in pure no-negative VCL in Table 1.

In contrast to the VCL scenario, our findings in GCL for the graph classification task reveal a notable
difference. Surprisingly, we discover that GCL can perform well by utilizing the vanilla positive
alignment loss alone, without the need for negative samples or any modifications to the network
architecture. As demonstrated in Table 3, models trained exclusively with positive pairs achieve
comparable or even superior performance compared to those trained with the default contrastive loss.

Further investigation into the architecture reveals the intriguing role of the projection head in the
no-negative setting. Specifically, we estimate the average similarity of the representations H = f(X)
output by the encoder and Z = g(H) output by the projection head (Figure 1(a)). The similarity of
Z is close to 1, indicating that the projection head indeed learns a collapsed solution. However, the
similarity of H is much lower. It is worth noting that in common GCL practice, the projection head
is removed after training, and downstream tasks employ H for evaluation. Therefore, thanks to the
projection head, although the model learns a collapsed solution for optimizing the alignment loss, the
downstream results remain unaffected.

To gain further insights into the role of the projection head, we explore the mechanism from a spectral
perspective. We compare the singular value distributions of representations before and after the
projection head on the MUTAG dataset (Figure 1(b)). The distribution of singular value becomes
more concentrated after the projection head, indicating a decrease in rank. To validate this, we
estimate the ranks of H and Z, revealing that the rank of Z is noticeably lower than that of H (Figure
1(c)). Inspired by Gupta et al. [13], we remove the projection head during training (where g(·) is an
identity function, making H equal to Z). Comparing the rank of resulting representation H∗, we
find that it falls between the ranks of H and Z. These observations indicate that the projection head
implicitly selects a low-rank subspace of features to satisfy the alignment loss.

7

MUTAG PTC_MR PROTEINS IMDB-B IMDB-M REDDIT-B
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

H
Z

(a) Average Similarity

0 5 10 15
Log of Singular Value

0.00

0.05

0.10

0.15

0.20

De
ns

ity

H=f(X)

0 5 10 15
Log of Singular Value

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity

Z=g(H)

(b) Singular Value Distribution

MUTAG PTC_MR PROTEINS IMDB-B IMDB-M REDDIT-B
Dataset

0

50

100

150

200

250

300

Ra
nk

H
H*
Z

(c) Average Rank

Figure 1: Metrics before and after the projection head. H and Z denote the representations before
and after the projection head, respectively. In Figure 1(c), we also report the rank of representations
H∗ when training without the projection head. Experiments are conducted with GraphCL method.

Table 5: Test accuracy (%) of node classification benchmarks using GRACE method. We compare
the performances of models trained with InfoNCE loss (Contrast), alignment loss (NO Neg), and
alignment loss with ContraNorm in encoder (GCN+CN). Mean accuracy with standard derivation
is reported after 10 runs. Average accuracy across datasets is reported. We conduct significance
testing using Wilcoxon Signed Rank Test [57], comparing the default setting (first line) with others.
The p-value is averaged across datasets. A value below 0.05 denotes significant accuracy difference
(red), while a value above 0.05 indicates insignificance (green).

Method Loss Encoder Cora CiteSeer PubMed Photo Computers Avg Avg p-value

GRACE [77]

Contrast GCN 84.67 ± 1.39 73.47 ± 2.32 85.80 ± 0.16 91.42 ± 1.27 89.01 ± 0.60 84.87 -

NO Neg GCN 29.85 ± 1.45 20.42 ± 2.26 39.63 ± 0.81 25.10 ± 1.74 36.84 ± 1.30 30.37 0.0020

NO Neg GCN + CN 82.35 ± 2.28 72.25 ± 1.86 83.30 ± 0.63 92.43 ± 0.82 84.48 ± 1.01 82.96 0.1621

5.2 Node Classification: Normalization in the Encoder Is Enough

When it comes to the node classification task, the absence of negative samples in GCL leads to a
significant performance drop (Table 2), unlike the case in graph classification. Numerous factors may
be responsible for the suboptimal performance. To confirm feature collapse is the underlying cause,
we visualize the training process with alignment loss, where the average node similarities of H and Z
both unite towards one at the end of training (see Appendix D).

Notably, different from graph classification, the representations learned by the encoder also collapse in
the node classification task. One plausible conjecture is that learning a collapsed solution is relatively
easier for the global graph representation, which can be achieved solely by the projection head. In
this case, the encoder is preserved from collapse. However, for learning local node representations,
the alignment loss requires each node to be collapsed, which often needs the encoder’s involvement.
We provide empirical insights in Appendix E, while a rigorous theoretical understanding remains a
topic for future work.

Now, the question arises: how does GCL manage to work without negative samples for node
classification? While previous solutions derived from VCL [11, 6, 69, 1], such as asymmetric
architectures [46, 22] or feature decorrelation objectives [2, 71], exist, they are specific designs which
cannot be easily generalized to other methods. Recalling that the feature collapse can be traced
back to the encoder, a straightforward approach is directly changing the encoder to prevent collapse.
Specifically, we find that just incorporating a normalization component called ContraNorm (CN) [12]
into the encoder of GCL is enough.

ContraNorm is originally designed for alleviating the over-smoothing problem in GNNs and Trans-
formers with the formulation:

CN(H) = H− αDÃH. (7)

Here, H is hidden representation, and α is a hyper-parameter for scaling. D is the diagonal degree
matrix of Ã, where Ã = softmax(DHH⊤) computes the row-wise normalized similarity matrix
between node features. Here, we use a degree-normalized variant of ContraNorm and are the first
to introduce it as a novel extension to GCL. As seen from Table 5, by simply incorporating the
normalization layer into the encoder, the collapse issue can be rooted out for the GRACE method.
Importantly, this normalization layer can be easily adapted by other GCL methods in a plug-and-play

8

manner. We validate the effectiveness of ContraNorm on multiple GCL methods and under different
encoders. The results are provided in Appendix H due to space constraints. It is worth noting that
our proposed approach maintains a symmetric model architecture with only the alignment loss,
highlighting the ability of the normalization in the encoder for no-negative GCL to perform well.

5.3 ContraNorm Performs Negative Uniformity Implicitly

In this part, we explain how ContraNorm prevents feature collapse without other special designs in
the no-negative setting. Similar to the GraphConv case, we define a uniformity loss among all nodes
in the same graph to promote feature diversity, namely the neighbor-induced uniformity loss. The
following theorem proves that the update of ContraNorm layer leads to a decrease in this uniformity
loss.
Theorem 5.1. Suppose the sample x is drawn from the same distribution in Theorem 4.1, the
neighbor-induced uniformity loss is defined as

L̃uniform = Ex∼PG(x)[logEx′∼PG(x) exp(h
⊤
x hx′)]. (8)

The gradient update of this uniformity loss with step size α > 0 gives the ContraNorm update (Eq. 7).

The derived update discussed in Guo et al. [12] suggests that the ContraNorm layer can implicitly
promote the diversity among node features during the propagation process. This explains why
combining GCL with ContraNorm can avoid feature collapse without explicitly relying on any
negative samples.

By analyzing the roles of GraphConv and ContraNorm, we notice that in contrast to visual contrastive
learning where the encoders primarily extract features from individual samples, the feature propaga-
tion layers in GNNs (GraphConv and ContraNorm) also capture the interaction between different
samples. This property enables them to effectively replace the roles of inter-sample objectives like
the alignment and uniformity losses. In other words, the feature propagation layers inherently encode
the necessary information for learning meaningful representations without explicitly relying on
inter-sample objectives. Specifically, by combining Theorem 4.1 and Theorem 5.1, we show that
the joint update using graph convolution and ContraNorm implicitly optimizes a neighbor-induced
contrastive learning loss:
Theorem 5.2. The joint update of GraphConv and ContraNorm, i.e.,

Hnew = (I+ Â)H− αDÃH (9)

corresponds to a gradient descent update of the following contrastive learning loss:

L̃contrast = L̃align + L̃uniform

= Ex,x+∼PG(x,x+)[h
⊤
x hx+] + Ex∼PG(x)[logEx′∼PG(x) exp(h

⊤
x hx′)].

(10)

6 Simple Augmentations Do Not Destroy GCL Performance

Data augmentation is the arguably most crucial component of VCL methods, since different kinds of

Table 6: Linear probing accuracy
(%) of VCL with SimCLR on
CIFAR-10 with different augmenta-
tion settings.

Augentation Accuracy(%)

NO Aug 28.29 ± 1.0

Default Aug 83.51 ± 0.3
Gaussian 36.56 ± 1.2

data augmentations have a dramatic influence on its final per-
formance. When examining Table 6, we observe a substantial
degradation (83.51% → ≈30%) in VCL’s performance when
removing all augmentations or applying only random Gaussian
noise. However, we find that data augmentations have a much
smaller influence on GCL methods.

In GCL, basic augmentations are typically domain-specific, tai-
lored to the node features and topology information, e.g., node
feature masking, edge perturbation, and subgraph sampling.
Here we choose the combination of node feature masking
(FM) and edge perturbation (EP) as the baseline augmentation,
which is widely adopted in GCL methods [77, 79, 46, 71].

9

Taking the node classification as an example, following common practices when unknowing the data
prior [33, 70], we further consider a simple augmentation: random Gaussian noise, where a random
noise sample drawn from a Gaussian is directly added to node features. Formally, given a graph
G = (A,X), the random noise augmentation is defined as τ(G) = (A,X + ε), ε ∼ N (0, σ2). In
practice, we select the standard deviation σ selected from [1e− 4, 5e− 4, 1e− 5]. For comparison,
we also include the no augmentation setting. The results are shown in Table 7. Although independent
of the graph structure and node attributes, the random noise augmentation still achieves a comparable
performance compated to domain-specific augmentations, which is quite different from the observa-
tions in VCL (Table 6). For further verification, we also conduct experiments with MLP and under
different loss settings, the details are shown in Appendix I.

The robustness of GCL to random noise augmentations highlights its flexibility and resilience in
the absence of domain-specific augmentations. Recalling Section 4, graph contrastive learning is
equipped with two kinds of alignment properties: alignment loss and graph convolution. Therefore,
when the effect of alignment loss is weakened (corresponding to domain-agnostic augmentations) or
even removed (corresponding to no augmentations), the performance of GCL is relatively slightly
influenced with the graph convolution as backing.

Table 7: Test accuracy (%) of node classification benchmarks using GRACE with different augmenta-
tions. We compare no augmentations (NO Aug), domain-agnostic augmentations (Gaussian), and
default domain-specific augmentations (FM+EP). Average accuracy and p-value are reported.

Augmentation Cora CiteSeer PubMed Photo Computers Avg Avg p-value
NO Aug 79.56 ± 2.18 71.83 ± 1.83 84.68 ± 0.58 90.99 ± 1.26 82.83 ± 0.86 81.98 0.1051

FM+EP 84.67 ± 1.39 73.47 ± 2.32 85.80 ± 0.16 91.42 ± 1.27 89.01 ± 0.60 84.87 -
Gaussian 82.72 ± 2.38 72.60 ± 1.21 85.24 ± 0.61 91.32 ± 1.37 82.87 ± 1.09 82.95 0.1778

7 Discussion and Conclusion

In this paper, we have shown that GCL exhibits many intriguing phenomena that are rather contra-
dictory to those in VCL. Specifically, we have found that GCL can work in the absence of positive
samples. Second, GCL works well without negative pairs for the graph classification task. Third,
GCL can achieve comparable performance with domain-agnostic data augmentations like random
Gaussian noise. We have made these observations via extensive experiments with a wide range
of representative GCL methods. However, the empirical experiments cannot cover all of the GCL
methods. We indeed find some exceptions and give a concrete discussion in Appendix G, where
exceptional observations can be attributed to the individual property of methods.

Notably, we highlight the implicit mechanisms of architectures to contrastive learning. Theoretically,
we build the connection between graph convolution and a neighbor-induced alignment loss, as well
as the connection between ContraNorm and a neighbor-induced uniformity loss, giving explanations
for the above unique properties of GCL. Overall, our method suggests that graph contrastive learning
may behave quite differently from its visual counterpart, and more efforts should be brought in for
designing graph-specific self-supervised learning.

Since the main goal of this work is to examine the roles of each component of GCL objectives, one
limitation is that it does not propose a new GCL method. Nevertheless, we believe that the new
findings in this work would be valuable for future GCL designs. Also, the paper does not examine
other SSL paradigms on graph, like masked modeling, which would be an interesting direction to
explore in the future.

Acknowledgements

Yisen Wang was supported by National Key R&D Program of China (2022ZD0160304), National
Natural Science Foundation of China (62006153, 62376010, 92370129), Open Research Projects of
Zhejiang Lab (No. 2022RC0AB05), and Beijing Nova Program (20230484344).

10

References
[1] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regular-

ization for self-supervised learning. In ICLR, 2022. 8

[2] Piotr Bielak, Tomasz Kajdanowicz, and Nitesh V Chawla. Graph barlow twins: A self-
supervised representation learning framework for graphs. Knowledge-Based Systems, 256:
109631, 2022. 3, 7, 8

[3] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola,
and Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21
(suppl_1):i47–i56, 2005. 16

[4] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. In NeurIPS, 2020.
1

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In ICML, 2020. 1, 2, 4

[6] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In CVPR,
2021. 8

[7] Jingyi Cui, Weiran Huang, Yifei Wang, and Yisen Wang. Rethinking weak supervision in
helping contrastive learning. In ICML, 2023. 3

[8] Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and
Corwin Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital energies and hydrophobicity. Journal of
medicinal chemistry, 34(2):786–797, 1991. 16

[9] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya
Sutskever. Jukebox: A generative model for music. arXiv preprint arXiv:2005.00341, 2020. 1

[10] Amur Ghose, Yingxue Zhang, Jianye Hao, and Mark Coates. Spectral augmentations for graph
contrastive learning. In AISTATS, 2023. 1, 3

[11] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. In NeurIPS, 2020.
2, 8

[12] Xiaojun Guo, Yifei Wang, Tianqi Du, and Yisen Wang. Contranorm: A contrastive learning
perspective on oversmoothing and beyond. In ICLR, 2023. 8, 9

[13] Kartik Gupta, Thalaiyasingam Ajanthan, Anton van den Hengel, and Stephen Gould. Under-
standing and improving the role of projection head in self-supervised learning. In NeurIPS,
2022. 7

[14] Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning
on graphs. In ICML, 2020. 15, 17, 21

[15] Kaveh Hassani and Amir Hosein Khasahmadi. Learning graph augmentations to learn graph
representations. arXiv preprint arXiv:2201.09830, 2022. 3

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016. 17

[17] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, 2020. 1, 2, 4

[18] Christoph Helma, Ross D. King, Stefan Kramer, and Ashwin Srinivasan. The predictive
toxicology challenge 2000–2001. Bioinformatics, 17(1):107–108, 2001. 16

11

[19] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization. In ICLR, 2019. 3

[20] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In NeurIPS, 2020. 5, 18

[21] Tianyu Hua, Wenxiao Wang, Zihui Xue, Sucheng Ren, Yue Wang, and Hang Zhao. On feature
decorrelation in self-supervised learning. In ICCV, 2021. 7

[22] Zekarias T Kefato and Sarunas Girdzijauskas. Self-supervised graph neural networks without
explicit negative sampling. In WWW Workshop, 2021. 8

[23] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 17

[24] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017. 6, 17, 21

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009. 4

[26] Carson K. Leung, Alfredo Cuzzocrea, Jiaxing Jason Mai, Deyu Deng, and Fan Jiang. Personal-
ized deepinf: Enhanced social influence prediction with deep learning and transfer learning. In
Big Data, 2019. 1

[27] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In AAAI, 2018. 19

[28] Lu Lin, Jinghui Chen, and Hongning Wang. Spectral augmentation for self-supervised learning
on graphs. In ICLR, 2023. 3

[29] Nian Liu, Xiao Wang, Deyu Bo, Chuan Shi, and Jian Pei. Revisiting graph contrastive learning
from the perspective of graph spectrum. In NeurIPS, 2022. 1, 3

[30] Youzhi Luo, Michael McThrow, Wing Yee Au, Tao Komikado, Kanji Uchino, Koji Maruhash,
and Shuiwang Ji. Automated data augmentations for graph classification. In ICLR, 2023. 3

[31] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and UMD EDU. Query-driven active
surveying for collective classification. In MLG, 2012. 16

[32] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018. 2, 4

[33] Harold J Price and Allison R Manson. Uninformative priors for bayes’ theorem. In AIP
Conference Proceedings, 2002. 10

[34] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018. 1

[35] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021. 1

[36] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding.
Journal of Complex Networks, 9(2):cnab014, 2021. 16, 18

[37] Nikunj Saunshi, Jordan Ash, Surbhi Goel, Dipendra Misra, Cyril Zhang, Sanjeev Arora, Sham
Kakade, and Akshay Krishnamurthy. Understanding contrastive learning requires incorporating
inductive biases. In ICML, 2022. 2, 3

[38] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008. 16

12

[39] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018. 16

[40] Jonathan M. Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M.
Donghia, Craig R. MacNair, Shawn French, Lindsey A. Carfrae, Zohar Bloom-Ackermann,
Victoria M. Tran, Anush Chiappino-Pepe, Ahmed H. Badran, Ian W. Andrews, Emma J. Chory,
George M. Church, Eric D. Brown, Tommi S. Jaakkola, Regina Barzilay, and James J. Collins.
A deep learning approach to antibiotic discovery. Cell, 180(4):688–702.e13, 2020. 1

[41] Arjun Subramonian. Motif-driven contrastive learning of graph representations. In AAAI, 2021.
3

[42] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization. In
ICLR, 2020. 3, 5, 15, 17

[43] Junwei Sun, Bai Wang, and Bin Wu. Automated graph representation learning for node
classification. In IJCNN, 2021. 3

[44] Mengying Sun, Jing Xing, Huijun Wang, Bin Chen, and Jiayu Zhou. Mocl: Contrastive learning
on molecular graphs with multi-level domain knowledge. In SIGKDD, 2021. 3

[45] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to
improve graph contrastive learning. In NeurIPS, 2021. 3, 5, 15

[46] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer,
Remi Munos, Petar Veličković, and Michal Valko. Large-scale representation learning on graphs
via bootstrapping. In ICLR, 2022. 3, 7, 8, 9

[47] Puja Trivedi, Ekdeep S Lubana, Mark Heimann, Danai Koutra, and Jayaraman Thiagarajan.
Analyzing data-centric properties for graph contrastive learning. NeurIPS, 2022. 3

[48] Puja Trivedi, Ekdeep Singh Lubana, Yujun Yan, Yaoqing Yang, and Danai Koutra. Augmenta-
tions in graph contrastive learning: Current methodological flaws & towards better practices. In
WWW, 2022. 2, 3

[49] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. JMLR, 2008. 5, 17

[50] Petar Veličković. Message passing all the way up. In ICLR Workshop, 2022. 6

[51] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR, 2019. 3, 15, 17, 21

[52] Julius Von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf,
Michel Besserve, and Francesco Locatello. Self-supervised learning with data augmentations
provably isolates content from style. NeurIPS, 2021. 3

[53] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. In ICML, 2020. 3, 4

[54] Yifei Wang, Zhengyang Geng, Feng Jiang, Chuming Li, Yisen Wang, Jiansheng Yang, and
Zhouchen Lin. Residual relaxation for multi-view representation learning. In NeurIPS, 2021. 1

[55] Yifei Wang, Qi Zhang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Chaos is a ladder: A
new theoretical understanding of contrastive learning via augmentation overlap. In ICLR, 2022.
2, 4

[56] Yifei Wang, Qi Zhang, Tianqi Du, Jiansheng Yang, Zhouchen Lin, and Yisen Wang. A message
passing perspective on learning dynamics of contrastive learning. In ICLR, 2023. 3

[57] Frank Wilcoxon. Individual comparisons by ranking methods. Springer, 1992. 5, 6, 8, 18, 20,
22, 23, 24, 25, 26

[58] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In ICML, 2019. 15

13

[59] Jun Xia, Lirong Wu, Ge Wang, Jintao Chen, and Stan Z Li. Progcl: Rethinking hard negative
mining in graph contrastive learning. In ICML, 2022. 1, 3, 5, 15

[60] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
ICML, 2018. 16

[61] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019. 17

[62] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In SIGKDD, 2015. 16

[63] Chenxiao Yang, Qitian Wu, Jiahua Wang, and Junchi Yan. Graph neural networks are inherently
good generalizers: Insights by bridging gnns and mlps. In ICLR, 2023. 7

[64] Yihang Yin, Qingzhong Wang, Siyu Huang, Haoyi Xiong, and Xiang Zhang. Autogcl: Auto-
mated graph contrastive learning via learnable view generators. In AAAI, 2022. 5, 15

[65] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
SIGKDD, 2018. 1

[66] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. In NeurIPS, 2020. 3, 5, 15, 17

[67] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning
automated. In ICML, 2021. 5, 15

[68] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. Bringing your own view:
Graph contrastive learning without prefabricated data augmentations. In WSDM, 2022. 3

[69] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In ICML, 2021. 3, 8

[70] Wiley ZELLNER. An introduction to Bayesian inference in econometrics. 1996. 10

[71] Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S Yu. From canonical correlation
analysis to self-supervised graph neural networks. In NeurIPS, 2021. 3, 7, 8, 9

[72] Qi Zhang, Yifei Wang, and Yisen Wang. How mask matters: Towards theoretical understandings
of masked autoencoders. In NeurIPS, 2022. 3

[73] Qi Zhang, Yifei Wang, and Yisen Wang. On the generalization of multi-modal contrastive
learning. In ICML, 2023. 3

[74] Shengzhong Zhang, Zengfeng Huang, Haicang Zhou, and Ziang Zhou. Sce: Scalable network
embedding from sparsest cut. In SIGKDD, 2020. 3, 15

[75] Yifei Zhang, Hao Zhu, Zixing Song, Piotr Koniusz, and Irwin King. Spectral feature augmenta-
tion for graph contrastive learning and beyond. In AAAI, 2023. 3

[76] Yizhen Zheng, Shirui Pan, Vincent Cs Lee, Yu Zheng, and Philip S Yu. Rethinking and scaling
up graph contrastive learning: An extremely efficient approach with group discrimination. In
NeurIPS, 2022. 22

[77] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. arXiv preprint arXiv:2006.04131, 2020. 3, 5, 6, 8, 9, 15, 17

[78] Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu. An empirical study of graph contrastive
learning. In NeurIPS, 2021. 21

[79] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive
learning with adaptive augmentation. In WWW, 2021. 3, 5, 9, 15, 17

[80] Zhijian Zhuo, Yifei Wang, Jinwen Ma, and Yisen Wang. Towards a unified theoretical un-
derstanding of non-contrastive learning via rank differential mechanism. In ICLR, 2023. 3,
7

14

A Details on GCL Methods, Benchmarks and Experiment Settings

A.1 Brief Introduction of GCL Methods

Methods for the node classification task.

• GRACE [77]. GRACE generates two graph views by corruption and learns node represen-
tations by maximizing the agreement of node representations in these two views. To provide
diverse node contexts for the contrastive objective, GRACE proposes a hybrid scheme for
generating graph views on both structure and attribute levels.

• GCA [79]. GCA proposes adaptive augmentation that incorporates various priors for topo-
logical and semantic aspects of the graph. On the topology level, GCA designs augmentation
schemes based on node centrality measures, while on the node attribute level, GCA corrupts
node features by adding more noise to unimportant node features.

• ProGCL [59]. ProGCL observes limited benefits when adopting existing hard negative
mining techniques of other domains in graph contrastive learning. ProGCL proposes an
effective method to estimate the probability of a negative being true one, and devises two
schemes to boost the performance of GCL.

• DGI [51]. DGI relies on maximizing mutual information between patch representations
and corresponding high-level summaries of graphs—both derived using established graph
convolutional network architectures. The learnt patch representations summarize subgraphs
centered around nodes of interest, and can thus be reused for downstream node-wise learning
tasks.

• MVGRL [14]. MVGRL introduces a self-supervised approach for learning node and
graph level representations by contrasting structural views of graphs. MVGRL shows that
unlike visual representation learning, increasing the number of views to more than two or
contrasting multi-scale encodings does not improve performance, and the best performance
is achieved by contrasting encodings from first-order neighbors and graph diffusion.

Methods for the graph classification task.

• GraphCL [66]. GraphCL designs four types of graph augmentations to incorporate various
priors, and learns graph-level representations by maximizing the global representations of
two views for a graph.

• ADGCL [45]. ADGCL proposes a novel principle, adversarial GCL, which enables GNNs
to avoid capturing redundant information during training by optimizing adversarial graph
augmentation strategies used in GCL.

• JOAO [67]. JOAO proposes a unified bi-level optimization framework to automatically,
adaptively and dynamically select data augmentations when performing GraphCL on specific
graph data. JOAO is instantiated as min-max optimization.

• InfoGraph [42]. InfoGraph maximizes the mutual information between the graph-level
representation and the representations of substructures of different scales (e.g., nodes, edges,
triangles). By doing so, the graph-level representations encode aspects of the data that are
shared across different scales of substructures.

• AutoGCL [64]. AutoGCL employs a set of learnable graph view generators orchestrated by
an auto augmentation strategy. The learnable view generators, the graph encoder, and the
classifier are trained jointly in an end-to-end manner.

A.2 Relation between Our Work and SCE [74]

Inspired by the sparsest cut problem, SCE [74] introduces a Laplacian smoothing trick and then
proposes a model without positive samples but only using negative samples for training. It is noted
that SCE is a specific node-level GCL method, while we provide a comprehensive comparison for
representative GCL methods on a range of datasets. Specifically, the two differ in: 1) Tasks: SCE
only considers node classification tasks while we consider both graph and node classification tasks
on various datasets. 2) Backbone networks: The backbone of SCE is a special multi-scale GCN
variant, which adopts linear graph convolution (like SGC [58]) and aggregates multi-scale features

15

at last (like JK-Net [60]). In comparison, we adopt GCN for node classification tasks and GIN for
graph classification tasks following the common practice. 3) Learning objectives: For training, SCE
designs a new formulation of uniformity loss (the inverse of total pairwise distance) (Lunsup) and an
L2 regularization on model weights (L2):

L = αLunsup + βL2 =
α∑

(vi,vj)∈N ∥zi − zj∥2
+ β∥θ∥2.

Therefore, SCE’s unique backbone and objectives raise questions about the general applicability
of their findings. Instead, theoretically and empirically, we demonstrate the general validity of the
non-necessity of positive samples across various tasks, backbones, and GCL objectives.

A.3 Introduction of Graph Benchmarks

Node classification benchmarks. 1) Citation Networks [38, 31]. Cora, CiteSeer and PubMed are
three popular citation graph datasets. In these graphs, nodes represent papers and edges correspond
to the citation relationship between two papers. Nodes are classified according to academic topics.
2) Amazon Co-purchase Networks [39]. Photo and Computers are collected by crawling Amazon
websites. Goods are represented as nodes and the co-purchase relationships are denoted as edges.
Node features are the bag-of-words representation of product reviews. Each node is labeled with the
category of goods. 3) Wikipedia Networks [36]. Squirrel and Chameleon was collected from the
English Wikipedia, representing page-page networks on specific topics. Nodes represent articles and
edges are mutual links between them.

Graph Classification benchmarks. 1) Molecules. MUTAG [8] is a dataset of nitroaromatic
compounds and the goal is to predict their mutagenicity on Salmonella typhimurium. PTC-MR [18] is
a collection of 344 chemical compounds represented as graphs that report carcinogenicity for male or
female rats. 2) Bioinformatics. PROTEINS [3] is a dataset of proteins that are classified as enzymes
or non-enzymes. Nodes represent the amino acids and two nodes are connected by an edge if they are
less than 6 Angstroms apart. 3) Social Networks. IMDB-BINARY and IMDB-MULTI [62] are movie
collaboration datasets consisting of a network of 1,000 actors/actresses who played roles in movies in
IMDB. In each graph, nodes represent actors/actresses, and corresponding nodes are connected if
they appear in the same movie. REDDIT-BINARY [62] consists of graphs corresponding to online
discussions on Reddit. In each graph, nodes represent users, and there is an edge between them if at
least one of them responds to the other’s comment.

Statistics of datasets are shown in Table 8.

Table 8: Statistics of classification benchmarks. We report average numbers of nodes, edges, and
features across graphs in graph classification datasets. For datasets lacking feature attributes, we use
all-one vectors as pseudo attributes in practice.

Task Category Dataset #Graphs # Nodes # Edges # Features # Classes

Node

Citation
Cora 1 2,708 5,278 1,433 7
CiteSeer 1 3,327 4,552 3,703 6
PubMed 1 19,717 44,338 500 3

Co-purchase Photo 1 7,650 119,081 745 8
Computers 1 13,752 245,861 767 10

Wikipedia Chameleon 1 2,277 36,101 500 6
Squirrel 1 5,201 217,073 2,089 4

Graph

Protein MUTAG 188 17.9 39.6 7 2
PTC-MR 344 14.3 29.4 18 2

Bioinformatics PROTEINS 1113 39.1 145.6 0 2

Social Networks
IMDB-BINARY 1000 19.8 193.1 0 2
IMDB-MULTI 1500 13.0 131.9 0 3
REDDIT-BINARY 2000 429.6 995.5 0 2

16

A.4 Experimental Details

For the node classification task, following Zhu et al. [77], Velickovic et al. [51], Hassani and
Khasahmadi [14], we use linear evaluation protocol, where the model is trained in an unsupervised
manner and feeds the learned representation into a linear logistic regression classifier. In the training
procedure, a 2-layer Graph Convolutional Network (GCN) [24] is adopted as the encoder. We
adopt the default settings of Zhu et al. [77]. Specifically, we use removing edges and masking
node features as data augmentations. We grid search augmentation ratios in {0.0, 0.1, 0.2, 0.3, 0.4}.
All experiments are trained with Adam SGD optimizer [23] with the learning rate selected from
{0.01, 0.001, 0.0005}. The epoch number is selected from {200, 1000, 2000}. The other parameters
are fixed for all datasets. In the evaluation procedure, we randomly split each dataset with a training
ratio of 0.8 and a test ratio of 0.1, and hyperparameters are fixed as the same for all the experiments.
Each experiment is repeated ten times with mean and standard derivation of accuracy score.

For the graph classification task, in the training procedure, a Graph Isomorphism Network (GIN) [61]
is adopted as the encoder whose layer number is chosen from {4, 8, 12} and hidden dimension chosen
from {32, 512}. We use Adam SGD optimizer with the learning rate selected in {10−3, 10−4, 10−5}
and the number of epochs in {20, 100}. Following Sun et al. [42], You et al. [66], we feed the gener-
ated graph embeddings into a linear Support Vector Machine (SVM) classifier, and the parameters of
the downstream classifier are independently tuned by cross-validation. The C parameter is tuned in
{10−3, 10−2, · · · , 102, 103}. We report the mean 10-fold cross-validation accuracy with standard
deviation. All experiments are conducted on a single 24GB NVIDIA GeForce RTX 3090.

For the image classification task, we pretrain ResNet-18 [16] on the CIFAR-10 dataset for 200 epochs,
with a projection dimension of 128 and a batch size of 512. We use the SGD optimizer and cosine
annealing schedule to set the learning rate, which is initialized as 0.6. During the fine-tuning phase,
we only optimize the linear layer for 100 epochs, using the same learning rate schedule as in the
pretrain phase. To evaluate the performance, we report the mean accuracy and standard deviation
over 5 independent experiments.

Across our experiments, we follow the standard data splits in each domain. To further resolve
concerns on the consistency of evaluation setups, we unify the evaluation settings for GCL and VCL.
The detailed results are shown in Appendix L.

B Visualization of VCL and GCL via T-SNE

To further illustrate the difference between VCL and GCL, we visualize the representations learned
with contrastive loss and uniformity loss using T-SNE [49]. The results are shown in Figure 2. For
VCL, the representations learned by uniformity loss distribute more randomly without clear decision
boundaries, compared to those learned by InfoNCE loss. However, for GCL, the representations
learned by the two losses both achieve good clustering effects.

(a) VCL-InfoNCE (b) VCL-Uniformity (c) GCL-InfoNCE (d) GCL-Uniformity

Figure 2: T-SNE visualization of representations learned by VCL and GCL, with InfoNCE loss and
uniformity loss. Figure 2(a) and 2(b) are conducted with SimCLR on CIFAR10. Figure 2(c) and 2(d)
are conducted with GRACE on Amazon-Photo dataset.

C Results of Extensive benchmarks

In our paper, we have chosen commonly estimated benchmarks (Cora, CiteSeer, PubMed, Amazon-
Computers, and Amazon Photo) following the original papers (GRACE [77], GCA [79], and so
on). Here, we also provide results and discussions about extensive benchmarks including heteophily
benchmarks and large benchmarks.

17

Heteophily benchmarks. We conduct experiments on two heterophilic datasets Wikipedia-
Chameleon and Wikipedia-Squirrel [36] with the GRACE method. As observed in Table 9, training
with only negative samples (NO Pos) also gains benefits compared with randomly initialized models
(NO Training). However, the gap between using uniformity loss (NO Pos) and using contrastive loss
(Contrast) is larger than that of homophilic datasets. In conclusion, the positive-free property of GCL
is more applicable to homophilic graphs. It agrees with our theoretical analysis in Section 4.2 which
assumes neighbors as positive samples.

Large benchmarks. Here, we further consider a larger node classification benchmark OGB-arxiv
[20] with 169,343 nodes and 1,166,243 edges, using the GRACE method. A node-wise similarity
matrix is needed when computing the contrastive loss, but its time complexity and space usage are
intolerable for large datasets. The scalability problem is one of the reasons why larger datasets are
not reported in many original papers. To solve this problem, we randomly sample N=5000 nodes
when computing the similarity matrix, and send the resulting matrix to the objective function. For
each iteration, we repeat such sampling 5 times and use the mean loss. The random sampling strategy
is simple and straightforward, and more complicated strategies will be considered in the future.

As shown in Table 10, the performance only using negative samples is on par with that using
contrastive objectives. And only using positive samples on the node classification task also results in
collapse. These observations are consistent with our findings.

Table 9: Test accuracy (%) on the homophily and heteophily datasets with the GRACE methods.
We compare the performances of models trained the InfoNCE loss (Contrast), uniformity loss (NO
Pos), alignment loss (NO Neg), and no optimization objective (NO Training). Mean accuracy with
standard derivation is reported after 10 runs. Average accuracy across datasets is reported. We
conduct significance testing using Wilcoxon Signed Rank Test [57], comparing the contrastive loss
with other loss types. The p-value is averaged across datasets. A value below 0.05 denotes significant
accuracy difference (red), while a value above 0.05 indicates insignificance (green).

Homophily Heteophily

Cora CiteSeer PubMed Avg Avg p-value Chameleon Squirrel Avg Avg p-value

GRACE

Contrast 84.67 ± 1.39 73.47 ± 2.32 85.80 ± 0.16 81.31 - 48.12 ± 2.35 33.63 ± 1.86 40.88 -
NO Training 69.12 ± 4.18 60.60 ± 2.59 80.65 ± 0.80 70.12 0.0020 32.23 ± 1.82 25.34 ± 1.22 28.79 0.0020
NO Pos 82.65 ± 1.18 73.50 ± 2.41 85.28 ± 0.79 80.48 0.1934 42.97 ± 2.11 30.48 ± 2.25 36.73 0.0254
NO Neg 29.85 ± 1.45 20.42 ± 2.26 39.63 ± 0.81 29.97 0.0020 20.61 ± 2.38 19.58 ± 1.36 20.10 0.0020

GCA

Contrast 84.04 ± 1.55 72.63 ± 2.68 85.92 ± 0.69 80.86 - 46.64 ± 2.85 35.24 ± 1.57 40.94 -
NO Training 71.25 ± 2.32 58.50 ± 1.32 80.07 ± 0.47 69.94 0.0020 33.36 ± 2.04 25.76 ± 2.39 29.56 0.0020
NO Pos 83.09 ± 2.03 70.42 ± 3.07 84.68 ± 0.63 79.40 0.1322 40.17 ± 3.93 28.60 ± 1.05 34.39 0.0107
NO Neg 31.40 ± 3.61 22.16 ± 3.01 39.58 ± 0.83 31.05 0.0020 21.92 ± 4.15 20.19 ± 0.55 21.10 0.0020

ProGCL

Contrast 85.42 ± 3.41 72.85 ± 2.99 OOM 79.14 - 48.38 ± 3.65 33.47 ± 1.93 40.93 -
NO Training 79.41 ± 0.90 58.08 ± 1.27 83.54 ± 0.83 73.68 0.0026 34.21 ± 1.15 25.26 ± 2.24 29.74 0.0020
NO Pos 86.76 ± 0.52 70.76 ± 1.63 OOM 78.76 0.2266 46.44 ± 4.14 30.98 ± 4.32 38.71 0.1064
NO Neg 30.15 ± 2.70 21.08 ± 1.45 21.13 ± 1.20 24.12 0.0020 20.09 ± 1.63 20.46 ± 1.57 20.28 0.0020

Table 10: Test accuracy (%) on the OGB-arxiv benchmark using GRACE method with the sampled
InfoNCE loss (Contrast), uniformity loss (NO Pos), and alignment loss (NO Neg).

Contrast NO Pos NO Neg

OGB-arxiv 65.97 ± 0.23 65.49 ± 0.32 23.88 ± 0.46

D Feature Collapse in Negative-free GCL for Node Classification

In Table 2, we find that the absence of negative samples in GCL leads to a significant performance
drop for the node classification task. Numerous factors may be responsible for the suboptimal
performance. Here we visualize the training process with alignment loss and InfoNCE loss to show
that feature collapse is the underlying cause.

Specifically, we show the tendency of loss, average similarities of node representations H = f(X)
and Z = g(H), and L2 norms of weight matrices in Figure 3. From Figure 3(a), we can find that
when trained with the alignment loss, the training loss steeply converges to −1 (optimal for the
alignment loss) after the start of training. However, the similarities among node representations H

18

and Z both unite towards one. It indicates that once the training starts, the model quickly learns
the short-cut where most node representations are identical to meet the alignment loss. We also
delineate L2 norms of the weight matrices, which consistently converge to zero during training. As
a comparison, we show the training process with InfoNCE loss in Figure 3(b). When trained with
InfoNCE loss, the average similarities of node representations are relatively low and norms of weights
are non-zero, showing that the collapse issue does not occur in the training process.

0 50 100 150 200
epoch

10

9

8

7

6

5

4

3

lo
ss

1e 5 9.999e 1

loss

0.4

0.6

0.8

1.0

si
m

ila
rit

ysimilarity of H
similarity of Z

0 50 100 150 200
epoch

0

5

10

15

20

co
nv

s
w

ei
gh

t n
or

m

convs-W1
convs-W2

0

2

4

6

lin
ea

r w
ei

gh
t n

or
m

linear-W3

(a) Alignment Loss

0 50 100 150 200
epoch

7.8

8.0

8.2

8.4

8.6

lo
ss

loss

0.0

0.2

0.4

0.6

0.8

1.0

si
m

ila
rit

y

similarity of H
similarity of Z

0 50 100 150 200
epoch

14

16

18

20

22

24

co
nv

s
w

ei
gh

t n
or

m

convs-W1
convs-W2

6.4

6.5

6.6

6.7

6.8

6.9

7.0

lin
ea

r w
ei

gh
t n

or
m

linear-W3

(b) InfoNCE Loss

Figure 3: Tendency of loss, average similarities of node representations H and Z, and L2 norms of
weight matrices. We choose weight matrices of the first and the second convolutional layer (Convs-
W1 and Convs-W2), and the first linear layer of the projection head (Linear-W3). Experiments are
conducted on Cora with GRACE.

E Why No-negative GCL Not Collapse in the Graph Classification

In Section 5, we observe different phenomena in the graph classification and node classification.
Specifically, in the graph classification task, GCL methods achieve decent performance in the
no-negative setting, while the representations collapse in the node classification task. From the
architecture perspective, we find in the graph classification task, the representations learned by the
projector tend to be identity, while the representations learned by the encoder escape from collapse.
We suspect that learning a collapsed solution is relatively easier for the global graph representation,
which can be achieved solely by the projection head.

Here, we provide some empirical insights into these conjectures. Instead of researching how to make
representations not collapse in the node classification, we choose to explore when no-negative GCL
collapses in the graph classification.

The well-known over-smoothing phenomenon states that when repeatedly applying the graph convo-
lution, node features become indistinguishable [27]. The feature collapse is observed in contrastive
learning with the alignment loss alone, where all sample features collapse to a single point. The
formal equivalence established between graph convolution and the alignment loss (Theorem 4.1)
reveals that the two phenomena inherently describe the same thing. To make no-negative GCL
fail in graph classification, a straightforward method is stacking more layers within the encoder.
Taking the MUTAG dataset as an illustrated example, we indeed find an increase in the similarities of
representation H and Z, and a drop in the performance (Figure 4(a)) when the layer number increases.
Another choice is removing the projection head and exposing the encoder. Additionally, we increase
the learning rate, whose motivation is enforcing the encoder to iterate to the collapsed solution more
quickly. In Figure 4(b), we find that after removing the projection head, the encoder also collapses
when the learning rate is raised to 0.01.

Besides the above two extreme cases, here we propose a more convincing method. Imitating the
node-wise loss in the node classification, we transform the loss in GraphCL to an L-L version.
Formally, the L-L align loss for the graph classification is:

L̂align = − 1

M

M∑
i=1

1

Ni

∑
u∈Gi

s(u,v), (11)

where M denotes the number of graphs, Ni denotes the number of nodes in the graph Gi, and the
positive sample v is the corresponding node of u in the augmented graph. Using this alignment loss,
we train the modified GraphCL method and get a terrible test accuracy of 68.18% compared to the
original performance of 86.36%. Figure 4(c) shows that the similarities of H and Z both converge
close to one during training under this loss. These observations further validate our conjecture.

19

5 10 20 30 40
layer

0.0

0.2

0.4

0.6

0.8

1.0

si
m

ila
rit

y

H
Z

85.0

83.97

69.18

71.16

33.91

A
cc

ur
ac

y(
%

)

acc

(a) Increase Layer Number

0.001 0.01 0.05 0.1 0.5
lr

0.0

0.2

0.4

0.6

0.8

1.0

si
m

ila
rit

y

85.02

85.64

77.69

76.4

36.16

A
cc

ur
ac

y(
%

)

acc

(b) Remove Projection Head

1 3 6 9 11 13 16 19
epoch

0.9982

0.9991

0.9945

0.9905

0.8664

0.8723

0.9159

0.9932

0.9158

S
im

ila
rit

y

H
Z

(c) Use L-L Loss

Figure 4: Experiments for the collapse of no-negative GCL in the graph classification. As the layer
number of encoder increases, the similarity of representations H converges close to one and the
performance degrades greatly (Figure 4(a)). A similar phenomenon is observed when removing the
projection head and training the encoder with a relatively high learning rate (Figure 4(b)). Additionally,
by modifying the graph-level alignment loss to a local node-wise version, we also observe a collapse
in the encoder (Figure 4(c)). Experiments are conducted on MUTAG with GraphCL.

F Proof of Theorems

F.1 Reality of Assumption in Theorem 4.1

The augmentations in GCN’s implicit alignment loss (using neighbor nodes as positive pairs) differ
from those in GCL methods (like node dropping and edge perturbation). However, Table 11 demon-
strates their comparable performances, suggesting the complementarity. Therefore, GCN’s implicit
alignment can replace positive samples under the no-positive setting, achieving good performance.
This phenomenon could arise from shared domain priors: neighboring nodes have similar labels,
making slight perturbations of edges/nodes inconsequential for their class membership.

Table 11: Node classification accuracy (%) under GRACE backbone with different augmentations.
Mean accuracy with standard derivation is reported after 10 runs. Average accuracy across datasets
is reported. We conduct significance testing using Wilcoxon Signed Rank Test [57], comparing the
contrastive loss with other loss types. The p-value is averaged across datasets. A value below 0.05
denotes significant accuracy difference (red), while a value above 0.05 indicates insignificance
(green).

Augmentation Cora CiteSeer PubMed Photo Computers Avg. Avg p-value
NO Training 69.12 ± 4.18 60.60 ± 2.59 80.65 ± 0.80 68.37 ± 3.76 57.02 ± 1.93 67.15 0.0020

GRACE augmentations 84.67 ± 1.39 73.47 ± 2.32 85.80 ± 0.16 91.42 ± 1.27 89.01 ± 0.60 84.87 -

Neighbor nodes (ours) 84.93 ± 2.63 71.92 ± 1.51 84.72 ± 0.32 90.54 ± 0.64 86.21 ± 0.58 83.66 0.1668

F.2 Derivation of Theorem 4.1

Proof. It is easy to see that under the definition of the positive samples, the alignment loss can be
written equivalently as

L̃align(H) = −Ex,x+∼PG(x,x+)[h
⊤
x hx+] (12)

= −
∑
x,x+

PG(x, x
+)[h⊤

x hx+] (13)

= −
∑
x,x+

[Âx,x+h⊤
x hx+]/

∑
x,x+

[Âx,x+] (14)

= −tr
(
HÂH⊤

)
/c, (15)

where c =
∑

x,x+ [Âx,x+] is a constant.

20

Here, to maintain the feature scale, we further consider a regularization term on the norm of node
features:

ˆ̃Lalign(H) = L̃align(H) + ∥H∥2/c. (16)

Therefore, the gradient update of the alignment objective (Eq 6) gives the following update rule of
node features H:

Hnew = H− α∇H
ˆ̃Lalign(H) (17)

= H− α/c(−2AH+ 2H) (18)
= (1− 2α/c)H+ 2α/c ·AH, (19)

where α is the step size. When we choose a specific learning rate α = c/2, we recover the graph
convolution operation in GCN [24]:

Hnew = AH, (20)
which completes the proof.

F.3 Derivation of Theorem 5.1

Proof. Denote c =
∑

x,x+ [Âx,x+] as a constant. Calculating the gradient of the uniformity loss
w.r.t. each node feature hx gives the following rule

∇hxL̃uniform = 2/cPG(x)
∑
x′

Ax,x′hx′ . (21)

In a matrix form, we have
∇HL̃uniform = 2/cDAH, (22)

where D is the diagonal matrix containing P(x) =
∑

x′ Ax,x′ ,∀x ∈ V .

Therefore, the gradient descent update of the defined uniformity loss gives

Hnew = H− α∇HL̃uniform = H− 2/cDAH, (23)

where α is the step size. It is easy to see its equivalence to the ContraNorm update.

F.4 Derivation of Theorem 5.2

Proof. Combining Theorem 4.1 and Theorem 5.1, we can directly obtain Theorem 5.2 as a corollary.

G Discussion on More GCL Methods

The contrastive mode has three mainstreams: local-to-local (L-L), global-to-global (G-G), and
global-to-local (G-L) [78]. For the local-to-local perspective, the corresponding nodes in the two
augmented views of a graph are seen as positive pairs while all the other node pairs are negative ones.
Global-to-global mode is often used when there are multiple graphs, and contrastive objects are the
global representations of augmented views. In this mode, augmented views of the same graph are
positives and all the other graph pairs are negatives. For the global-to-local perspective, positive pairs
are taken as the global representation and nodes of augmented views for the corresponding graph,
and negative pairs are the global representation and nodes of augmented views for other graphs.

In previous sections, we investigate the GCL methods with L-L or G-G modes, and the G-L mode on
the graph classification (like InfoGraph). In this section, we discuss two methods of the G-L mode on
node classification task: DGI [51] and MVGRL [14]. For experiments, we use the same settings as in
Section 4. As seen from Table 12, there is an obvious degeneration in accuracy when no positive
samples or negative samples are used, which is close to the no training setting. Recall that we find
the positive samples are not needed in Section 4, and the observations on DGI and MVGRL seem to
contradict our arguments. Here we attribute the inconsistency to the flaw in the methods themselves.

We start with an intriguing finding on DGI. Here we disorder the contrastive correspondence with a
wrong view as global representations. Specifically, we take the local representation of the graph and
its global representation as negatives, while local representations and global representations of the

21

corrupted view are seen as positives. Note that the corruption operation in DGI is used to generate
negative samples by shuffling rows of node attributes. See Figure 5 for illustration. We compare
the disordered version with the original DGI in Table 13, and find using a wrong view as global
representations does not affect performance. It implies that global representations lose efficacy in
this framework. Inspired by Zheng et al. [76], we compare the two global representations and find
they are nearly identical with every dimension being about 0.5. Extensive experiments also show the
global representation is a constant vector for inappropriate usage of the Sigmoid function in both
DGI and MVGRL [76].

This finding explains why the loss without positive samples does not work. Trained with such
loss, node representations are only enforced to be far away from a constant vector, which gives
no semantic guarantee. However, after adding positive samples to loss, the model learns to pull
positive samples near a constant vector, while pushing negative samples away from such vector. It
intrinsically achieves the goal of contrastive learning by gathering positives and repulsing negatives
simultaneously. Thus the model trained with both positive and negative samples can obtain satisfying
performance, explaining why DGI works with constant global representations.

Table 12: Test accuracy (%) of node classification benchmarks using DGI and MVGRL methods.
We compare the performances of models trained with JSD loss (Contrast), loss part only involving
negative pairs (NO Pos), loss only involving positive pairs (NO Neg), and no optimization objective
(NO Training). Mean accuracy with standard derivation is reported after 10 runs. We conduct
significance testing using Wilcoxon Signed Rank Test [57], comparing the contrastive loss with other
loss types. The p-value is averaged across datasets. A value below 0.05 denotes significant accuracy
difference (red), while a value above 0.05 indicates insignificance (green).

Method Loss Cora CiteSeer PubMed Photo Computers Chameleon Squirrel Avg Avg p-value

DGI

Contrast 83.38 ± 2.67 72.07 ± 2.37 84.77 ± 0.71 88.10 ± 1.81 83.35 ± 0.71 39.56 ± 2.86 34.55 ± 0.88 69.40 -

NO Training 69.78 ± 3.39 55.15 ± 2.09 79.56 ± 1.35 69.08 ± 3.30 56.03 ± 1.97 31.44 ± 1.70 24.57 ± 1.22 55.09 0.0020

NO Pos 66.84 ± 3.54 54.79 ± 3.33 78.25 ± 0.99 58.34 ± 3.92 71.98 ± 1.38 35.81 ± 2.34 26.99 ± 0.20 56.14 0.0020

NO Neg 67.35 ± 4.61 58.17 ± 2.57 77.23 ± 1.05 62.75 ± 3.75 72.66 ± 1.48 31.62 ± 4.06 27.75 ± 1.85 56.79 0.0022

MVGRL

Contrast 84.41 ± 1.44 75.27 ± 0.79 85.62 ± 0.63 89.23 ± 1.52 79.58 ± 0.15 42.45 ± 2.43 33.97 ± 2.54 70.08 -

NO Training 77.94 ± 2.23 58.92 ± 2.88 82.13 ± 0.63 81.15 ± 3.25 69.07 ± 0.40 32.23 ± 1.94 24.41 ± 1.10 60.84 0.0022

NO Pos 75.44 ± 1.42 61.08 ± 2.48 81.26 ± 1.30 36.03 ± 1.57 38.36 ± 0.55 36.86 ± 2.56 29.98 ± 1.52 51.29 0.0020

NO Neg 54.93 ± 4.67 35.03 ± 5.20 56.26 ± 1.91 36.47 ± 2.37 38.36 ± 0.56 29.34 ± 2.04 28.06 ± 1.66 39.78 0.0020

Figure 5: Illustration for disordering contrastive correspondence of views on DGI.

Table 13: Test accuracy (%) of DGI in standard contrastive correspondence (Std) and disordered
correspondence (Dis).

Method Contrast Cora CiteSeer PubMed

DGI Std. 83.38 ± 2.68 72.07 ± 2.37 84.77 ± 0.71

Dis. 83.35 ± 2.68 72.04 ± 2.17 84.70 ± 0.68

H Extensive Experiments of ContraNorm.

ContraNorm in different GCL methods. In Table 5, we show that by simply incorporating the
normalization layer into the encoder, the collapse issue can be rooted out for the GRACE method. In
this section, we incorporate ContraNorm into multiple GCL methods under the no-negative setting.

22

The results are shown in Table 14. It is obvious that for these GCL methods, applying ContraNorm
when there are no negative samples achieves comparable performance with models trained with
the contrastive loss (both positive and negative samples). The extensive experiments validate the
effectiveness of ContraNorm across different GCL methods.

Combining ContraNorm with MLP. In Table 15, we show that ContraNorm could also boost
MLP performance significantly (59.49%→73.19%) under the “No Neg” loss, and attain similar
performance to MLP trained with contrastive loss (77.07%), which also aligns well with our theory
and empirical observations on GCN.

ContraNorm under SimCLR backbone. In Table 16, we conduct experiments replacing uniformity
loss with ContraNorm under the SimLCR backbone. It is shown that ContraNorm can not replace the
uniformity loss in SimCLR. We conjecture it is a graph-specific technique and leave the analysis for
the future work.

Table 14: Node classification accuracy (%) with GCN / GCN+ContraNorm using GCL methods.
Mean accuracy with standard derivation is reported after 10 runs. Average accuracy across datasets
is reported. We conduct significance testing using Wilcoxon Signed Rank Test [57], comparing the
default setting (first line) with others. The p-value is averaged across datasets. A value below 0.05
denotes significant accuracy difference (red), while a value above 0.05 indicates insignificance
(green). OOM denotes out of memory.

Method Loss Encoder Cora CiteSeer PubMed Photo Computers Avg Avg p-value

GRACE

Contrast GCN 84.67 ± 1.39 73.47 ± 2.32 85.80 ± 0.16 91.42 ± 1.27 89.01 ± 0.60 84.87 -

NO Neg GCN 29.85 ± 1.45 20.42 ± 2.26 39.63 ± 0.81 25.10 ± 1.74 36.84 ± 1.30 30.37 0.0020

NO Neg GCN + CN 82.35 ± 2.28 72.25 ± 1.86 83.30 ± 0.63 92.43 ± 0.82 84.48 ± 1.01 82.96 0.1520

GCA

Contrast GCN 84.04 ± 1.55 72.63 ± 2.68 85.92 ± 0.69 93.07 ± 0.66 86.58 ± 0.75 84.45 -

NO Neg GCN 31.40 ± 3.61 22.16 ± 3.01 39.58 ± 0.83 28.13 ± 1.14 37.34 ± 0.95 31.72 0.0020

NO Neg GCN + CN 82.21 ± 1.29 72.87 ± 0.98 82.40 ± 0.78 92.47 ± 0.96 86.15 ± 0.58 83.22 0.2125

ProGCL

Contrast GCN 85.42 ± 3.41 72.85 ± 2.99 OOM 93.81 ± 0.48 86.35 ± 1.28 84.61 -

NO Neg GCN 30.15 ± 2.70 21.08 ± 1.45 21.13 ± 1.20 4.88 ± 0.33 3.11 ± 0.65 16.07 0.0020

NO Neg GCN + CN 80.00 ± 1.75 73.35 ± 1.17 84.02 ± 0.91 93.59 ± 0.38 85.67 ± 0.43 83.33 0.2336

Table 15: Node classification accuracy (%) with MLP / MLP+ContraNorm using GRACE. Mean
accuracy with standard derivation is reported after 10 runs. Average accuracy across datasets is
reported. We conduct significance testing using Wilcoxon Signed Rank Test [57], comparing the
default setting (first line) with others. The p-value is averaged across datasets. A value below 0.05
denotes significant accuracy difference (red), while a value above 0.05 indicates insignificance
(green). OOM denotes out of memory.

Loss Encoder Cora CiteSeer PubMed Photo Computers Avg. Avg p-value.
Contrast MLP 67.72 ± 0.88 65.51 ± 2.63 83.29 ± 0.49 87.92 ± 0.59 80.89 ± 1.21 77.07 -

NO Training MLP 40.66 ± 2.49 42.81 ± 4.82 78.53 ± 0.90 62.12 ± 0.97 57.97 ± 1.13 56.42 0.0020

NO Neg MLP 51.69 ± 3.04 50.36 ± 1.14 79.00 ± 0.63 61.33 ± 0.75 55.07 ± 0.99 59.49 0.0020

NO Neg MLP + CN 62.87 ± 0.84 62.16 ± 3.11 81.51 ± 0.60 83.03 ± 1.59 76.40 ± 1.09 73.19 0.0660

Table 16: Image classification accuracy (%) under SimCLR backbone on CIFAR10.

Loss & Encoder SimCLR & ResNet Uniform & ResNet Align & ResNet Align & ResNet + CN

Test Acc (%) 82.4 20.3 18.6 20.9

I Extensive experiments for Gaussian Augmentations

Gaussian Augmentations under Different Loss Settings. In Section 6, we perform experiments
using the GRACE method with different augmentations under the InfoNCE loss. Here, we further

23

report results under different losses in Table 17. For loss without negative samples, the average
performance gap between domain-specific augmentations and noise augmentations is only 0.74%.
When no augmentations, the performance drops 4.88%. We conjecture that when no negative samples
exist, the application of augmentations brings diversity in representations, thus making collapse more
difficult. For contrastive loss and loss without positive samples, the gap between domain-specific
augmentations and noise augmentations is also narrow.

Gaussian Augmentations Using MLP As the Encoder. We compare augmentations with MLP
backbone. In Table 18, while GCN exhibits similar performance with different augmentations,
FM+EP notably surpasses Gaussian noise for MLP. This also correlates with GCN’s implicit alignment
mechanism (Theorem 4.1). Additional augmentations minimally affect GCN due to the existing
alignment mechanism. However, for MLP without this implicit bias, graph-specific augmentations
like FM+EP remain informative for learning proper graph invariance.

Table 17: Test accuracy (%) of node classification benchmarks using GRACE method with different
augmentations under three loss settings. We compare no augmentations (NO Aug), domain-agnostic
augmentations (Gaussian), and default domain-specific augmentations (FM+EP). Average accuracy
and p-value are reported. We conduct significance testing using Wilcoxon Signed Rank Test [57],
comparing the default augmentation with other settings. The p-value is averaged across datasets. A
value below 0.05 denotes significant accuracy difference (red), while a value above 0.05 indicates
insignificance (green).

Loss Encoder Aug Cora CiteSeer PubMed Photo Computers Avg Avg p-value

Contrast GCN
FM+EP 84.67 ± 1.39 73.47 ± 2.32 85.80 ± 0.16 91.42 ± 1.27 89.01 ± 0.60 84.87 -

Gaussian 82.72 ± 2.38 72.60 ± 1.21 85.24 ± 0.61 91.32 ± 1.37 82.77 ± 1.09 82.93 0.1816

NO Aug 79.56 ± 2.18 71.83 ± 1.83 84.68 ± 0.58 90.99 ± 1.26 82.83 ± 0.86 81.98 0.1008

NO Pos GCN
FM+EP 82.65 ± 1.18 73.50 ± 2.41 85.28 ± 0.79 91.32 ± 0.10 84.40 ± 0.43 83.43 -

Gaussian 80.04 ± 1.93 70.84 ± 1.85 84.88 ± 0.89 91.33 ± 1.18 83.26 ± 1.24 82.07 0.1840

NO Aug 79.37 ± 2.30 71.80 ± 1.84 84.69 ± 0.63 90.92 ± 1.21 82.49 ± 0.87 81.85 0.1176

NO Neg GCN + CN
FM+EP 82.35 ± 2.28 72.25 ± 1.86 83.30 ± 0.63 92.43 ± 0.82 84.48 ± 1.01 82.96 -

Gaussian 79.08 ± 2.47 72.43 ± 1.32 83.55 ± 0.22 91.59 ± 1.19 84.48 ± 1.07 82.23 0.2750

NO Aug 75.59 ± 3.45 66.98 ± 3.40 82.14 ± 1.28 81.91 ± 1.42 83.79 ± 1.14 78.08 0.0688

Table 18: Node classification accuracy (%) under GRACE backbone with MLP using different
augmentations.

Augmentation Encoder Cora CiteSeer PubMed Photo Computers Avg.
NO Aug MLP 58.09 ± 2.96 62.69 ± 1.21 80.62 ± 1.01 84.42 ± 0.64 73.30 ± 1.10 71.82

FM + EP MLP 67.72 ± 0.88 65.51 ± 2.63 83.29 ± 0.49 87.92 ± 0.59 80.89 ± 1.21 77.07

Gaussian noise MLP 61.47 ± 3.36 63.23 ± 2.41 81.90 ± 0.57 84.03 ± 1.07 75.47 ± 0.70 73.22

Table 19: Node classification accuracy (%) under GRACE backbone with no-training.

Loss Encoder Cora CiteSeer PubMed Photo Computers Avg.
Contrast GCN 84.67 ± 1.39 73.47 ± 2.32 85.80 ± 0.16 91.42 ± 1.27 89.01 ± 0.60 84.87

NO Training GCN 69.12 ± 4.18 60.60 ± 2.59 80.65 ± 0.80 68.37 ± 3.76 57.02 ± 1.93 67.15

NO Training GCN+CN 69.63 ± 4.08 59.82 ± 2.73 81.73 ± 0.97 91.37 ± 0.60 85.64 ± 0.70 77.64

J Can GCL trained without both positive and negative pairs?

In Section 4, and in Section 5. A natural question arises: can GRACE with GCN and ContraNorm be
trained without positive AND negative pairs? Removing both positive and negative samples renders
the InfoNCE loss empty, actually corresponding to the “No Training” baseline which typically per-
forms much worse. Results in Table 19 further show the performance remains poor even when adding

24

ContraNorm to GCN. This is because despite the implicit alignment and uniformity mechanisms,
without any training objective, the model parameters in GCN+CN cannot be properly trained to fit
the dataset.

K Results of the Fine-tuning Protocol

In this section, we provide the fine-tuning protocol results of main experiments of our paper. Specifi-
cally, we add a linear classification head after the encoder. In the fine-tuning phase, we fine-tune the
whole networks according to downstream tasks, with the learning rate selected from [0.01, 0.001]
and the number of epochs selected from [100, 200, 500]. In Table 20(a) and Table 20(b), we report
the fine-tuning results for the node classification task with GRACE and DGI methods, and for the
graph classification tasks with GraphCL method, respectively. Sharing the same conclusion as the
linear probing protocol, only using negative samples achieves comparable performance as that using
contrastive objectives. On the other hand, for the node classification task, only using positive samples
escapes severe collapse. We think the guidance of true labels in the fine-tuning helps the networks
relearn parameters and thus prevents collapse.

Furthermore, we report the fine-tuning results about augmentations in Table 20(c). For the default
augmentations (FM+PE), we set the ratio of each augmentation to 0.2 to save engineering effort. For
a fair comparison, the standard deviation σ of the random Gaussian noise is fixed to 1e-4. Other
hyperparameters are the same across the three augmentation settings (FM+PE, Gaussian, and NO
Aug). As seen from the table, in the fine-tuning evaluation setting, random noise augmentation is on
average the best for each loss type. It further justifies our analysis that domain-agnostic augmentations
are enough for GCL.

Table 20: Fine-tuning accuracy (%) using GCL methods. Mean accuracy with standard derivation
is reported after 10 runs. Average accuracy across datasets is reported. We conduct significance
testing using Wilcoxon Signed Rank Test [57], comparing the contrastive loss and other loss types.
The p-value is averaged across datasets. A value below 0.05 denotes significant accuracy difference
(red), while a value above 0.05 denotes insignificance (green).

(a) Fine-tuning accuracy (%) of node classification benchmarks using GCL methods.
Method Loss Cora CiteSeer PubMed Photo Computers Chameleon Squirrel Avg Avg p-value

GRACE

Contrast 85.15 ± 3.07 74.19 ± 3.66 84.64 ± 2.47 92.89 ± 0.56 88.92 ± 1.27 39.56 ± 3.76 33.13 ± 4.33 71.21 -

NO Pos 84.49 ± 3.50 74.07 ± 3.92 82.38 ± 2.36 92.84 ± 0.51 89.45 ± 1.14 38.60 ± 3.99 31.40 ± 3.76 70.46 0.3139

NO Neg 81.62 ± 4.05 69.52 ± 4.46 83.87 ± 2.65 92.05 ± 0.89 89.07 ± 1.03 35.98 ± 5.13 30.48 ± 2.54 68.94 0.1398

DGI

Contrast 85.66 ± 2.39 74.55 ± 1.68 85.69 ± 0.26 92.94 ± 0.88 90.03 ± 0.79 42.01 ± 6.07 32.74 ± 5.49 71.95 -

NO Pos 86.91 ± 2.16 74.79 ± 0.92 85.49 ± 0.25 92.73 ± 0.69 89.45 ± 0.65 42.01 ± 6.05 31.98 ± 5.73 71.91 0.4395

NO Neg 85.00 ± 2.39 74.97 ± 1.08 85.44 ± 0.38 92.73 ± 0.67 90.13 ± 0.66 42.97 ± 6.52 32.13 ± 5.24 71.91 0.3672

(b) Fine-tuning accuracy (%) of graph classification benchmarks using GCL methods.
Method Loss MUTAG PTC-MR PROTEINS IMDB-BINARY IMDB-MULTI REDDIT-BINARY Avg Avg p-value

GraphCL

Contrast 93.48 ± 2.52 80.64 ± 4.09 79.88 ± 0.43 64.53 ± 1.32 43.64 ± 0.63 79.67 ± 1.82 73.64 -

NO Pos 93.12 ± 0.74 80.45 ± 4.85 79.34 ± 3.10 63.13 ± 1.55 42.24 ± 0.31 76.73 ± 4.23 72.50 0.1966

NO Neg 93.11 ± 1.14 80.36 ± 3.64 79.01 ± 3.69 62.37 ± 2.81 41.60 ± 0.47 76.75 ± 2.90 72.20 0.1400

(c) Fine-tuning accuracy (%) of node classification benchmarks using GRACE method with different augmenta-
tions under three loss settings.

Loss Aug Cora CiteSeer PubMed Photo Computers Chameleon Squirrel Avg Avg p-value

Contrast
FM+EP 85.15 ± 3.07 74.19 ± 3.66 84.64 ± 2.47 92.89 ± 0.56 88.92 ± 1.27 39.56 ± 3.76 33.13 ± 4.33 71.21 -

Gaussian 86.69 ± 2.39 74.91 ± 2.98 84.52 ± 2.05 92.94 ± 1.02 88.94 ± 1.14 42.62 ± 6.55 31.55 ± 4.64 71.74 0.2829

NO Aug 85.00 ± 3.20 74.07 ± 3.92 82.64 ± 2.69 93.10 ± 0.42 89.58 ± 1.20 37.03 ± 4.28 31.59 ± 4.49 70.43 0.2531

NO Pos
FM+EP 84.49 ± 3.50 74.07 ± 3.92 82.38 ± 2.36 92.84 ± 0.51 89.45 ± 1.14 38.60 ± 3.99 31.40 ± 3.76 70.46 -

Gaussian 86.40 ± 2.84 74.67 ± 3.90 83.95 ± 1.72 92.73 ± 1.52 88.72 ± 1.18 40.79 ± 6.03 30.17 ± 4.73 71.06 0.2609

NO Aug 85.00 ± 3.20 74.07 ± 3.92 82.42 ± 2.57 92.97 ± 0.58 89.49 ± 1.10 38.43 ± 3.88 31.59 ± 4.48 70.57 0.3859

NO Neg
FM+EP 81.62 ± 4.05 69.52 ± 4.46 83.87 ± 2.65 92.05 ± 0.89 89.07 ± 1.03 35.98 ± 5.13 30.48 ± 2.54 68.94 -

Gaussian 84.26 ± 2.80 72.46 ± 4.75 84.49 ± 1.97 91.56 ± 1.75 88.37 ± 1.73 38.25 ± 2.54 28.25 ± 2.81 69.66 0.3273

NO Aug 80.96 ± 5.24 71.38 ± 5.59 82.45 ± 2.69 92.03 ± 2.12 86.16 ± 5.95 33.97 ± 4.41 26.76 ± 2.49 67.67 0.2854

25

L Extended Evaluation for GCL and VCL Under the Same Splitting

Across our experiments, we follow the standard setting and data splits in each domain. To further
resolve concerns on the consistency of evaluation setups, we unify the evaluation settings for GCL
and VCL: we all train a linear classifier with an Adam optimizer and randomly split the dataset with
the same train-test ratio as 9:1. The results are shown in the following table.

As can be seen in Table 21 , the observations are consistent with the findings in our paper. GCL and
VCL present apparent differences in the properties of no-positives, no-negatives and random Gaussian
noise augmentations. The supervised information ratio shows little effect on the conclusions. For
the node classification task, evaluations are under data splits of 1:9 in the paper and 9:1 here, but the
findings are kept unchanged.

Table 21: Evaluation results of GCL and VCL under the same data split setting. Average accuracy
and p-value are reported. We conduct significance testing using Wilcoxon Signed Rank Test [57],
comparing the default augmentation with other settings. The p-value is averaged across datasets. A
value below 0.05 denotes a significant accuracy difference (red), while a value above 0.05 indicates
insignificance (green).

(a) Image classification test accuracy (%) with
SimCLR backbone on CIFAR10

Loss Augmentation Avg.
NO Training Default Aug 22.5

InfoNCE Default Aug 82.4

Alignment Default Aug 18.6

Uniformity Default Aug 20.3

InfoNCE Gaussian 38.6

(b) Node classification test accuracy (%) with GRACE as backbone

Loss Encoder Cora CiteSeer PubMed Photo Computers Avg. Avg p-value.
Contrast GCN 86.27 ± 1.31 75.14 ± 2.11 86.02 ± 0.87 92.10 ± 0.97 83.01 ± 0.66 84.51 -

NO Training GCN 76.31 ± 2.69 68.23 ± 2.31 83.22 ± 0.90 69.20 ± 1.06 56.95 ± 1.36 70.78 0.0020

NO Pos GCN 86.35 ± 1.68 74.05 ± 1.34 85.50 ± 0.62 91.42 ± 0.98 83.33 ± 0.99 84.13 0.3273

NO Neg GCN 29.74 ± 1.92 21.62 ± 1.89 40.30 ± 0.41 26.12 ± 1.88 38.10 ± 1.35 31.18 0.0020

NO Neg GCN + CN 88.49 ± 1.94 77.12 ± 1.18 85.16 ± 0.84 94.67 ± 0.70 85.61 ± 1.34 86.21 0.1324

(c) Graph classification test accuracy (%) with GraphCL as backbone

Loss MUTAG PTC_MR PROTEINS IMDB-B IMDB-M REDDIT-B Avg. Avg p-value.
Contrast 91.58 ± 2.58 71.43 ± 6.26 78.21 ± 3.73 76.40 ± 1.50 52.93 ± 4.12 88.70 ± 1.03 76.54 -

NO Training 86.32 ± 5.37 65.71 ± 3.13 72.14 ± 4.50 70.80 ± 2.14 44.13 ± 1.65 75.30 ± 2.01 69.07 0.0104

NO Pos 92.63 ± 6.32 73.71 ± 3.33 77.32 ± 4.02 76.60 ± 1.85 52.00 ± 3.86 86.90 ± 1.39 76.53 0.6086

NO Neg 91.58 ± 8.55 69.71 ± 8.40 78.75 ± 3.21 77.80 ± 1.94 52.80 ± 3.80 87.00 ± 0.84 76.23 0.3910

(d) Node classification test accuracy (%) with GRACE as backbone with different augmentations

Augmentation Cora CiteSeer PubMed Photo Computers Avg. Avg p-value.
NO Aug 85.76 ± 1.72 74.77 ± 1.02 85.65 ± 0.88 90.14 ± 1.40 82.38 ± 1.00 83.74 0.2227

FM+EP 86.27 ± 1.31 75.14 ± 2.11 86.02 ± 0.87 92.10 ± 0.97 83.01 ± 0.66 84.51 -

Gaussian 86.35 ± 1.82 74.35 ± 1.90 86.09 ± 0.58 90.72 ± 1.81 83.17 ± 0.81 84.14 0.3848

26

	Introduction
	Related Work
	Preliminaries
	How GCL Works without Positive Samples
	Positive Samples Are NOT a Must in GCL
	The Implicit Regularization of Graph Convolution in GCL

	How GCL Works without Negative Samples
	Graph Classification: Both Negative Samples and Specific Designs Are Not Needed
	Node Classification: Normalization in the Encoder Is Enough
	ContraNorm Performs Negative Uniformity Implicitly

	Simple Augmentations Do Not Destroy GCL Performance
	Discussion and Conclusion
	Details on GCL Methods, Benchmarks and Experiment Settings
	Brief Introduction of GCL Methods
	Relation between Our Work and SCE zhang2020sce
	Introduction of Graph Benchmarks
	Experimental Details

	Visualization of VCL and GCL via T-SNE
	Results of Extensive benchmarks
	Feature Collapse in Negative-free GCL for Node Classification
	Why No-negative GCL Not Collapse in the Graph Classification
	Proof of Theorems
	Reality of Assumption in Theorem 4.1
	Derivation of Theorem 4.1
	Derivation of Theorem 5.1
	Derivation of Theorem 5.2

	Discussion on More GCL Methods
	Extensive Experiments of ContraNorm.
	Extensive experiments for Gaussian Augmentations
	Can GCL trained without both positive and negative pairs?
	Results of the Fine-tuning Protocol
	Extended Evaluation for GCL and VCL Under the Same Splitting

