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Abstract

Gromov-Wasserstein (GW) distance is a powerful tool for comparing and aligning
probability distributions supported on different metric spaces. Recently, GW has
become the main modeling technique for aligning heterogeneous data for a wide
range of graph learning tasks. However, the GW distance is known to be highly
sensitive to outliers, which can result in large inaccuracies if the outliers are given
the same weight as other samples in the objective function. To mitigate this
issue, we introduce a new and robust version of the GW distance called RGW.
RGW features optimistically perturbed marginal constraints within a Kullback-
Leibler divergence-based ambiguity set. To make the benefits of RGW more
accessible in practice, we develop a computationally efficient and theoretically
provable procedure using Bregman proximal alternating linearized minimization
algorithm. Through extensive experimentation, we validate our theoretical results
and demonstrate the effectiveness of RGW on real-world graph learning tasks, such
as subgraph matching and partial shape correspondence.

1 Introduction

Gromov-Wasserstein distance (GW) [26, 28] acts as a main model tool in data science to compare
data distributions on unaligned metric spaces. Recently, it has received much attention across a host
of applications in data analysis, e.g., shape correspondence [24, 31, 36, 27], graph alignment and
partition [37, 38, 15, 18, 14, 44], graph embedding and classification [41, 43], unsupervised word
embedding and translation [3, 19], generative modeling across incomparable spaces [8, 45].

In practice, the robustness of GW distance suffers heavily from its sensitivity to outliers. Here,
outliers mean the samples with large noise, which usually are far away from the clean samples
or have different structures from the clean samples. The hard constraints on the marginals in the
Gromov-Wasserstein distance require all the mass in the source distribution to be entirely transported
to the target distribution, making it highly sensitive to outliers. When the outliers are weighted
similarly as other clean samples, even a small fraction of outliers corrupted can largely impact the
GW distance value and the optimal coupling, which is unsatisfactory in real-world applications.

To overcome the above issue, some recent works are trying to relax the marginal constraints of
GW distance. [33] introduces a L1 relaxation of mass conservation of the GW distance. However,
this reformulation replaces the strict marginal constraint that the transport plan should be a joint
distribution with marginals as specific distributions by the constraint that only requires the transport
plan to be a joint distribution, which can easily lead to over-relaxation. On another front, [10]
propose a so-called partial GW distance (PGW), which only transports a fraction of mass from
source distribution to target distribution. The formulation of PGW is limited to facilitating mass

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



GW = 0.0

Gromov-Wasserstein

(a) Clean dataset

GW = 0.148

Gromov-Wasserstein

(b) Dataset with outliers

RGW = 0.002

Robust Gromov-Wasserstein

(c) Dataset with outliers

Figure 1: Visualization of Gromov-Wasserstein couplings between two shapes, with the source in
blue and the target in orange. In (a), the GW coupling without outliers is shown. In (b), the coupling
with 10% outliers added to the target distribution is depicted. The sensitivity of GW to outliers is
evident from the plot. In (c), we present the coupling generated by our proposed RGW formulation,
which effectively disregards outliers and closely approximates the true GW distance.

destruction, which restricts its ability to handle situations where outliers exist predominantly on
one side. A formulation that allows both mass destruction and creation is proposed in [35] called
unbalanced GW (UGW). The UGW relaxes the marginal constraint via adding the quadratic φ-
divergence as the penalty function in the objective function and extends GW distance to compare
metric spaces equipped with arbitrary positive measures. Additionally, [40] proved that UGW is
robust to outliers and can effectively remove the mass of outliers with high transportation costs.
However, UGW is sensitive to the penalty parameter as it balances the reduction of outlier impact
and the control of marginal distortion in the transport plan. On the computational side, an alternate
Sinkhorn minimization method is proposed to calculate the entropy-regularized UGW. Note that the
algorithm does not exactly solve UGW but approximates the lower bound of the entropic regularized
UGW instead. From a statistical viewpoint, these works do not establish a direct link between the
reformulated GW distance and the GW distance in terms of uncontaminated levels.

In this work, we propose the robust Gromov-Wasserstein (RGW) to estimate the GW distance
robustly when dealing with outliers. To achieve this, RGW simultaneously optimizes the transport
plan and selects the best marginal distribution from a neighborhood of the given marginal distributions,
avoiding contaminated distributions. Perturbed marginal distributions help to re-weight the samples
and lower the weight assigned to the outliers. The introduction of relaxed distributions to handle
outliers draws inspiration from robust OT techniques [4, 29, 23]. Unlike robust OT, which is convex,
RGW is non-convex, posing algorithmic challenges. This idea is also closely related to optimistic
modelings of distribution ambiguity in data-driven optimization, e.g., upper confidence bound in the
multi-armed bandit problem and reinforcement learning [7, 30, 1], data-driven distributionally robust
decision-making with outliers [21, 9], etc.

Moreover, inspired by UGW, RGW relaxes the marginal constraint via adding the Kullback-Leibler
(KL) divergence between the marginals of the transport plan and the perturbed distributions as the
penalty function in the objective function to lessen the impact of the outliers further. Instead of
utilizing the quadratic KL divergence as employed in unbalanced GW, we opt for KL divergence
due to its computational advantages. It allows for convex subproblems with closed-form solutions,
as opposed to the linearization required for non-convex quadratic KL divergence, which could be
challenging algorithmically. Furthermore, we leverage the convexity of KL divergence to establish
the statistical properties of RGW, leading to an upper bound by the true GW distance with explicit
control through marginal relaxation parameters and marginal penalty parameters. This statistical
advantage is disrupted by the non-convex nature of quadratic KL divergence. Additionally, KL
divergence aligns with our goal of outlier elimination and is less sensitive to outliers compared to
quadratic KL divergence, which is more outlier-sensitive due to its quadratic nature. Overall, RGW
combines the introduction of perturbed marginal distributions with the relaxation of hard marginal
constraints to achieve greater flexibility, allowing control over marginal distortion through marginal
penalty parameters and reduction of outlier impact using marginal relaxation parameters.

To realize the modeling benefits of RGW, we further propose an efficient algorithm based on the
Bregman proximal alternating linearized minimization (BPALM) method. The updates in each
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iteration of BPALM can be computed in a highly efficient manner. On the theoretical side, we
prove that the BPALM algorithm converges to a critical point of the RGW problem. Empirically,
we demonstrate the effectiveness of RGW and the proposed BPALM algorithm through extensive
numerical experiments on subgraph alignment and partial shape correspondence tasks. The results
reveal that RGW surpasses both the balanced GW-based method and the reformulations of GW,
including PGW and UGW.

Our Contributions We summarize our main contributions as follows:

• We develop a new robust model called RGW to alleviate the impact of outliers on the GW distance.
The key insight is to simultaneously optimize the transport plan and perturb marginal distributions
in the most efficient way.

• On the statistical side, we demonstrate that the robust Gromov-Wasserstein is bounded above by
the true GW distance under the Huber ϵ-contamination model.

• On the computational side, we propose an efficient algorithm for solving RGW using the BPALM
method and prove that the algorithm converges to a critical point of the RGW problem.

• Empirical results on subgraph alignment and partial shape correspondence tasks demonstrate the
effectiveness of RGW. This is the first successful attempt to apply GW-based methods to partial
shape correspondence, a challenging problem pointed out in [36].

2 Problem Formulation

In this section, we review the definition of Gromov-Wasserstein distance and formally formulate the
robust Gromov-Wasserstein. Following that, we discuss the statistical properties of the proposed
robust Gromov-Wasserstein model under the Huber ϵ-contamination model.

For the rest of the paper, we will use the following notation. Let (X, dX) be a complete separable
metric space and denote the finite, positive Borel measure on X by M+(X). Let P(X) ⊂ M+(X)
denotes the space of Borel probability measures on X . We use ∆n to denote the simplex in Rn. We
use 1n and 1n×m to denote the n-dimensional all-one vector and n×m all-one matrix. We use Sn

to denote the set of n× n symmetric matrice. The indicator function of set C is denoted as IC(·).

2.1 Robust Gromov-Wasserstein

The Gromov-Wasserstein (GW) distance aims at matching distributions defined in different metric
spaces. It is defined as follows:

Definition 2.1 (Gromov-Wasserstein). Suppose that we are given two unregistered complete separable
metric spaces (X, dX), (Y, dY ) accompanied with Borel probability measures µ, ν respectively. The
GW distance between µ and ν is defined as

inf
π∈Π(µ,ν)

∫∫
|dX(x, x′)− dY (y, y

′)|2dπ(x, y)dπ(x′, y′),

where Π(µ, ν) is the set of all probability measures on X × Y with µ and ν as marginals.

As shown in the definition, the sensitivity to outliers of Gromov-Wasserstein distance is due to its
hard constraints on marginal distributions. This suggests relaxing the marginal constraints such
that the weight assigned to the outliers by the transport plan can be small. To do it, we invoke
the Kullback-Leibler divergence, defined as dKL(α, µ) =

∫
X
α(x) log (α(x)/µ(x)) dx, to soften

the constraint on marginal distributions. We also introduce an optimistically distributionally robust
mechanism to perturb the marginal distributions and reduce the weight assigned to outliers. Further
details on this mechanism will be discussed later.

Definition 2.2 (Robust Gromov-Wasserstein). Suppose that we are given two unregistered com-
plete separable metric spaces (X, dX), (Y, dY ) accompanied with Borel probability measures µ, ν
respectively. The Robust GW between µ and ν is defined as

GWrob
ρ1,ρ2

(µ, ν) := min
α∈P(X), β∈P(Y )

F (α, β)

s.t. dKL(µ, α) ≤ ρ1, dKL(ν, β) ≤ ρ2,
(1)
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where F (α, β) =

inf
π∈M+(X×Y )

∫∫
|dX(x, x′)− dY (y, y

′))|2dπ(x, y)dπ (x′, y′) + τ1dKL(π1, α) + τ2dKL(π2, β),

and (π1, π2) are two marginals of the joint distribution π, defined by π1(A) = π(A × Y ) for any
Borel set A ⊂ X and π2(B) = π(X ×B) for any Borel set B ⊂ Y .

The main idea of our formulation is to optimize the transport plan and perturbed distribution variables
in the ambiguity set of the observed marginal distributions jointly. This formulation aims to find the
perturbed distributions that approximate the clean distributions and compute the transport plan based
on the perturbed distributions. However, incorporating the constraints of equal marginals between
the transport plan π and the perturbed distributions α and β directly poses challenges in developing
an algorithm due to potential non-smoothness issues. Inspired by [35], we address this challenge by
relaxing these marginal constraints and incorporating the KL divergence terms, denoted as dKL(π1, α)
and dKL(π2, β), into the objective function as penalty functions. Different from [35], we use KL
divergence instead of quadratic KL divergence due to its joint convexity, which is more amenable to
algorithm development, as quadratic KL divergence is typically non-convex. Besides, transforming
the hard marginal constraints into penalty functions can further lessen the impact of outliers on the
transport plan.

Our new formulation extends the balanced GW distance and can recover it by choosing ρ1 =
ρ2 = 0 and letting τ1 and τ2 tend to infinity. When properly chosen, ρ1 and ρ2 can encompass the
clean distributions within the ambiguity sets. In this scenario, the relaxed reformulation closely
approximates the original GW distance in a certain manner. Building on this concept, we prove that
RGW can serve as a robust approximation of the GW distance without outliers, given some mild
assumptions on the outliers.

2.2 Robustness Guarantees

Robust Gromov-Wasserstein aims at mitigating the sensitivity of the GW distance to outliers, which
can result in large inaccuracies if the outliers are given the same weight as other samples in the
objective function. Specifically, RGW is designed to address the issue of the GW distance exploding
as the distance between the clean samples and the outliers goes to infinity. In general, even a small
number of outliers can cause the GW distance to change dramatically when added to the marginal
distributions. To formalize this, consider the Huber ϵ-contamination model popularized in robust
statistics [22, 11, 12]. In that model, a base measure µc is contaminated by an outlier distribution µa

to obtain a contaminated measure µ,

µ = (1− ϵ)µc + ϵµa. (2)

Under this model, data are drawn from µ defined in (2).

Under the assumption of the Huber ϵ-contamination model, it can be demonstrated that by selecting
suitable values of ρ1 and ρ2, the robust Gromov-Wasserstein distance ensures that outliers are unable
to substantially inflate the transportation distance. For robust Gromov-Wasserstein, we have the
following bound:

Theorem 2.3. Let µ and ν be two distributions corrupted by fractions ϵ1 and ϵ2 of outliers, respec-
tively. Specifically, µ is defined as (1− ϵ1)µc + ϵ1µa, and ν is defined as (1− ϵ2)νc + ϵ2νa, where
µc and νc represent the clean distributions, and µa and νa represent the outlier distributions. Then,

GWrob
ρ1,ρ2

(µ, ν) ≤ GW(µc, νc) + max

(
0, ϵ1 −

ρ1
dKL(µa, µc)

)
τ1dKL(µc, µa)

+ max

(
0, ϵ2 −

ρ2
dKL(νa, νc)

)
τ2dKL(νc, νa).

In Appendix B, we provide a proof that constructs a feasible transport plan and relaxed marginal
distributions. By relaxing the strict marginal constraints, we can find a feasible transport plan that
closely approximates the transport plan between the clean distributions and obtain relaxed marginal
distributions that approximate the clean distributions.
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The derived bound indicates that robust Gromov-Wasserstein provides a provably robust estimate
under the Huber ϵ-contamination model. If the fraction of outliers is known, the upper bound for the
robust GW is determined by the true Gromov-Wasserstein distance, along with additional terms that
account for the KL divergence between the clean distribution and the outlier distribution for both µ
and ν. The impact of this factor is determined by the extent of relaxation in the marginal distributions
ρ1 and ρ2. By carefully choosing ρ1 = ϵ1dKL(µa, µc) and ρ2 = ϵ2dKL(νa, νc), we can tighten the
upper bound on the robust GW value, while still keeping it below the original GW distance (excluding
outliers). Importantly, substituting these values of ρ1 and ρ2 yields GWrob

ρ1,ρ2
(µ, ν) ≤ GW(µc, νc),

indicating that the robust GW between the contaminated distribution µ and ν is upper bounded by the
original GW distance between the clean distribution µc and νc.
Remark 2.4. The following inequality for UGW under the Huber ϵ-contamination model can be
derived using the same techniques as in Theorem 2.3:

UGW(µ, ν) ≤ GW(µc, νc) + τ1d
⊗
KL(µc, µ) + τ2d

⊗
KL(νc, ν).

We observe that the terms d⊗KL(µc, µ) and d⊗KL(µc, µ) cannot be canceled out unless τ1 and τ2 are set
to zero, resulting in over-relaxation. However, RGW allows us to control the error terms dKL(µc, µa)
and dKL(νc, νa) through the marginal relaxation parameters ρ1 and ρ2.

3 Proposed Algorithm

3.1 Problem Setup

To start with our algorithmic developments, we consider the discrete case for simplicity and prac-
ticality, where µ and ν are two empirical distributions, i.e., µ =

∑n
i=1 µiδxi

and ν =
∑m

j=1 νjδyj
.

Denote D ∈ Sn, Dik = dX(xi, xk) and D̄ ∈ Sm and D̄jl = dY (yj , yl). We construct a 4-way
tensor as follows:

L(D, D̄) :=
(
|dX (xi, xk)− dY (yj , yl)|2

)
i,j,k,l

.

We define the tensor-matrix multiplication as

(L ⊗ T )ij :=

∑
k,ℓ

Li,j,k,ℓTk,ℓ


i,j

.

Then, the robust GW admits the following reformulation:

min
π,α,β

⟨L(D, D̄)⊗ π, π⟩+ τ1dKL(π1, α) + τ2dKL(π2, β)

s.t. dKL(µ, α) ≤ ρ1, dKL(ν, β) ≤ ρ2,

α ∈ ∆n, β ∈ ∆m, π ≥ 0.

(3)

Here, π1 = π1m and π2 = πT1n.

3.2 Bregman Proximal Alternating Linearized Minimization (BPALM) Method

As Problem (3) is non-convex and involves three variables, we employ BPALM [5, 2] to solve it. By
choosing the KL divergence as Bregman distance, the updates of this algorithm are given by:

πk+1 = argmin
π≥0

{
⟨L(D, D̄)⊗ πk, π⟩+ τ1dKL(π1, α

k) + τ2dKL(π2, β
k) +

1

tk
dKL(π, π

k)

}
, (4)

αk+1 = argmin
α∈∆n

dKL(µ,α)≤ρ1

{
dKL(π

k+1
1 , α) +

1

ck
dKL(α

k, α)

}
, (5)

βk+1 = argmin
β∈∆m

dKL(ν,β)≤ρ2

{
dKL(π

k+1
2 , β) +

1

rk
dKL(β

k, β)

}
. (6)

Here, tk, ck, and rk are stepsizes in BPALM.
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In our algorithm updates, we employ distinct proximal operators for π and α (and β). The use
of dKL(π, π

k) in π-subproblem (4) allows for the application of the Sinkhorn algorithm, while the
introduction of dKL(α

k, α) in α-subproblem (5) facilitates a closed-form solution, which we will
detail in the following part.

To solve the π-subproblem, we can utilize the Sinkhorn algorithm for the entropic regularized
unbalanced optimal transport problem. This algorithm, which has been previously introduced in [13,
32], is well-suited for our needs. As for the α-subproblem, we consider the case where ρ1 is strictly
larger than 0. Otherwise, when ρ1 = 0, α should simply equal µ, making the subproblem unnecessary.
To solve the α-subproblem, we attempt to find the optimal dual multiplier w∗. Specifically, consider
the problem:

min
α∈∆n

dKL(π
k+1
1 , α) +

1

ck
dKL(α

k, α) + w(dKL(µ, α)− ρ1). (7)

Let α̂(w) represent the optimal solution to (7), and we define the function p : R+ → R by p(w) =
dKL(µ, α̂(w)) − ρ1. We prove the convexity, differentiability, and monotonicity of p, which are
crucial for developing an efficient algorithm for (5) later.
Proposition 3.1. Problem (7) has a closed-form solution

α̂(w) =
πk+11m + 1

ck
αk + wµ∑

ij π
k+1
ij + 1

ck
+ w

.

If w satisfies (i) w = 0 and p(w) ≤ 0, or (ii) w > 0, p(w) = 0, then α̂(w) is the optimal
solution to the α-subproblem (5). Moreover, p(·) is convex, twice differentiable, and monotonically
non-increasing on R+.

Given Proposition 3.1, we begin by verifying p(0) ≤ 0. If this condition is not met, and given that
p(0) > 0 while limw→+∞ p(w) = −ρ1 < 0, it implies that p possesses at least one root within R+.
The following proposition provides the framework to seek the root of p by employing Newton’s
method, with the initialization set at 0. Hence, the α-subproblem can be cast to search a root of p in
one dimension, in which case it can be solved efficiently.
Proposition 3.2. Let p(·) : I → R be a convex, twice differentiable, and monotonically non-
increasing on the interval I ⊂ R. Assume that there exists an x̃, x̄ ∈ I such that p(x̃) > 0 and
p(x̄) < 0. Then p has a unique root on I , and the sequence obtained from Newton’s method with
initial point x0 = x̃ will converge to the root of p.

Since the β-subproblem shares the same structure as the α-subproblem, we can apply this method to
search for the optimal solution to the β-subproblem.

3.3 Convergence Analysis

To illustrate the convergence result of BPALM, we consider the compact form for simplicity:
min
α,β,π

F (π, α, β) = f(π) + q(π) + g1(π, α) + g2(π, β) + h1(α) + h2(β),

where f(π) = ⟨L(D, D̄) ⊗ π, π⟩, q(π) = I{π≥0}(π), g1(π, α) = τ1dKL(π1m, α), g2(π, β) =

τ2dKL(π
T1n, β), h1(α) = I{α∈∆n,dKL(µ,α)≤ρ1}(α), and h2(β) = I{β∈∆m,dKL(ν,β)≤ρ2}(β).

The following theorem states that any limit point of the sequence generated by BPALM belongs to
the critical point set of problem (3).
Theorem 3.3 (Subsequence Convergence). Suppose that in Problem (1), the step size tk in (4)
satisfies 0 < t ≤ tk < t̄ ≤ σ/Lf for k ≥ 0 where t, t̄ are given constants and Lf is the gradient
Lipschitz constant of f . The step size ck in (5) and rk in (6) satisfy 0 < r ≤ ck, rk < r̄ for k ≥ 0
where r, r̄ are given constants. Any limit point of the sequence of solutions {πk, αk, βk}k≥0 belongs
to the critical point set X , where X is defined by(π, α, β) :

0 ∈ f(π) + ∂q(π) +∇πg1(π, α) +∇πg2(π, β),

0 ∈ ∇αg1(π, α) + ∂h1(α),

0 ∈ ∇βg2(π, β) + ∂h2(β),

(π, α, β) ∈ Rn×m × Rn × Rm

 .

For the sake of brevity, we omit the proof. We refer the reader to Appendix C for further details.

6



4 Experiment Results

In this section, we present comprehensive experimental results to validate the effectiveness of
our proposed RGW model and BPALM algorithm in various graph learning tasks, specifically
subgraph alignment and partial shape correspondence. Traditionally, balanced GW has been applied
successfully in scenarios where the source and target graphs have similar sizes. However, in our
approach, we treat the missing part of the target graph as outliers and leverage RGW for improved
performance. All simulations are conducted in Python 3.9 on a high-performance computing server
running Ubuntu 20.10, equipped with an Intel(R) Xeon(R) Silver 4214R CPU. Our code is available
at https://github.com/lmkong020/outlier-robust-GW.

4.1 Partial Shape Correspondence

In this subsection, we first investigate a toy matching problem in a 2D setting to support and validate
our theoretical insights and results presented in Section 2. Figure 2 (a) illustrates an example where
we aim to map a two-dimensional shape without symmetries to a rotated version of the same shape
while accounting for outliers in the source domain. Here, we sample 300 points from the source
shape and 400 points from the target shape. Additionally, we introduce 50 outliers by randomly
adding points from a discrete uniform distribution on [−3,−2.5]× [0, 0.5] to the source domain. The
distance matrices, D and D̄ are computed using pairwise Euclidean distances.

Figures 2 provide visualizations of the coupling matrices and objective values for all the models,
highlighting the matching results. In Figure 2(c), it is evident that even a small number of outliers
has a significant impact on the coupling and leads to an increased estimated GW distance. While
unbalanced GW and partial GW attempt to handle outliers to some extent, they fall short in achieving
accurate mappings. On the other hand, our robust GW formulation, RGW, effectively disregards
outliers and achieves satisfactory performance. Additionally, the objective value of RGW closely
approximates the true GW distance without outliers, as indicated by Theorem 2.3, approaching zero.

3 2 1 0 1
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Figure 2: (a): 2D shape geometry of the source and target; (b)-(f): visualization of ground truth and
the matching results of balanced GW, unbalanced GW, partial GW, and robust GW.
We evaluate the matching performance of RGW on the TOSCA dataset [6, 34] for partial shape
correspondence. For the initial estimation of the transport plan in both RGW and PGW, we utilize
the partial functional map method [34], employing 30 eigenfunctions. This method establishes an
initial matching relationship between the source and target shapes. This method establishes an initial
matching relationship between the source and target shapes by setting πik to 1 for matching pairs
(i, k) and 0 otherwise. The resultant transport plan is scaled by ∥π∥1 =

∑
ij πij . UGW is not suitable

for this large-scale task due to its long execution time. As shown in Figure 3, RGW outperforms
PGW, and it enhances the performance of the initial point.

4.2 Subgraph Alignment

The subgraph alignment problem, which involves determining the isomorphism between a query
graph and a subgraph of a larger target graph, has been extensively studied [16, 20]. While the
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(a) Shape Geometry (b) Ground Truth

(e) Robust GW(d) Partial GW(c) Partial Functional Map

Figure 3: (a): 3D shape geometry of the source and target; (b)-(e): visualization of ground truth,
initial point obtained from the partial functional map, and the matching results of PGW and RGW.

restricted quadratic assignment problem is commonly used for graphs of similar sizes, the GW
distance provides an optimal probabilistic correspondence that preserves the isometric property. In
the subgraph alignment context, the nodes in the target graph, excluding those in the source graph,
can be considered outliers, making the RGW model applicable to this task. In our comparison, we
evaluate RGW against various methods, including unbalanced GW, partial GW, semi-relaxed GW
(srGW) [42], RGWD [25], and methods for computing balanced GW such as FW [39], BPG [46],
SpecGW [15], eBPG [36], and BAPG [24].

Database Statistics We evaluate the methods on synthetic and real databases. In the synthetic
database, we generate target graphs Gt using Barabasi-Albert models with scales ranging from 100
to 500 nodes. The source graphs Gs are obtained by sampling connected subgraphs of Gt with a
specified percentage of nodes. This process results in five synthetic graph pairs for each setup, totaling
200 graph pairs. The Proteins and Enzymes biological graph databases from [15] are also used,
following the same subgraph generation routine. For the Proteins database, we evaluate the accuracy
of matching the overlap between two subgraphs with 90% overlap and between a subgraph and the
entire graph, presented in the "Proteins-2" and "Proteins-1" columns, respectively. We compute
the matching accuracy by comparing the predicted correspondence set Spred to the ground truth
correspondence set Sgt, with accuracy calculated as Acc = |Sgt ∩ Spred|/|Sgt| × 100%. In addition,
we also evaluate our methods on the Douban Online-Offline social network dataset, which consists of
online and offline graphs, representing user interactions and presence at social gatherings, respectively.
The online graph includes all users from the offline graph, with 1,118 users serving as ground truth
alignments. Node locations are used as features in both graphs. In line with previous works [18, 37],
we gauge performance using the Hit@k metric, which calculates the percentage of nodes in set Vt

where the ground truth alignment includes Vs among the top-k candidates.

Table 1: Comparison of the average matching accuracy (%) and wall-clock time (seconds) on
subgraph alignment of 50% subgraph on datasets Synthetic, Proteins and Enzymes and Hit@1 and
Hit@10 of dataset Douban.

Method Synthetic Proteins-1 Proteins-2 Enzymes Douban
Acc Time Acc Time Acc Time Acc Time Hit@1 Hit@10

FW 2.27 18.39 16.00 27.05 26.15 60.34 15.47 9.57 17.97 51.07
SpecGW 1.78 3.72 12.06 11.07 42.64 12.85 10.69 3.96 2.68 9.83

eBPG 3.71 85.31 19.88 1975.12 32.15 9645.05 21.58 1219.81 0.08 0.53
BPG 15.41 24.67 29.30 118.26 61.26 80.39 32.49 70.42 72.72 92.39

BAPG 48.89 27.95 30.98 122.13 66.84 16.49 35.64 16.41 72.18 92.58

srGW 1.60 152.01 21.30 63.00 12.08 172.48 24.13 19.68 4.03 11.54
RGWD 16.68 955.40 27.94 4396.41 59.69 3586.56 30.35 2629.00 4.11 16.46
UGW 89.88 176.24 25.72 4026.93 67.30 1853.82 43.73 1046.29 0.09 0.72
PGW 2.28 479.99 13.94 544.79 20.08 348.44 11.43 212.09 18.24 37.03

RGW 94.44 361.44 53.30 834.76 69.38 466.91 63.43 293.84 75.58 96.24
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Figure 4: Graph Alignment performance for selected methods in relation to varying ratios of
overlapping subgraphs on Synthetic, Protein, and Enzymes databases.

Parameters Setup We use unweighted symmetric adjacency matrices D and D̄ as input distance
matrices. SpecGW employs the heat kernel (exp(−L)) with the normalized graph Laplacian matrix
L. Both µ and ν are set as uniform distributions. For SpecGW, BPG, eBPG, BAPG, srGW, and
RGWD, we follow their respective paper setups. FW is implemented using the default PythonOT
package. UGW selects the best results from regularization parameter sets {0.5, 0.2, 0.1, 0.01, 0.001}
and marginal penalty parameter sets {0.1, 0.01, 0.001}. PGW reports the best results in the range
of transported mass from 0.1 to 0.9. RGW sets τ1 = τ2 = 0.1 and selects the best results from the
ranges {0.05, 0.1, 0.2, 0.5} for marginal relaxation parameters and {0.01, 0.05, 0.1, 0.5, 1} for step
size parameters (tk, ck, rk). The transport plan initialization uses different approaches depending
on the dataset. For the Synthetic, Proteins, and Enzymes datasets, we employ the 1n×m/(nm)
approach. For the Douban Online-Offline dataset, we initialize the transport plan using classical
optimal transport conducted on the feature space. Additionally, for all datasets, we initialize α and β
with uniform distributions.

Result of All Methods Table 1 and Figure 4 provide a comprehensive comparison of matching
accuracy and computation time across various methods on the Synthetic, Proteins, and Enzymes
datasets. Notably, RGW demonstrates superior accuracy compared to other methods, while maintain-
ing comparable computation time with UGW and PGW. On the other hand, methods for computing
the balanced GW exhibit poor performance on all datasets, particularly on the extensive Synthetic
graph database. This can be attributed to their struggle in fulfilling the hard marginal constraint on the
source side and addressing the presence of outliers. Furthermore, the introduction of local minima in
the balanced GW problem due to partial source graph structures contributes to the suboptimal results.
UGW performs well with low target graph partiality but suffers significant degradation as partiality
increases. PGW, aimed at mitigating outlier impact, inadvertently affects the matching between clean
samples by reducing the mass transported from the source domain. In addition, RGW achieved the
best results with the highest Hit@1 and Hit@10 on the Douban Online-Offline dataset, improving
performance from 4.04% and 14.9% respectively for the initial point created by features.
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Figure 5: Sensitivity analysis of ρ with fixed
τ = 0.1 on the Enzymes database, and sensitivity
analysis of τ with fixed ρ = 0.2 on the Synthetic,
Proteins, and Enzymes databases.

Selection of Hyperparameters ρ and τ The
hyperparameters ρ1, ρ2, τ1, and τ2 in our for-
mulation serve distinct roles. Specifically, ρ1
and ρ2 control the extent of marginal relaxation,
while τ1 and τ2 act as the marginal penalty pa-
rameters. As indicated by Theorem 2.3, we have
the flexibility to fix the value of τ and adjust ρ
to accommodate outlier effects. To determine
optimal hyperparameter values, we conduct two
analyses. First, we examine the effect of varying
ρ while maintaining a fixed subgraph node ratio
and constant τ on the Enzymes dataset. Second,
we adjust τ while holding ρ constant and assess
the impact across the Synthesis, Proteins, and
Enzymes datasets in the task of matching a 50%
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subgraph to the entire graph. In Figure 5, the left side demonstrates that while keeping the ratio and
τ fixed but varying ρ, accuracy diminishes when ρ becomes either excessively large or too small.
However, within the range of 0.05 to 1, accuracy remains resilient, highlighting the mitigating effect
of marginal relaxation on outlier influence. Notably, accuracy significantly improves when ρ falls
within the range of 0.05 to 1 compared to the scenario with ρ = 0, thus affirming the significance
of marginal relaxation in our model. A similar trend is observed for τ on the right side of Figure 5,
where maintaining a fixed ratio and ρ while adjusting τ results in stable accuracy within the range of
0.1 to 1 but declining beyond this range. Consequently, in RGW computations, we can initially set ρ
to 0.2 and τ to 0.1 by default and subsequently adjust ρ based on the outlier ratio: increasing it for a
large ratio and decreasing it for a small ratio.

4.3 Tightness of the Bound in Theorem 2.3

Our primary focus is on scenarios where the GW distance between clean samples is nearly zero or
zero due to noise, such as in partial shape correspondence and subgraph alignment tasks. In such
cases, it is possible to find an isometric mapping from the query subgraph to a portion of the entire
graph. By appropriately selecting the value of ρ, as discussed in Section 2.2, the upper bound in RGW
becomes the GW distance between clean samples, which is zero. As RGW is always nonnegative,
this upper bound is tight in this context.

To empirically validate this, we conducted experiments on the toy example in Section 4.1, and
Figure 6 (a) illustrates the function values of PGW, UGW, and RGW with varying outlier ratios. The
results confirm that the value of RGW can remain close to zero as the ratio of outliers increases.
Additionally, Figure 6 (b) shows the function value of RGW and its upper bound as ρ varies. Both
the RGW value and its upper bound decrease, converging to zero as ρ increases. This observation
provides empirical support for Theorem 2.3. Regarding UGW and its upper bound with changing
τ , we observed that both the UGW value and its upper bound increase as τ becomes larger, as
shown in Figure 6 (c). Unlike RGW, UGW’s τ must strike a balance between reducing outlier
impact and preserving marginal distortion in the transport plan. This demands a careful balance and
caution against setting τ excessively close to zero, which could lead to over-relaxation and potentially
deteriorate the performance.
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Figure 6: (a) Function values of PGW, UGW, and RGW for varying ϵ; (b) Function value of RGW
and its upper bound for different ρ; (c) Function value of UGW and corresponding upper bound for
different τ .

5 Conclusion

In this paper, we introduce RGW, a robust reformulation of Gromov-Wasserstein that incorporates
distributionally optimistic modeling. Our theoretical analysis demonstrates its robustness to outliers,
establishing RGW as a reliable estimator. We propose a Bregman proximal alternating linearized
minimization method to efficiently solve RGW. Extensive numerical experiments validate our the-
oretical results and demonstrate the effectiveness of the proposed algorithm. Regarding the robust
estimation of Gromov-Wasserstein, a natural question is whether we can recover the transport plan
from the RGW model. On the computational side, our algorithm suffers from the heavy computation
cost due to the use of the unbalanced OT as our subroutine, which limits its application in large-
scale real-world settings. To address this issue, a natural future direction is to develop single-loop
algorithms to leverage the model benefits of robust GW for real applications.
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A Organization of the Appendix

We organize the appendix as follows:

• The proof details of Theorem 2.3 and discussion of Remark 2.4 are given in Section B.
• The proof details of the algorithm, including the properties of p, the convergence analysis of

Newton’s method, and Bregman proximal alternating linearized minimization method are
collected in C.

• Additional experiment results are summarized in Section D.

B Proof of Robust Guarantee in Section 2.2

B.1 Proof of Theorem 2.3

Proof. GWrob
ρ1,ρ2

(µ, ν) is defined as

GWrob
ρ1,ρ2

(µ, ν) = inf
α∈P(X), β∈P(Y )

inf
π∈M+(X×Y )

∫∫
|dX(x, x′)− dY (y, y

′))|2dπ(x, y)dπ (x′, y′)+

τ1dKL(π1, α) + τ2dKL(π2, β)

s.t. dKL(µ, α) ≤ ρ.

Consider πc, the optimal transport plans for GW(µc, νc). Notably, πc serves as a feasible solution for
GWrob

ρ1,ρ2
(µ, ν). Consequently, we can deduce that:

GWrob
ρ1,ρ2

(µ, ν) ≤ inf
α∈P(X), β∈P(Y )

∫∫
|dX(x, x′)− dY (y, y

′))|2dπc(x, y)dπc (x
′, y′)+

τ1dKL((πc)1, α) + τ2dKL((πc)2, β)

s.t. dKL(µ, α) ≤ ρ1, dKL(ν, β) ≤ ρ2
= GW(µc, νc) + inf

α∈P(X), dKL(µ,α)≤ρ1

dKL(µc, α) + inf
β∈P(Y ), dKL(ν,β)≤ρ2

dKL(νc, β).

To establish an upper bound for GWrob
ρ1,ρ2

(µ, ν), let us begin by addressing the following problem:
inf

α∈P(X), dKL(µ,α)≤ρ1

dKL(µc, α) (8)

We consider the distribution of the form (1 − γ)µ + γµc, for γ ∈ [0, 1]. Then we prove that if

γ ≤ min

(
ρ1

ϵ1dKL(µa, µc)
, 1

)
, then (1− γ)µ+ γµc is a feasible solution for problem (8).

By the joint convexity of KL divergence, we have
dKL (µ, (1− γ)µ+ γµc) ≤ γdKL (µ, µc)

= γdKL ((1− ϵ1)µc + ϵ1µa, µc)

≤ γϵ1dKL(µa, µc)

≤ ρ1.

Therefore,
dKL (µc, (1− γ)µ+ γµc) ≤ (1− γ)dKL (µc, µ)

= (1− γ)dKL (µc, (1− ϵ1)µc + ϵ1µa)

≤ (1− γ)ϵ1dKL(µc, µa)

The largest value γ can take is
ρ1

ϵ1dKL(µa, µc)
. This gives

inf
α∈P(X), dKL(µ,α)≤ρ1

dKL(µc, α) ≤ max

(
0, 1− ρ1

ϵ1dKL(µa, µc)

)
ϵ1dKL(µc, µa).

Similarly, we can prove that

inf
β∈P(Y ), dKL(ν,β)≤ρ2

dKL(νc, β) ≤ max

(
0, 1− ρ2

ϵ2dKL(νa, νc)

)
ϵ2dKL(νc, νa).

This completes the proof.
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B.2 Proof and Discussion of Remark 2.4

Utilizing the same notations as in the proof of Theorem 2.3, and considering that πc is a feasible
solution to the UGW problem, substituting it directly leads to the desired result.

Furthermore, referring to [40, Theorem 1] and adapting the notations to our framework, we have the
following property: specifically, when considering only µ is corrupted with outliers, characterized by
µ = (1−ϵ1)µc+ϵ1µa, while ν = νc. If we let δ = 2(τ1+τ2)ϵ1, and K = M+ 1

M UGW(µc, ν)+δ,
where M represents the transported mass between clean data and ∆∞ signifies the maximal deviation
between the contaminated source and the target, then the following inequality holds:

UGW(µ, ν) ≤ (1− ϵ1)UGW(µc, ν) + δM

[
1− exp

(
−∆∞(1 +M) +K

δM

)]
.

Given that UGW(µc, ν) ≤ GW(µc, ν), we can derive the following relationship:

UGW(µ, ν) ≤ (1− ϵ1)GW(µc, ν) + δM

[
1− exp

(
−
∆∞(1 +M) +M + 1

M
GW(µc, ν) + δ

δM

)]
. (9)

Comparing this result to Remark 2.4, (9) also incorporates GW(µc, ν) in the exponential term and
M , the transported mass between clean data. These variables may be influenced by the marginal
parameters τ1 and τ2. As a result, finding an optimal choice for τ1 and τ2 to establish a tight
upper bound for UGW using the GW distance between clean samples, as presented in (9), proves
challenging. As outlined in Remark 2.4, it is worth noting that setting τ1 = τ2 = 0 represents the
sole means to attain a tight upper bound. Nevertheless, in real-world applications, this approach is
impractical, as it could lead to over-relaxation and compromise the performance.

C Proof Details of Bregman Proximal Alternating Linearized Minimization
Method for Robust GW

Given a vector x, we use ∥x∥2 to denote its ℓ2 norm. We use ∥X∥F to denote the Frobenius norm of
matrix X . For a convex set C and a point x, we define the distance between C and x as

dist(x,C) = min
y∈C

∥x− y∥2.

C.1 Proof of Proposition 3.1

Proof. Problem (7) can be written as

min
α∈∆n

n∑
i=1

(
(πk+1

1 )i log

(
(πk+1

1 )i
αi

)
− (πk+1

1 )i + αi

)
+

1

ck

k∑
i=1

αk
i log

(
αk
i

αi

)
+w

(
n∑

i=1

µi log

(
µi

αi

)
− ρ1

)
.

We first consider a relaxed problem of the problem above:

min
αT 1n=1

n∑
i=1

(
(πk+1

1 )i log

(
(πk+1

1 )i
αi

)
− (πk+1

1 )i + αi

)
+

1

ck

n∑
i=1

αk
i log

(
αk
i

αi

)
+w

(
n∑

i=1

µi log

(
µi

αi

)
− ρ1

)
.

Consider the Lagrangian function of the relaxed problem

L(α, λ) =

n∑
i=1

(
(πk+1

1 )i log

(
(πk+1

1 )i
αi

)
− (πk+1

1 )i + αi

)
+

1

ck

n∑
i=1

αk
i log

(
αk
i

αi

)
+

w

(
n∑

i=1

µi log

(
µi

αi

)
− ρ1

)
+ λ

(
αT1n − 1

)
.

Let

∂L

∂α
=


− (πk+1

1 )1
α1

+ 1

− (πk+1
1 )2
α2

+ 1
...

− (πk+1
1 )n
αn

+ 1

+
1

ck


−αk

1

α1

−αk
2

α2

...
−αk

n

αn

+ w


−µ1

α1

−µ2

α2

...
−µn

αn

+


λ
λ
...
λ

 = 0.
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Then we obtain that

αi =
(πk+1

1 )i +
1
ck
αk
i + wµi

1 + λ
.

Since
∑n

i=1 αi = 1,
∑n

i=1 α
k
i = 1, and

∑n
i=1 µi = 1, then 1 + λ =

∑
ij π

k+1
ij + 1

ck
+w. Thus, the

optimal solution to the relaxed problem is

α̂(w) =
πk+11m + 1

ck
αk + wµ∑

i,j π
k+1
ij + 1

ck
+ w

.

We can see that α̂(w) ≥ 0. Hence, α̂(w) is also the optimal solution to problem (7).

Since if w satisfies (i) or (ii), (α̂(w), w) is a solution to KKT conditions of problem (5), therefore,
α̂(w) is an optimal solution to problem (5). Next, we prove that p is differentiable when h is relative
entropy. Problem (7) admits the closed-form solution

α̂(w) =
πk+11m + 1

ck
αk + wµ∑

i,j π
k+1
ij + 1

ck
+ w

. (10)

By substituting (10) into p, p(w) can be written as

p(w) =

n∑
i=1

µi log

µi

(∑
i,j π

k+1
ij + 1

ck
+ w

)
(πk+11m)i +

1
ck
αk
i + wµi

− ρ1.

Thus, p is twice differentiable. The first-order derivative and second-order of p are

p′(w) =

n∑
i=1

µi

((
πk+11m

)
i
+ 1

ck
αk
i + µiw

)
− µi

(∑
ij π

k+1
ij + 1

ck
+ w

)
(∑

ij π
k+1
ij + 1

ck
+ w

)(
(πk+11m)i +

1
ck
αk
i + µiw

) ,

and

p′′(w) = −
n∑

i=1

µi

((
πk+11m

)
i
+ 1

ck
αk
i + µiw

)2
− µ2

i

(∑
ij π

k+1
ij + 1

ck
+ w

)2
(∑

ij π
k+1
ij + 1

ck
+ w

)2 (
(πk+11m)i +

1
ck
αk
i + µiw

)2 .

Then we prove that p′(w) ≤ 0 and p′′(w) ≥ 0 for w ≥ 0, so p is monotonically non-increasing and
convex on R+. Let si =

(
πk+11m

)
i
+ 1

ck
αk
i + µiw and s =

(
πk+11m

)
i
+ 1

ck
αk
i + µiw. Note that

s =
∑n

i=1 si. Then p′ and p′′ can be written as

p′(w) =

n∑
i=1

µi
si − µis

si · s
=

1

s

(
1−

n∑
i=1

µi
µis

si

)
,

and

p′′(w) = −
n∑

i=1

µi
s2i − µ2

i s
2

s2i · s2
= − 1

s2

(
1−

n∑
i=1

µi
µ2
i s

2

s2i

)
.

Therefore, it is equivalent to show
∑n

i=1 µi
µis

si
≥ 1 and

∑n
i=1 µi

µ2
i s

2

s2i
≥ 1.

Recall that
1

x
and

1

x2
are convex on R++, then

n∑
i=1

µi
µis

si
=

n∑
i=1

1

µi
si
µis

≥ 1∑n
i=1 µi

si
µis

= 1,

n∑
i=1

µi
µ2
i s

2

s2i
=

n∑
i=1

µi
1(
si
µis

)2 ≥ 1(∑n
i=1 µi

si
µis

)2 = 1.
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C.2 Proof of Proposition 3.2

Proof. First, prove that p only has one root on I . Since p is continuous on I and there exists x̃, x̄ ∈ I
such that p(x̃) > 0 and p(x̄) < 0, p contains at least one root on [x̃, x̄]. Since p is non-increasing,
p cannot have roots outside [x̃, x̄]. Suppose that p have two different roots z1 and z2 on [x̃, x̄] and
z1 < z2. By convexity of p, we have

0 = p(z2) = p

(
x̄− z2
x̄− z1

z1 +
z2 − z1
x̄− z1

x̄

)
≤ x̄− z2

x̄− z1
p(z1) +

z2 − z1
x̄− z1

p(x̄) =
z2 − z1
x̄− z1

p(x̄) < 0.

This is a contradiction. So p has a unique root on I .

p′(x) ≤ 0 since p is non-increasing on I . Denote the root of p as r. Claim that p′(x) < 0 for
x ∈ [x̃, r]. Otherwise, there exist x ∈ [x̃, r] such that p′(x) = 0, then

0 > p(x̄) ≥ p(x) + p′(x)(x̄− x) = p(x) ≥ 0,

which leads to a contradiction. Especially, p′(x̃) < 0, and we can set x̃ as the initial point of Newton’s
method.

The update of Newton’s method is

xk+1 = xk − p(xk)

p′(xk)
.

Therefore, xk+1 ≥ xk and {xk}k≥1 is an increasing sequence. Since p is convex,

p(xk+1) ≥ p(xk) + p′(xk)(xk+1 − xk) = p(xk)− p(xk) = 0.

xk ≤ r because p is a monotonically non-increasing function. {xk}k≥1 is an increasing sequence
with an upper bound, so it has a limit x∗ and limk→∞(xk − xk+1) = 0. Also, p′ is bounded on [x̃, r]
since it is continuous. Therefore,

p(x∗) = lim
k→+∞

p(xk) = lim
k→+∞

p′(xk)(xk − xk+1) = 0.

Hence, the sequence generated by Newton’s method converges to a root of p.

C.3 Proof of Theorem 3.3

Assumption C.1. The critical point set X is non-empty.

Before the proof of Theorem 3.3, we first prove that sequence {πk}k≥0 generated by BPALM lies in
a compact set.
Proposition C.2. Sequence {πk}k≥0 generated by BPALM lies in a compact set.

Proof. We prove that {πk}k≥0 lies in the compact set A := {π ∈ Rn×m : 0 ≤ πij ≤ 1} by
mathematical induction. For k = 0, we can initialize π0 with 0 ≤ π0

ij ≤ 1. Suppose that πk ∈ A and
πk+1 /∈ A. Then there exist i ∈ [n] and j ∈ [m] such that πk+1

ij > 1. Recall that πk+1 is the optimal
solution to the problem

min
π≥0

φ(π) := ⟨L(D, D̄)⊗ πk, π⟩+ τ1dKL(π1m, αk) + τ2dKL(π
T1n, β

k) +
1

tk
dKL(π, π

k), (11)

Observe that function ϕ(x) := x log
x

a
−x+a is a unimodal function on R+ and achieve its minimum

at x = a. Since αi, βj , and πk
ij are smaller than or equal to 1, αi, βj , and πk

ij are strictly smaller than
πk+1
ij . Let π̃ ∈ Rn×m,

π̃kl =

{
max{αi, βj , π

k
ij}, (k, l) = (i, j),

πk+1
kl , otherwise.

Then φ(π̃) < φ(πk), this contradicts to πk+1 is the optimal solution to problem (11). Thus,
πk+1 ∈ A.
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For the proof of Theorem 3.3, we first prove the sufficient decrease property of BPALM, i.e., there
exist a constant κ1 > 0 and an index k1 ≥ 0 such that for k ≥ k1,

F
(
πk+1, αk+1, βk+1

)
−F

(
πk, αk, βk

)
≤ −κ1

(∥∥πk+1 − πk
∥∥2
F
+
∥∥αk+1 − αk

∥∥2
2
+
∥∥βk+1 − βk

∥∥2
2

)
.

And then we prove the subsequence convergence result.

Proof. It is worth noting that f(π) is a quadratic function, i.e., f(π) =
〈
L(D, D̄)⊗ π, π

〉
, then f(π)

is gradient Lipschitz continuous with the constant maxi,j

(∑
k,l L(D, D̄)2i,j,k,l

)1/2
. To simplify the

notation, let Lf = maxi,j

(∑
k,l L(D, D̄)2i,j,k,l

)1/2
.

F
(
πk+1, αk+1, βk+1

)
− F

(
πk, αk, βk

)
≤
〈
∇f(πk), πk+1 − πk

〉
+

Lf

2

∥∥πk+1 − πk
∥∥2
F
+ q

(
πk+1

)
+ g1

(
πk+1, αk+1

)
+ g2

(
πk+1, βk+1

)
+

h1

(
αk+1

)
+ h2

(
βk+1

)
−
(
q
(
πk
)
+ g1

(
πk, αk

)
+ g2

(
πk, βk

)
+ h1

(
αk
)
+ h2

(
βk
))

(♢)

≤
〈
∇f(πk), πk+1 − πk

〉
+

Lf

σ
dKL

(
πk+1, πk) + q

(
πk+1

)
+ g1(π

k+1, αk+1
)
+ g2

(
πk+1, βk+1

)
+

h1

(
αk+1

)
+ h2

(
βk+1

)
−
(
q
(
πk
)
+ g1

(
πk, αk

)
+ g2

(
πk, βk

)
+ h1

(
αk
)
+ h2

(
βk
))

=
〈
∇f(πk), πk+1

〉
+ q

(
πk+1

)
+ g1

(
πk+1, αk

)
+ g2

(
πk+1, βk

)
+

1

tk
dKL

(
πk+1, πk

)
−〈

∇f(πk), πk
〉
− q

(
πk
)
− g1

(
πk, αk

)
− g2

(
πk, βk

)
+ g1

(
πk+1, αk+1

)
+ h1

(
αk+1

)
+

1

ck
dKL

(
αk, αk+1

)
−

g1
(
πk, αk

)
− h1

(
αk
)
+ g2

(
πk+1, βk+1

)
+ h2

(
βk+1

)
+

1

rk
dKL

(
βk, βk+1

)
− g2

(
πk, βk

)
− h2

(
βk
)
−(

1

tk
− Lf

σ

)
dKL

(
πk+1, πk

)
− 1

ck
dKL

(
αk, αk+1

)
− 1

rk
dKL

(
βk, βk+1

)
≤ −

(
1

tk
− Lf

σ

)
dKL

(
πk+1, πk

)
− 1

ck
dKL

(
αk, αk+1

)
− 1

rk
dKL

(
βk, βk+1

)
.

(♢)

≤ − σ

2

((
1

tk
− Lf

σ

)∥∥πk+1 − πk
∥∥2
F
+

1

ck

∥∥αk+1 − αk
∥∥2
2
+

1

rk

∥∥βk+1 − βk
∥∥2
2

)
.

(♢) is because as x log x is σ-strongly convex, we have

dKL(π
k+1, πk) ≥ σ

2
∥πk+1−πk∥2F , dKL(α

k, αk+1) ≥ σ

2
∥αk+1−αk∥22, dKL(β

k, βk+1) ≥ σ

2
∥βk+1−βk∥22.

By letting κ1 =
σ

2
min

((
1

tk
− Lf

σ

)
,
1

r̄

)
> 0, we get

F
(
πk+1, αk+1, βk+1

)
−F

(
πk, αk, βk

)
≤ −κ1

(∥∥πk+1 − πk
∥∥2
F
+
∥∥αk+1 − αk

∥∥2
2
+
∥∥βk+1 − βk

∥∥2
2

)
.

(12)
Summing up (12) from k = 0 to +∞, we obtain

κ1

∞∑
k=0

(∥∥πk+1 − πk
∥∥2
F
+
∥∥αk+1 − αk

∥∥2
2
+
∥∥βk+1 − βk

∥∥2
2

)
≤ F (π0, α0, β0)−F (π∞, α∞, β∞).

As F is coercive and
{(

πk, αk, βk
)}

is a bounded sequence, it follows that the left-hand side is
bounded. This implies

∞∑
k=0

(∥∥πk+1 − πk
∥∥2
F
+
∥∥αk+1 − αk

∥∥2
2
+
∥∥βk+1 − βk

∥∥2
2

)
< +∞,

and
lim

k→+∞
(∥πk+1 − πk∥F + ∥αk+1 − αk∥2 + ∥βk+1 − βk∥2) = 0.
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Let l(x) =
∑

i xi log xi. Recall the optimality condition of BPALM, we have

0 ∈ ∇f
(
πk+1

)
+ ∂q

(
πk+1

)
+∇πg1

(
πk+1, αk

)
+∇πg2

(
πk+1, βk

)
+

1

tk

(
∇l
(
πk+1

)
−∇l

(
πk
))

,

(13)

0 ∈ ∇αg1
(
πk+1, αk+1

)
+ ∂h1

(
αk+1

)
+

1

ck
∇2l(αk+1)(αk+1 − αk), (14)

0 ∈ ∇βg2
(
πk+1, βk+1

)
+ ∂h2

(
βk+1

)
+

1

rk
∇2l(βk+1)(βk+1 − βk). (15)

Let (π∞, α∞, β∞) be a limit point of the sequence
{
(πk, αk, βk)

}
k≥0

. Then, there exists a sequence
{nk}k≥0 such that {(πnk , αnk , βnk)}k≥0 converges to (π∞, α∞, β∞). Since we assume that h is
twice continuous differentiable and αk and βk are in a compact set, then ∇2l(αk) and ∇2l(βk) are
bounded. Therefore, limk→∞ ∇2l(αk+1)(αk+1−αk) = 0 and limk→∞ ∇2l(βk+1)(βk+1−βk) = 0.
Replacing the k by nk in (13), (14), and (15), taking limits on both sides as k → ∞, we obtain that

0 ∈ ∇f (π∞) + ∂q(π∞) +∇πg1 (π
∞, α∞) +∇πg2 (π

∞, β∞) ,

0 ∈ ∇αg1 (π
∞, α∞) + ∂h1 (α

∞) ,

0 ∈ ∇βg2 (π
∞, β∞) + ∂h2 (β

∞) .

Thus (π∞, α∞, β∞) belongs to X .

C.4 Discussion of Computational Complexity of PGW, UGW, and RGW

We consider the measure min0≤k≤K(∥πk+1 − πk∥F + ∥αk+1 − αk∥2 + ∥βk+1 − βk∥2) as the
stationary measure, and it is observed that the convergence rate of our algorithm is O( 1√

K
). Similarly,

the Frank-Wolfe algorithm for PGW also exhibits a convergence rate of O( 1√
K
). The literature on

UGW does not provide a discussion on the convergence rate of alternate Sinkhorn minimization for
UGW. In each iteration of PGW, UGW, and RGW, the computation of L(D, D̄) ⊗ πk is a crucial
step. According to [31], the complexity of this computation is O(n2m + m2n). Additionally,
PGW involves utilizing the network simplex algorithm to solve a linear programming problem as
a subroutine, which has a complexity of O((n2m+m2n) log2(n+m)). On the other hand, both
UGW and RGW utilize the sinkhorn algorithm to solve an entropic unbalanced optimal transport
problem. The complexity of the sinkhorn algorithm for unbalanced OT is O((n2 +m2)/(ε log(ε)))
for computing an ε-approximation.

D Additional Experiment Results

D.1 Additional Experiment Results on Subgraph Alignment

Source codes of all baselines used in this paper:

• FW [17]: https://github.com/PythonOT/POT

• SpecGW [15]: https://github.com/trneedham/Spectral-Gromov-Wasserstein

• eBPG [17]: https://github.com/PythonOT/POT

• BAPG [24]: https://github.com/squareRoot3/Gromov-Wasserstein-for-Graph

• UGW [35]: https://github.com/thibsej/unbalanced_gromov_wasserstein

• PGW [10, 17]: https://github.com/PythonOT/POT

• srGW: [42]: https://github.com/cedricvincentcuaz/srGW

• RGWD: [25]: https://github.com/cxxszz/rgdl

Results in Figure 4 The data utilized to create Figure 4 is provided in Table 2 and Table 3.
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Table 2: Comparison of the average matching accuracy (%) and wall-clock time (seconds) on
subgraph alignment of 30% subgraph and 20% subgraph.

30% subgraph 20% subgraph

Method Synthetic Proteins Enzymes Synthetic Proteins Enzymes
Acc Time Acc Time Acc Time Acc Time Acc Time Acc Time

FW 2.22 17.06 12.96 14.83 12.08 5.37 2.24 6.65 10.83 11.34 9.53 4.92
SpecGW 1.38 2.24 10.64 11.54 9.41 3.74 1.71 2.21 10.78 10.15 8.35 3.21

eBPG 0.65 0.49 8.12 1022.02 3.84 476.83 1.17 0.42 7.23 545.50 2.66 94.78
BPG 1.86 17.53 17.89 86.85 17.69 52.89 1.64 11.66 12.99 55.47 14.35 32.89

BAPG 2.94 35.90 18.79 36.02 16.85 10.88 3.80 23.29 14.07 23.92 11.22 8.38

srGW 3.17 86.38 22.75 89.14 27.45 41.18 5.49 88.89 18.38 17.72 23.13 17.11
RGWD 1.94 933.25 16.90 3674.98 16.34 3322.16 1.94 933.25 16.90 3674.98 16.34 3322.16
UGW 35.15 168.03 14.32 10298 10.91 5552.27 4.48 251.41 11.75 7813.96 10.40 4019.62
PGW 2.06 339.23 11.68 507.11 11.77 174.26 1.90 227.87 9.34 365.88 7.97 165.27

RGW 52.35 679.00 30.17 947.48 37.12 538.04 11.58 229.05 23.51 546.15 25.39 879.93

Table 3: Comparison of the average matching accuracy (%) and wall-clock time (seconds) on
subgraph alignment of 40% subgraph.

40% subgraph

Method Synthetic Proteins Enzymes
Acc Time Acc Time Acc Time

FW 1.84 17.96 15.34 19.64 14.22 6.36
SpecGW 1.72 3.25 11.21 12.17 9.59 3.88

eBPG 0.38 0.51 12.16 1628.38 9.96 943.49
BPG 3.41 18.61 24.31 108.10 24.58 62.81

BAPG 7.61 22.55 23.78 36.81 24.82 11.13

srGW 2.45 120.12 22.58 74.58 27.02 32.14
RGWD 3.48 930.84 22.73 4490.60 22.63 3205.03
UGW 79.61 960.04 21.22 11398 22.26 5589.73
PGW 2.17 483.10 11.95 491.64 9.51 182.58

RGW 90.79 662.15 38.94 769.25 48.11 291.74

Selection of Stepsize tk, ck, and rk In the subgraph alignment task, we have used constant values
for the stepsizes tk, ck and rk. We have conducted a sensitivity analysis for these parameters, and the
details are summarized in Tables 4 and 5. Specifically, Table 4 reveals that RGW achieves its highest
accuracy with t in the range of 0.01 to 0.05, allowing us to select t = 0.01 as the default. Table 5
further indicates that accuracy is not significantly affected by variations in c, leading us to set c = 0.1
as the default.

Table 4: The performance of RGW with different stepsize t on three subgraph alignment databases.

RGW Synthetic Proteins-1 Enzymes
Acc Time Acc Time Acc Time

t = 0.01 94.64 541.50 53.07 567.09 63.23 139.82
t = 0.05 90.49 288.25 53.37 1030.15 63.69 304.11
t = 0.1 87.00 233.65 53.69 713.07 62.38 506.83
t = 0.5 87.09 779.84 51.56 1797.13 60.07 822.23
t = 1.0 71.10 491.93 50.21 3071.27 58.31 1166.88

Experiment Results of Normalized Degree as Marginal Distribution In addition to employing
the uniform distribution as node distribution, we also explore the use of normalized degrees as node
distribution. The results presented in Table 6 confirm that RGW surpasses other methods in terms of
accuracy when utilizing normalized degrees as marginal distributions.

Experiment Results of Adding Noise to Query Graph We conducted an experiment by adding
10% pseudo edges to the subgraphs, and the results can be found in Table 7. These findings
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Table 5: The performance of RGW with different stepsize c on three subgraph alignment databases.

RGW Synthetic Proteins-1 Enzymes
Acc Time Acc Time Acc Time

c = 0.01 90.39 481.06 53.17 459.43 63.06 163.45
c = 0.05 90.39 967.98 53.12 919.18 62.86 327.44
c = 0.1 90.39 1460.94 53.37 1374.43 63.69 490.91
c = 0.5 90.34 1969.18 53.35 1822.70 63.36 650.25
c = 1.0 90.28 2488.17 53.43 2262.07 63.53 807.57

Table 6: Subgraph alignment results (Acc.) of 50% subgraph of compared GW-based methods using
normalized degree.

Method Synthetic Proteins-1 Proteins-2 Enzymes

FW 2.96 14.82 42.16 15.90
SpecGW 1.57 8.92 43.10 12.07

eBPG 5.27 13.77 31.90 13.51
BPG 12.52 20.88 57.77 29.42

BAPG 74.39 24.65 63.26 31.92

srGW 4.22 13.67 12.39 23.05
RGWD 13.54 25.92 57.30 28.12
UGW 99.56 25.51 62.92 39.71
PGW 3.97 11.59 37.79 13.08

RGW 99.61 50.61 66.09 63.59

demonstrate that RGW significantly outperforms other methods on the Enzymes and Proteins datasets.

Table 7: Subgraph alignment results (Mean ± Std.) of 50% subgraph in 5 independent trials over
different random seeds in the noise generating process.

Method Synthetic Proteins-1 Enzymes

FW 2.38±0.27 10.21±1.22 12.58±12.58
SpecGW 1.79±0.26 9.91±0.56 10.00±0.81

eBPG 6.84±1.89 15.63±0.73 14.31±0.77
BPG 17.71±2.23 20.96±1.57 22.29±1.19

BAPG 43.39 ± 4.84 23.08±1.12 24.42± 1.54

srGW 1.75± 0.18 13.34±0.56 20.03± 0.73
RGWD 17.30± 1.90 22.70±0.33 24.07± 0.44
UGW 81.24± 2.34 22.99±0.16 26.68± 1.54
PGW 1.67 ± 0.43 8.19±0.92 7.33± 0.45

RGW 88.79 ± 1.59 38.88±1.31 49.01± 0.99

D.2 Additional Experiment Results on Partial Shape Correspondence

Convergence of BPALM The convergence results for the proposed BPALM using various step
sizes are presented in Figure 7 for the toy example discussed in Section 4.1.

Additional Experiment Result on TOSCA Dataset Additional experiment results on TOSCA
Dataset are shown in Figure 8, 9, and 10.
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Figure 7: Convergence result of toy example with different stepsizes

(a) Shape Geometry (b) Ground Truth

(e) Robust GW(d) Partial GW(c) Partial Functional Map

Figure 8: (a): 3D shape geometry of the source and target; (b)-(e): visualization of ground truth,
initial point obtained from the partial functional map, and the matching results of PGW and RGW.
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(a) Shape Geometry (b) Ground Truth

(e) Robust GW(d) Partial GW(c) Partial Functional Map

Figure 9: (a): 3D shape geometry of the source and target; (b)-(e): visualization of ground truth,
initial point obtained from the partial functional map, and the matching results of PGW and RGW.

(a) Shape Geometry (b) Ground Truth

(e) Robust GW(d) Partial GW(c) Partial Functional Map

Figure 10: (a): 3D shape geometry of the source and target; (b)-(e): visualization of ground truth,
initial point obtained from the partial functional map, and the matching results of PGW and RGW.
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