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Abstract

Text-to-video is a rapidly growing research area that aims to generate a semantic,
identical, and temporal coherence sequence of frames that accurately align with
the input text prompt. This study focuses on zero-shot text-to-video generation
considering the data- and cost-efficient. To generate a semantic-coherent video,
exhibiting a rich portrayal of temporal semantics such as the whole process of
flower blooming rather than a set of “moving images”, we propose a novel Free-
Bloom pipeline that harnesses large language models (LLMs) as the director to
generate a semantic-coherence prompt sequence, while pre-trained latent diffusion
models (LDMs) as the animator to generate the high fidelity frames. Furthermore,
to ensure temporal and identical coherence while maintaining semantic coherence,
we propose a series of annotative modifications to adapting LDMs in the reverse
process, including joint noise sampling, step-aware attention shift, and dual-path
interpolation. Without any video data and training requirements, Free-Bloom
generates vivid and high-quality videos, awe-inspiring in generating complex
scenes with semantic meaningful frame sequences. In addition, Free-Bloom is
naturally compatible with LDMs-based extensions.

1 Introduction

Recent impressive breakthroughs [31, 33, 35] in text-to-image synthesis have been attained by
training diffusion models on large-scale multimodal datasets [37, 38] comprising billions of text-
image pairs. The resulting images are unprecedentedly diverse and photo-realistic while maintaining
coherence with the input text prompt. Nevertheless, extending this idea to text-to-video generation
poses challenges as it requires substantial quantities of annotated text-video data and considerable
computational resources. Instead, recent studies [53, 19, 40, 28, 5, 49, 17] introduce adapting pre-
trained image diffusion models to the video domain in a data-efficient and cost-efficient manner,
showing promising potential in one-shot video generation and zero-shot video editing.

This work takes the study of zero-shot text-to-video generation further, enabling the generation
of diverse videos without the need for any video data. Instead of relying on a reference video for
generation or editing [19, 28, 5, 40], the proposed approach generates videos from scratch solely
conditioned on the text prompt. While a concurrent work, Text2Video-Zero [17], similarly focuses
on zero-shot video generation, our study and Text2Video-Zero differ significantly not only in terms
of technical contributions but also in motivation: we aim to generate complete videos that encompass
meaningful temporal variations, which distinguish it from the generation with “moving images”. As
shown in Figure 1, with the text prompt of “a flower is gradually blooming”, our approach generates
a video that thoroughly depicts the entire process, seamlessly progressing from a flower bud to the
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Figure 1: The zero-shot Free-Bloom generates vivid and high-quality videos that are imbued with
semantic significance according to the input prompt. On top of this, Free-Bloom is compatible with
the existing LDM-based extensions and can be applied to other tasks such as personalization of
user-specific concepts and video prediction from a start frame.

full blooming stage. This set ours apart from other methods [17, 21, 10] that often portray a single
stage of the flower bloom. In other words, our resulting video is semantic-coherent that exhibits a
rich portrayal of temporal semantics.

In this work, we introduce Free-Bloom, a zero-shot, training-free, semantic-coherent text-to-video
generator that is capable of generating high-quality, temporally consistent, and semantically aligned
videos. Our key insight is to harness large language models (LLMs) as the director, while pre-
trained image diffusion models as the frame animator. The underlying idea is that LLMs [7, 4, 30,
45], pre-trained on massive amounts of text data, encode general world knowledge [32, 27], thus
being able to transform the text prompt into a sequence of prompts that narrates the progression of
events over time. Simultaneously, pre-trained image diffusion models, such as latent diffusion models
(LDMs) [33] generate the sequential frames conditioned on the prompt sequence to create a video.
Moreover, considering the temporal resolution of the prompt sequence is difficult to fine-grained each
frame of a video, thereby a zero-shot frame interpolation is employed to expand the video to a higher
temporal resolution. Our insights shape Free-Bloom’s progressive pipeline, which consists of three
sequential modules: serial prompting, video generation, and interpolation empowerment.

The naïve attempt of directly applying LLMs and LDMs respectively to the first two steps of our
pipeline resulted in failure. Not surprisingly, the resulting images are completely independent of each
other. Although they each match with their own prompt, the semantic content of these images is
entirely disjointed (semantic coherence), the overall content vary greatly including the foreground
and the background (identical coherence), and the adjacent frames cannot be smoothly connected
(temporal coherence). To overcome these problems, we propose a series of novel and effective
technical solutions. For semantic coherence, we instruct LLMs in a multi-stage manner, completing
the missing information in the generated prompt sequence caused by discourse cohesion, and ensuring
that each prompt in the sequence accurately describes the detailed visual content while maintaining
a consistent linguistic structure across prompts. To ensure both identical coherence and temporal
coherence, we propose two innovative modifications for jointly adapting LDMs for video generation:
(1) Through modeling the joint distribution of initial noise latent across frames from both unified and
individual noise latent distribution, we enhance temporal and content consistency while preserving
suitable levels of perturbation. Notably, in order to conform to the LDMs’ assumption [33], our joint
distribution ensures that the noise latent at every single frame follows normal Gaussian distribution
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when the noise latent of other frames is not provided. (2) Considering the trade-off between continuity
and adherence to single-frame semantics, we carefully incorporate cross-frame attention [53], which
focuses on contextual frames, into self-attention layers according to denoising time steps.

We further propose the training-free interpolation empowerment module to improve the temporal
resolution of the generated videos. In order to maintain the aforementioned semantic coherence,
identical coherence, and temporal coherence, we consider semantic contents of both contextual and
current frames.We perform a novel dual interpolation on latent variables relying on both contextual
frames and self-denoising paths, as the former path enables smooth transitions between neighboring
frames and the latter path ensures high fidelity of single frame.

In summary, our contributions are multi-fold: (1) We introduce Free-Bloom, a novel pipeline to tackle
the zero-shot text-to-video task. Our pipeline effectively harnesses the rich world knowledge of LLMs
and the powerful generative capability of LDMs, proposing an insight into adapting text-to-image
models for video generation. (2) We propose a video generation module incorporating joint noise
sampling and step-aware attention shift, ensuring identical coherence and temporal coherence while
expressing the semantic content. (3) We introduce a training-free dual-path interpolation strategy,
ensuring consistency with context while maintaining fidelity. (4) Free-Bloom can generate impressive
videos imbued with semantic significance corresponding with the contextual narrative.

2 Related Work

Diffusion Models for Images. Diffusion models [42] and its variants DDPM [12] and DDIM [43],
have achieved breakthroughs on text-to-image generation tasks [31, 8, 35, 33]. Moreover, diffusion
models have a thriving research and application ecosystem, including multiple works [22, 11, 57, 23]
as well as emerging open-source communities and libraries [48] with frameworks and plugins.

Open-Domain Text-to-Video Generation. Currently, both non-diffusion-based [15, 52, 15, 47] and
diffusion-based [14, 41, 59, 21, 1, 13, 10, 3] T2V methods often conduct training on large-scale video
datasets such as WebVid and HD-Vila-100M[2, 55], while leveraging T2I priors or jointly training
with images to maintain the quality and the content diversity. However, even with datasets of millions
of videos, the quality and quantity of the training set are still not comparable to images for training.

Zero/Few-shot Video Synthesis. Recently, tuning pre-trained T2I models under zero-shot/few-shot
settings has also been found promising for video generation. Tune-A-Video [53] uses a reference
video, generating videos conditioned on varied prompts while maintaining the original motion.
Several works [19, 40, 28, 5, 49, 54] further explore the video editing task but are not able to either
change the motion or generate videos with new events. Our concurrent work is Text2Video-Zero [17],
which firstly proposes a zero-shot T2V pipeline started from pre-trained T2I models. While it models
the motion flow by adding linear transformations to latent codes, we address that complex state
transitions should be considered instead.

LLM-assisted Generations. Large Language Models (LLMs) [7, 4, 30, 45] have made significant
impact by exhibiting remarkable performance across multiple Natural Language Processing tasks.
From the immense training corpus, LLMs have captured open-world knowledge in various fields [24,
4, 27, 32, 44, 58]. To assist generation by LLMs, previous methods [51, 25, 20, 16, 39] are mainly
based on prompt engineering, aiming to make the text prompts more expressive toward their goals.
Our methods further exploit knowledge from LLMs to derive frame visual content in a complete
video.

3 Preliminaries

Denoising Diffusion Probabilistic Model. DDPM [12] is a type of probabilistic model that learns
to approximate the probability distribution of the true data. The forward diffusion process over
x0, · · · ,xT gradually adds Gaussian noises in T time steps to corrupt an image. Then, the model is
optimized to learn the denoising transitions pθ(xt−1|xt) in the reverse process to turn noises into
images. The forward posteriors can be expressed as

q (xt−1 | xt,x0) = N
(
xt−1; µ̃t (xt,x0) , β̃tI

)
(1)

where µ̃t (xt,x0) :=
√
ᾱt−1βt

1−ᾱt
x0 +

√
αt(1−ᾱt−1)

1−ᾱt
xt and β̃t :=

1−ᾱt−1

1−ᾱt
βt.
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Denosing Diffusion Implicit Models. DDIM [43] is a generalized form of DDPMs by introducing
the non-Markovian processes. DDIM can speed up inference by using fewer denoising steps with the
same training objective of DDPMs, where the reverse process can be written as follows,

xt−1 =
√
αt−1

(
xt −

√
1− αtϵt (xt; θ)√

αt

)
︸ ︷︷ ︸

“predicted x0 ” denoted as Pt

+
√
1− αt−1 − σ2

t · ϵt (xt; θ)︸ ︷︷ ︸
“direction pointing to xt ” denoted as Dt

+ σtzt︸︷︷︸
random noise

(2)

where Pt :=
xt−

√
1−αtϵt(xt)√

αt
and Dt :=

√
1− αt−1 − σ2

t ϵt(xt).

Latent Diffusion Models. LDMs [33] map data to a low-dimensional space, termed latent space,
which possesses a strong representational capacity and can capture complex and abstract features.
LDM employs a multi-layer attention-based U-Net architecture for noise prediction. The attention
blocks [46] contain both self-attention and cross-attention, which focus on image content and textual
content respectively. In the self-attention layer, the input feature zi is projected into query, key, and
value through linear transformations, then they are utilized to compute the attention weights.

4 Method

4.1 Free-Bloom: LLMs as The Director and LDMs as The Frame Animator
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Figure 2: Overview of Free-Bloom. Our pipeline consists of three sequential stages. In Serial
Prompting stage, the LLM is prompted to generate serial frame prompts. In Video Generation
stage, modifications are made to the LDM to generate coherent frames by joint noise sampling and
step-aware attention shift. In Interpolation Empowerment stage, a dual latent space interpolation
conditioned on both contextual path and denoising path is proposed to generate intermediate frames.

We propose a zero-shot text-to-video generation pipeline named Free-Bloom, in which the generated
videos are directed by LLMs and animated by LDMs. As shown in Figure 2, our pipeline consists of
three sequential stages: serial prompting, video generation, and interpolation empowerment. Given
a text prompt T , Free-Bloom first generates a video V1 ∈ Rf×3×h×w with low frame rates at the
first two stages, which include f frames with the frame size of h × w. Then, the interpolation
empowerment module fills in gaps between frames to improve continuity, resulting in the final video.

At the serial prompting stage, we first prompt the LLM with their general knowledge to transform the
raw prompt into a series of prompts indicating the change of semantic content over time. Then, we
instruct the LLM with referential resolution on the prompts to ensure that each prompt accurately
describes the detailed visual content while maintaining a consistent linguistic structure across prompts,
resulting in a prompt sequence, T 1:f = {T 1, · · · , T f}. The prompt sequence accurately depicts the
overall narrative and can effectively enlighten LDM [33] to generate semantic-coherence frames.

At the video generation stage, we employ two novel modifications to LDM, enabling it to generate
semantic coherent, identical coherent, and temporal coherent video frames. We first simultaneously
sample the noise at every frame from their joint Gaussian distribution, which is constructed by
considering a unified noise at the video level and an individual noise at the frame level, which makes
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it easier to generate coherence frames with certain variations. Then, we propose a strategy to modify
the self-attention layer during the inference process. The modified attention layer adjusts attention to
contextual information and self-consistent content according to the denoising time step.

At the interpolation empowerment stage, a dual latent space interpolation strategy is proposed to
generate the intermediate frame between two neighboring frames. In addition to jointly interpolating
the latent variables of neighboring frames for temporal coherence, we condition the latent variable
generated by performing DDIM [43] on the interpolated text embedding to ensure semantic coherence.
Also, the weights of the two paths vary over the denoising time step to ensure smoothly compatible.

4.2 Serial Prompting for Zero-Shot Text-to-Video Generation

Prompting a Video. When discussing the scenario of “a teddy bear jumping into the water”, humans
naturally imagine the series of events: the teddy bear crouches down, then propels itself into the air,
and finally lands in the water with a splash. The prior knowledge of jumping water allows us humans
to derive a semantic meaning of sequential events from a general description, which inspires us to
ask: do LLMs also encode this kind of knowledge without further training? In our investigation of
LLMs, we prompt the LLMs with instructions such as “describe each frame”. We find that LLMs
incorporate extensive world knowledge and can provide temporal transition knowledge.

However, the generated initial descriptions have free linguistic structure, and the text is fragmented in
every single description due to discourse coherence, leading to falling short of adequately sufficient
information for a single frame, as shown in Figure 2. Therefore, to ensure semantic coherence of
prompts across frames, we further instruct the LLMs with the above-obtained initial descriptions to
generate a sequence of f prompts T 1:f = {T 1, · · · , T f} with consistent linguistic structures, where
each prompt accurately describes the visual content in detail.

Zero-Shot Video Generation with LDMs. The video generation module aims to condition the
LDMs on the prompt sequence T 1:f to generate frames that are semantic, identical, and temporal
coherence. However, simply generating f still images from different prompts results in a collection
of unrelated images that cannot be sequenced into a coherent video. To address this issue, we propose
two novel modifications for adapting LDMs to generate videos rather than a collection of images
without the need for additional training.

• Joint noise sampling following LDMs’ assumption. To model the coherence across frames, we
propose to sample the initial noises in the diffusion process of frames from their joint probability
distribution instead of independent distribution. To construct such joint distribution, we first investi-
gate the effects of independent noise and united noise over sequential frames: (1) The same noise
for every frame results in LDMs generating a sequence of images with similar content under similar
textual conditions. While this feature may contribute to achieving temporal coherence among frames,
it can potentially restrict the natural variation of the subject, significantly reducing the overall video
quality. (2) Generating images from f independent noises issues in maintaining consistency across
frames, although the generated images with naturally varying content showcase more diversity and
independently captivating elements.

These observations motivate us to construct the joint distribution by considering the independent
and united distribution jointly. Specifically, we propose to obtain the initial noisy latent variable by
weighted summation over a unified noise across the video frames and an individual perturbed noise to
maintain consistency across frames while introducing appropriate variation. Moreover, to conform to
the LDMs’ assumption, we design the weighting coefficient to ensure that without giving initial noise
latent at other frames, the initial noise at every single frame follows normal Gaussian distribution.
Let us denote the unified video noise as x∗

T and the independent noise as xi
T , the joint distributions

x1:f
T and δ1:fT are formulated as follows,

x1:f
T = [x∗

T , · · · ,x∗
T ]

T ,x∗
T ∼ N (0, In) ⇒ p(x1:f

T ) = N (0,Jf ⊗ In)

δ1:fT = [x1
T , · · · ,x

f
T ]

T ,xi
T ∼ N (0, In) ⇒ p(δ1:fT ) = N (0, Inf )

(3)

where Jf denotes the all-ones matrix with size of f × f and ⊗ represents the Kronecker product.
Then, we model the mixture noise by

x̃1:f
T := cos(

π

2
λ)x1:f

T + sin(
π

2
λ)δ1:fT (4)
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where the λ is a coefficient of variance rate. This mixed noise follows the joint distribution as

p(x̃1:f
T ) = N (0, sin2(

π

2
λ)Inf + cos2(

π

2
λ)Jf ⊗ In))

= N (0, Inf + cos2(
π

2
λ)((Jf − If )⊗ In)).

(5)

When λ = 0 , the initial noise becomes unified noise, and when λ = 1, it becomes independent noise.

• Step-aware attention shift. To further maintain identical coherence while ensuring semantic
coherence, we shift the attention of the self-attention layers in the LDMs’ U-Net from cross-frame
contexts to the current frame according to the denoising time steps. For frame i with its query
Qi, previous methods [53, 5, 49, 28] with one overall text prompt retrieve the key and value from
the former frame and the first frame to perform sparse spatio-temporal attention, based on the
observation [53] that extending the spatial self-attention across images produces consistent content.

In our scheme, frames are conditioned on different prompts, requiring that not only maintaining
temporal and identical coherence, but also semantic coherence with their respective prompts. To
achieve identical and temporal coherence, we address the former and the first frame as contextual
frames and attend to contextual key-value pairs. In particular, the former frame helps to enhance
temporal coherence, while the first frame acts as a benchmark shape, maintaining appearance
consistency throughout the video. To align with the respective prompt in semantics, we shift
attention to the current frame itself as the time step increases, enabling the preservation of its
specific characteristics and details. In summary, our inference strategy takes into account the time
step during the diffusion process. The initial steps focus on contextual frames to form coarse-grained
shapes and layouts. As we progress, complete images are generated, emphasizing producing accurate
outlines conditioned on semantic information. Overall, our adaptation of the attention mechanism
refers to:

Self-Attentioni :=

{
Attention(Qi, [K0,Ki−1,Ki], [V0, Vi−1, Vi]), t ≥ τ

Attention(Qi,Ki, Vi), t < τ
(6)

where τ is the threshold of the time step for attention shift. The (K0, V0), (Ki−1, Vi−1), and (Ki, Vi)
are the key-value pairs in the first, former, and current frames, respectively.

4.3 Interpolation Empowerment

The interpolation empowerment module is proposed to further increase the frame rate without extra
training resources. Similar to the insight of utilizing contextual information in the “Step-aware
attention shift” proposed in Section 4.2, the interpolated intermediate frames should also consider
contextual frames, i.e., the former and the latter frames, in the denoising process. One naïve approach
is to directly derive the latent variable of the intermediate frame solely from the latent variables in
contextual frames. However, this method overlooks the intermediate semantics indicated in text
prompts in contextual frames, leading the semantic incoherence.

Therefore, we propose a dual interpolation path for generating intermediate latent variables, where
the contextual path interpolates the latent variables between the contextual frames to ensure temporal
coherence, while the denoising path interpolates latent variables in DDIM [43] denoising process
conditioned on interpolated text embedding to improve the semantic coherence. Specifically, to
interpolate a new frame xf between xf−1 and xf+1, we first sample the intermediate initial latent
variable from the same distribution proposed in Section 4.2. For the conditional textual prompt T f ,
we directly interpolate text embeddings of the previous and next frames.

1) Contextual path. To obtain the context-sensitive latent variable x̃f
t , we perform linear interpolation

between the contextual frames xf−1
t and xf+1

t as follows,

x̃f
t = kxf−1

t + (1− k)xf+1
t . (7)

2) Denoising path. Then, we perform a linear interpolation between the context-sensitive latent
variable x̃f

t and the latent variable obtained from DDIM conditioned on the interpolated prompt T f .
We employ m(t) as the interpolation coefficient and use the notation of Pf

t+1 and Df
t+1 mentioned in

Section 3. The interpolation coefficient m(t) varies according to the time step, with smaller values in
the earlier denoising steps and increase in the latter steps. The interpolation is formulated as follows,

xf
t = (1−m(t))x̃f

t +m(t)(
√
αtP

f
t+1 +Df

t+1 + σtzt). (8)
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To provide an intuitive conditional probability distribution of xf
t , we present the distributions for the

cases when m(t) = 1 and m(t) = 0 respectively as:

p(xf
t |x

f
t+1) =

N (kµf−1
t+1 + (1− k)µf+1

t+1 , [k 1− k]Σf−1,f+1
t+1

[
k

1− k

]
), m = 0

N (µf
t+1,Σ

f
t+1), m = 1

(9)

where Σf−1,f+1
t+1 is the covariance matrix of xf−1

t+1 and xf+1
t+1 .

4.4 Extensions

Our method exhibits high extensibility and seamless integration with existing LDM-based methods.
We demonstrate the versatility of our approach through some applications: (1) Personalization.
By combining with LDM-based personalization methods [9, 34], our approach can generate videos
with user-provided concepts. Here we choose DreamBooth [34] as an example, as shown in the top
Figure 1, our method generates a video of "A prince is riding a horse [V]" with the concept [V] as
"modern Disney style". (2) Making an image move. With the help of DDIM inversion [43], we
can inverse the latent variable from an image, then generate a sequence of frames that continues the
image. For example, starting from a still image of the scenery of a river, our method further generates
a video depicting the process of freezing, as illustrated in Figure 1.

5 Experiments

Implementation Settings. We develop our Free-Bloom based on LLM as ChatGPT [26] and LDM
as Stable Diffusion [33] with its pre-trained v1.5 weights. We first generate a video of f = 6 length
with 512 × 512 resolution, then we iteratively interpolate between the most distinguished frames
with k = 0.5 for the first interpolated frame. For m(t), we set m(t) = 0.1 when the denoising time
t ≥ τ∗ and m(t) = 1 when t < τ∗. Notice that our method actually can be adapted to generate
longer videos. To enhance image quality in practice, we add fixed negative prompts and upscale
our resulting frames with an image super-resolution network ESRGAN [50]. All experiments are
performed on a single NVIDIA GeForce RTX 3090Ti.

5.1 Baseline Comparisons

Qualitative Results. We showcase examples of Free-Bloom in Figure 3 and compare them with
that generated by the zero-shot T2V-Zero [17] and VideoFusion [21], which demonstrate the most
outstanding overall performance in the user study. More comparisons are included in the Supplemen-
tary. Video generation shown in region A demonstrates the following observations: (1) Our method
vividly depicts the complete imagery of a volcanic eruption or the sequential motion of a teddy bear
jumping into the water, exhibiting the capacity to generate semantic meaningful frame sequences,
in which the visual elements, actions, and events are aligned with the input prompt as well as the
contextual narrative. (2) In addition, our method shows temporal coherence and identical coherence
while maintaining high fidelity for single frames. (3) Although the T2V-Zero method maintains
overall content consistency between frames, it fails to depict sequential events. Furthermore, the
subject would easily be distorted as the length of the video increases. (4) VideoFusion, on the other
hand, demonstrates impressive temporal coherency between frames as it is trained on large-scale
datasets, and it also presents a certain level of grasp of events. However, this training on the vast
video dataset also significantly degrades the fidelity and quality of individual frames.

For interpolation results shown in region B, we present one latest state-of-art Video Frame Interpola-
tion method AMT [18] pre-trained on Vimeo90K [56] for comparison. AMT fails to comprehend the
subject information between the two target frames. As a result, it blurs the different parts of the teddy
bear’s body, failing to capture the intermediate motion. In contrast, our method fills in the content
gap with a serial of continuous motion of the bear from the air to the water, maintaining fidelity in
the intermediate frames while ensuring content consistency.

Quantitative Results are reported with automatic metrics and the user study in Table 1. We adopt
three publicly available diffusion-based methods, Text2Video-Zero [17], VideoFusion [21], and
LVDM [10] as baselines. VideoFusion and LVDM are both trained methods while the former is
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Figure 3: Qualitative comparison. A) Our method can generate semantic meaningful frame
sequences when conditioned on the same prompts. B) We interpolate two frames into the frame
sequence by taking the two images within the same color box in part A as the start and the end.

trained on both large-scale image datasets ImageNet [6], LAION5B [38] and a large-scale video
dataset WebVid-10M [2], and the latter has been trained on a 2-million subset of the WebVid-10M.

For automatic metrics, we use CLIP [29] to evaluate the similarity correlation between the input
prompts and the visual content of generated frames. Recall that our method put an emphasis on the
overall narrative semantic coherence, therefore we also compute the CLIP score between each frame
and its corresponding prompt generated by LLM(*). We can observe that although comparing each
frame against the input prompt overlooks the potential of our approach, our method demonstrates
good performance when frames are compared with the frame-level video prompts.

For the user study, the participants are instructed to rate the fidelity, temporal coherence, and semantic
coherence on a scale of 1 to 5 and give a comprehensive ranking. According to the user study,
although our method may not perform as well as trained methods in terms of temporal continuity, it
has received high recognition in all other dimensions of video quality.

Table 1: Quantitative Results. * for CLIP score on serial prompts.
Automatic Metric User Study

Method Training-Free CLIP Metrics↑ Fidelity ↑ Temporal ↑ Semantic ↑ Rank ↓
VideoFusion [21] 0.483 3.436 3.889 3.267 2.317
LVDM [10] 0.480 3.289 3.650 3.242 2.567
T2V-Zero [17] ✓ 0.479 3.486 2.783 3.025 3.033
Ours ✓ 0.477 / 0.482* 4.133 3.267 3.867 2.083

5.2 Analysis of Our Pipeline

In Figure 4 and Figure 5, we conduct a comprehensive analysis of the modules in our proposed
pipeline. The top row showcases our final results.
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Figure 4: Analyze for the effects of Free-Bloom (A) Without joint noise sampling, (B) Without
shifting self-attention, (C) Serial Prompting for Text2Video-Zero, (D) Without attention to the current
frame itself, and (E) Without the step-aware shift strategy.

A) Without joint noise sampling. In A, we replace the joint noise initialization with the independent
initialization, resulting in frame sequences with inconsistent image content. B) Without shifting
self-attention. In B, we denoise the frames from the proposed joint noise initialization but use the raw
LDM without modifying self-attention layers. The frames are similar naturally in some cases, as the
joint noise contains a portion of unified noise. However, without attention to contextual frames, it is
difficult to maintain identical coherence of both the foreground and background content, let alone
temporal continuity. C) Serial Prompting for Text2Video-Zero. In C, we adapt Text2Video-Zero [17]
to enable the input of frame-level video prompts so that each frame is generated and conditioned on a
distinct prompt. The results show that it is challenging for the current method to comprehend serial
prompts effectively, resulting in “moving images”. D) Without attention to the current frame itself. In
D, we replace all self-attention layers with spatio-temporal attention layers proposed in TAV [53]. The
resulting frames exhibit improved temporal coherence, demonstrating smoother transitions between
frames. However, the frames appear almost identical, creating a sequence of meaningless and jittery
frames based solely on the first frame, which does not align with the intended temporal semantics.
Additionally, prolonged contextual attention in long sequences can significantly compromise the
fidelity of individual frames. As shown in the case of Iron Man, the last frame presents an incomplete
leg. E) Without the step-aware shift strategy. Based on D, we further concatenate the attention to the
current frame with contextual attention but without shifting it along time steps. Although the results
remain inconsistent with semantics due to the absence of the inference strategy that varies across the
denoising time step, the fidelity of images is improved.

Frame A Frame B1000 1    τ*    

Figure 5: Analyze for interpolation.

Dual-path interpolation. We show the influence of bal-
ancing timing coefficients between the dual interpolation
path in Figure 5. When τ∗ approaches 1, m(t) remains
relatively small throughout the entire denoising process,
indicating that the contextual path primarily determines
the interpolated results. The resulting image presents
blurring and ghosting artifacts, failing to generate a frame with correct semantics. Conversely, heavily
relying on the DDIM denoising path with larger values of m(t) causes substantial deviations in
content compared to the contextual frames. Our method adopts smaller values of m(t) in the early
steps to prioritize coarse-grained shapes and layout and increases m(t) in the latter steps to improve
temporal consistency. As a result, we achieve the benefits of both paths by appropriately setting
m(t).
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6 Conclusion

In this paper, we devise a novel zero-shot and training-free text-to-video approach, which mainly
focuses on improving the narrative of the progression of events. Our proposed pipeline effectively
harnesses the knowledge from the pre-trained LLM and LDM and produces highly semantic coherent
videos while also maintaining temporal coherence and identical coherence. Limitation: we look
forward to further research on text-to-video generation, however, it should be acknowledged that
there can be ethical impacts like other generative models. As we adopt ChatGPT and Stable Diffusion
v1.5, our method may inherit the bias of those two models.
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Appendix

In this section, we provide additional discussions, details, and experiments to further support our
contributions. The content is organized as

• Section A - Discussions

• Section B - Joint Noise Derivation

• Section C - Implementation Details

– Section C.1 - Serial Prompting
– Section C.2 - Test Set for Quantitative Results
– Section C.3 - Details of User Study
– Section C.4 - Code Used and License

• Section D - Additional Experiments

– Section D.1 - Qualitative Results (comparisons and more visualizations)
– Section D.2 - User Study Quantitative Comparisons
– Section D.3 - Analysis on Joint Noise Sampling
– Section D.4 - Extensions (long video story, personalization, making an image move)

A Discussions

Limitations and Future Work. We look forward to further research on this method. While our
method offers the advantage of being training-free and not requiring extra training data, it highly
depends on the large foundation models LLMs [7, 4, 26] and LDMs [33]. Consequently, it would
inherit the limitations of those large pre-trained models. For example, LDMs often struggle with
generating images containing detailed faces and limbs, specific text, multiple objects, interactions
between objects, etc, therefore our method has the same weakness. Moreover, LDMs are often
sensitive to seed selections of initial noises [36], so when the initial frame is of low quality, our
method tends to result in relatively poor performance as well. Additionally, although our method
demonstrates improved temporal consistency to other zero-shot methods, we found that it is still
challenging to maintain high temporal coherency between frames in the zero-shot setting. However,
leveraging video data proves to be an effective solution for acquiring temporal priors. Therefore, how
to combine the strengths of zero-shot methods and trained methods is a promising direction for future
research.

Societal Impacts. It should be acknowledged that there can be ethical impacts like other generative
models. As we adopt ChatGPT [26] and Stable Diffusion v1.5 [33], our method may inherit the bias
of those two models. Also, although the results of our method of direct text-to-video generation are
still a step away from convincingly photo-realistic videos, the risk of abuse, for example, generating
fake, harmful, or discriminating content, should be aware.

B Joint Noise Derivation

First, let us consider the distribution of unified noise. It is composed by initial noise x∗
T ∼ N (0, In)

for each frame and can be represented as x1:f
T = [x∗

T , · · · ,x∗
T ]

T . The noise of any two frames in
x1:f
T have the same values, and therefore their covariance is

cov(x∗
T ,x

∗
T ) = D(x∗

T ) = In. (10)

Thus the unified noise follows the distribution as

p(x1:f
T ) = N (0,Jf ⊗ In), (11)

where Jf represents the all-one matrix of size f × f and ⊗ denotes the Kronecker product. The
specific form of Jf ⊗ In is
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Jf ⊗ In =

In In

In In

 f×
I
n

f×In

(12)

Second, let us consider the distribution of individual noise, in which each frame is independently
sampled. Therefore, the covariance between any two frames is 0, and the distribution still follows a
standard normal distribution:

p(δ1:fT ) = N (0, Inf ) (13)

According to Section 4.2, the mixed noise is defined as x̃1:f
T := cos(π2λ)x

1:f
T + sin(π2λ)δ

1:f
T . Since

x1:f
T and δ1:fT are independently sampled, the sum of the two still follows a normal distribution, with

a mean of 0 and a variance of

sin2(
π

2
λ)Inf + cos2(

π

2
λ)Jf ⊗ In) = sin2(

π

2
λ)

In 0 0
0

0
0 0 In

+ cos2(
π

2
λ)

[
In In

In In

]

=


In cos2(π2λ)In · · · cos2(π2λ)In

cos2(π2λ)In
. . . cos2(π2λ)In

...
. . .

...
cos2(π2λ)In cos2(π2λ)In · · · In


= Inf + cos2(

π

2
λ)((Jf − If )⊗ In)

(14)
Thus, variable x̃1:f

T follows the following distribution.

p(x̃1:f
T ) = N (0, sin2(

π

2
λ)Inf + cos2(

π

2
λ)Jf ⊗ In))

= N (0, Inf + cos2(
π

2
λ)((Jf − If )⊗ In))

(15)

In this distribution, without given noises of other frames, for any frame noise x̃i
T , it still follows a

standard normal distribution that p(x̃i
T ) = N (0, In).

C Implementation Details

C.1 Serial Prompting

We first prompt ChatGPT [26] with the following instruction:

• I would like you to play the role of the describer of each frame of the video as a director of a
movie. The content of each video should be concise and only clearly describe the subject. Each
sentence in the video is independent. Every sentence needs to include the subject’s appearance and
actions, please describe the main actions of the object and the extent of the actions in as much detail
as possible. The sentences of each picture are independent, and each sentence should describe what
exists in the picture. Each frame is described in only one sentence. Suppose there is a video about
"[INPUT PROMPT]" and there are "[F]" frames in the video. Describe the content of each frame
separately. Please be straightforward and do not use a narrative style.

Then, we use the following prompt:

• Now perform Coreference Resolution on the above sentence, replace reflexive pronouns with
their original vocabulary, and eliminate the discourse cohesion. Keep the meaning the same. The
sentence for each frame should be able to fully express all the visual information of the frame. Also,
the linguistic structure of each sentence should be simple and similar.
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C.2 Test Set for Quantitative Results

We list some prompts from our test set in Table 2, in which some prompts are from the webpage
of Text2Video-Zero [17] and some are designed by ourselves that incorporate more complex event
content.

Table 2: Prompts for Test Set.
A cluster of flowers blooms Astronaut riding a horse

Use pan to fire an egg Iron man is surfing
Volcano eruption The ice cube is melting

A dog is walking down the street A panda is walking down the street
Light a match then the match goes out The Santa flying through the sky

River freezes Two supermen are fighting
Two men shake hands A bear dancing on times square

Teddy bear jumps into water An astronaut is waving his hands on the moon
The growth of a sapling An egg hatch into a chick

A dancing mickey Teddy bear is greeting

C.3 Details of User Study

We conduct a user study to understand how humans would evaluate the current text-to-video methods.
The survey contains a total of 20 prompts with each prompt having 4 videos output from VideoFu-
sion [21], LVDM [10], Text2Video-Zero [17], and Ours. For each prompt, we ask raters to answer
the following four questions:

• How would you rate the temporal coherence and smoothness of the videos? Please assign a score
for their continuity. (Temporal Coherence)

• How would you rate the quality and fidelity of the individual frames in the videos? Please assign a
score for the visual quality. (Fidelity)

• How well does the video depict the content described in the text? Please assign a score for its
content representation. (Semantic Coherence)

• Based on your overall perception, please rank the videos. (Rank)

Figure 14 presents an example interface of our survey. We received valid responses from a total of 80
individuals from both industry and academia.

C.4 Code Used and License

Table 3: The used codes and license.

URL Citation License

https://github.com/showlab/Tune-A-Video [53] Apache License 2.0
https://github.com/google/prompt-to-prompt [11] Apache License 2.0

https://github.com/huggingface/diffusers [48] Apache License 2.0
https://github.com/Picsart-AI-Research/Text2Video-Zero [17] CreativeML Open RAIL-M

https://github.com/VideoCrafter/VideoCrafter [10] (Hugging Face Space) MIT
https://github.com/modelscope/modelscope/ [21] Apache License 2.0

All used codes and their licenses are listed in Table 3.
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D Additional Experiments

D.1 Qualitative Results

We showcase more visualization of the generated video in this section. In Figure 6 and Figure 7,
we present the full comparison with Text2Video-Zero [17], VideoFusion [21], and LVDM [10]. In
Figure 8, we randomly generate multiple videos with respect to the same prompts. In Figure 9, we
demonstrate more results of our interpolation empowerment module.

D.2 User Study Quantitative Comparisons

Table 4: User Study Comparisons.
User Study

Method Training-Free Rank Fidelity Temporal Semantic

Ours vs. LVDM [10] 55.00% 85.28% 53.33% 82.27%
Ours vs. VideoFusion [21] 63.06% 82.50% 44.44% 78.33%
Ours vs. T2V-Zero [17] ✓ 73.61% 87.78% 80.00% 85.28%

For the user study part in the quantitative results, we also present the comparison-based results here in
Table 4. Specifically, for the ranking column, the number denotes the percentage of participants who
prefer our method and rank us before another. For the dimensions of fidelity, temporal coherence,
and semantic coherence, the numbers indicate the percentage of participants who believe that our
generated videos are better to that of another method in that dimension.

D.3 Analysis on Joint Noise Sampling

We additionally analyze the effect of our noise sampling method. In part A of Figure 10, we sample
the noise the same as equation x̃1:f

T := cos(π2λ)x
1:f
T + sin(π2λ)δ

1:f
T using sin cos weighting. While

in part B, we modify the weight of the unified noise and the individual noise as

x̃1:f
T := (1− λ)x1:f

T + λδ1:fT (16)

However, this would disrupt the single-frame noise from following normal Gaussian Distribution. As
we can observe, in this way, LDM fails to generate reasonable images.

D.4 Extensions

In this section, we demonstrate the extensibility of our approach with more examples. Inspired by
Phenaki [47] which can generate story-based conditional videos based on a sequence of prompts, we
also apply our method to the same task, which is presented in Figure 11. In Figure 12, we showcase
some results of combining DreamBooth [34] to include personalized concepts in the generated videos.
In Figure 13, we showcase the results of generating videos based on the given first frame by leveraging
DDIM inversion [43].
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"Two superman are fighting."

"The growth of a sapling."

VideoFusion

T2V-Zero

Ours

LVDM

VideoFusion

T2V-Zero

Ours

LVDM

Figure 6: Additional Qualitative Comparisons. In the case of “Two supermen are fighting”, the
LLM vividly decomposes the process of fighting into frames, with the fifth frame depicting “colliding
in a dazzling display of sparks and force”, which is captured in our result. In the case of “the growth
of a sapling”, our result clearly presents the gradual sprouting of a small sapling.
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Ours

T2V-Zero

LVDM

VideoFusion

"Light a match then the match goes out."

"A teddy bear is greeting."

VideoFusion

T2V-Zero

Ours

LVDM

Figure 7: Additional Qualitative Comparisons. In the case of “light a match then the match
goes out”, our method successfully depicts the entire process of a match from lightning, burning to
extinguishing. In the case of “a teddy bear is greeting”, we exploit the world knowledge of LLM [26]
to translate a greeting into a series of specific actions such as waving and smiling.
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"A flower gradully blooms."

"Volcano eruption."

"A dancing mickey."

Figure 8: Additional Qualitative Results. Multiple results based on the same prompts are shown.
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Frame A Frame BInterpolation

Figure 9: Qualitative Results from Interpolation Module. We interpolate 4 frames between each
pair of original neighboring frames. Our interpolation module enables smooth transitions between
two key states.

(A) 

(B)

Figure 10: Analysis on Joint Noise Sampling. Without our proposed sampling, the initial noise at
each single frame would not follow normal Gaussian distribution, resulting in corrupting frames.
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1st prompt: "A flower is blooming"

2nd prompt: "The flower in the rain"

3rd prompt: "The flower gradually freezes"

Figure 11: Extension - Long Video Story. Our method can generate the long video story based on a
sequence of prompts.

"<ccorgi dog> is sitting down."

"A princess is waving her hands, <modern disney style> ."

"<sks mr potato head> is dancing."

Figure 12: Extension - Personalization. Our method can generate videos with user-specific concepts.
The tokens of “ccorgi dog”, “modern disney style”, and “sks mr potato head” are from their respective
personalized models ccorgi-dog, Mo di Diffusion, and Mr Potato Head.
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"Fuji Eruption."DDIM Inversion - "Fuji Mountain."

"Pyramid in the snow."

"Grassland in the storm."

"Pyramid"

"Grassland"

Figure 13: Extension - Making an Image Move. Our method can generate videos based on the first
frame and its corresponding prompt by combining our method with DDIM inversion [43].
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Figure 14: Interface of surveys from the user study.
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