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Abstract

This paper addresses the problem of localizing and inferring multiple change points,
in non-parametric multivariate time series settings. Specifically, we consider a
multivariate time series with potentially short-range dependence, whose underlying
distributions have Hölder smooth densities and can change over time in a piecewise-
constant manner. The change points, which correspond to the times when the
distribution changes, are unknown. We present the limiting distributions of the
change point estimators under the scenarios where the minimal jump size vanishes
or remains constant. Such results have not been revealed in the literature in non-
parametric change point settings. As byproducts, we develop a sharp estimator
that can accurately localize the change points in multivariate non-parametric time
series, and a consistent block-type long-run variance estimator. Numerical studies
are provided to complement our theoretical findings.

1 Introduction

Given a time series {Xt}Tt=1 ⊂ Rp, which is assumed to be an α-mixing sequence of random vectors
with unknown marginal distributions {Pt}Tt=1. To incorporate the nonstationarity of {Xt}Tt=1, we
assume that there exists K ∈ N change points, namely {ηk}Kk=1 ⊂ {2, ..., T} with 1 = η0 < η1 <
. . . < ηk ≤ T < ηK+1 = T + 1, such that

Pt ̸= Pt−1 if and only if t ∈ {η1, . . . , ηK}. (1)
Our primary interest is to develop accurate estimators of {ηk}Kk=1 and study their limiting properties.
We refer to Assumption 1 for detailed technical conditions of our non-parametric change point model.

Nonstationary multivariate data are frequently encountered in real-world applications, including
biology (e.g. Molenaar et al. 2009, Wolkovich & Donahue 2021), epidemiology (e.g. Azhar et al.
2021, Nguyen et al. 2021), social science (e.g. Kunitomo & Sato 2021, Cai et al. 2022), climatology
(e.g. Corbella & Stretch 2012, Heo & Manuel 2022), finance (e.g. Herzel et al. 2002, Schmitt et al.
2013), neuroscience (e.g. Gorrostieta et al. 2019, Frolov et al. 2020), among others.
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Due to the importance of modeling nonstationary data in various scientific fields, we have witnessed
a soaring growth of statistical change point literature, (e.g. Aue et al. 2009, Fryzlewicz 2014, Cho
& Fryzlewicz 2015, Cho 2016, Wang et al. 2020, Padilla et al. 2022). However, there are a few
limitations in the existing works on multivariate non-parametric settings. Firstly, to the best of our
knowledge, temporal dependence, which commonly appears in time series, has not been considered.
Secondly, there is no localization consistency result for data with the underlying densities being
Hölder smooth with arbitrary degree of smoothness. Lastly and most importantly, the limiting
distributions of change point estimators and the asymptotic inference for change points have not been
well studied.

Taking into account the aforestated limitations, this paper examines change point problems in a fully
non-parametric time series framework, wherein the underlying distributions are only assumed to
have Hölder smooth continuous densities and can change over time in a piecewise constant manner.
The rest of the paper is organized as follows. In Section 2, we explain the model assumptions
for multivariate time series with change points in a non-parametric setting. Section 3 details the
two-step change point estimation procedure, as well as the estimators at each step. Theoretical
results, including the consistency of the preliminary estimator and the limiting distribution of the
final estimator, are presented in Section 4. Section 5 evaluates the practical performance of the
proposed procedure via various simulations and a real data analysis. Finally, Section 6 concludes
with a discussion.

Notation. For any function f : Rp → R and for 1 ≤ q <∞, define ∥f∥Lq
= (

∫
Rp |f(x)|qdx)1/q

and for q = ∞, define ∥f∥L∞ = supx∈Rp |f(x)|. Define Lq = {f : Rp → R, ∥f∥q < ∞}.
Moreover, for q = 2, define ⟨f, g⟩L2 =

∫
Rp f(x)g(x)dx where f, g : Rp → R. For any vector

s = (s1, . . . , sp)
⊤ ∈ Np, define |s| =

∑p
i=1 si, s! = s1! · · · sp! and the associated partial differential

operator Ds = ∂|s|

∂x
s1
1 ···∂xsp

p
. For α > 0, denote ⌊α⌋ to be the largest integer smaller than α. For any

function f : Rp → R that is ⌊α⌋-times continuously differentiable at point x0, denote by fα
x0

its
Taylor polynomial of degree ⌊α⌋ at x0, which is defined as fα

x0
(x) =

∑
|s|≤⌊α⌋(x−x0)

s/s!Dsf(x0).
For a constant L > 0, let Hα(L,Rp) be the set of functions f : Rp → R such that f is ⌊α⌋-times
differentiable for all x ∈ Rp and satisfy |f(x) − fα

x0
(x)| ≤ L|x − x0|α, for all x, x0 ∈ Rp. Here

|x − x0| is the Euclidean distance between x, x0 ∈ Rp. In non-parametric statistics literature,
Hα(L,Rp) is often referred to as the class of Hölder functions. For two positive sequences {an}n∈N+

and {bn}n∈N+ , we write an = O(bn) or an ≲ bn, if an ≤ Cbn with some constant C > 0 that does
not depend on n, and an = Θ(bn) or an ≍ bn, if an = O(bn) and bn = O(an). For a deterministic
or random R-valued sequence an, write that a sequence of random variable Xn = Op(an), if
limM→∞ lim supn→∞ P(|Xn| ≥ Man) = 0. Write Xn = op(an) if lim supn→∞ P(|Xn| ≥
Man) = 0 for all M > 0. The convergences in distribution and probability are respectively denoted
by D→ and P.→.

2 Model setup

Detailed assumptions imposed on the model (1) are collected in Assumption 1.
Assumption 1. The data {Xt}Tt=1 ⊂ Rp are generated based on model (1) and satisfy the following.
a. For each t = {1, . . . , T}, the distribution Pt has a Lebesgue density function ft : Rp → R, such
that ft ∈ Hr(L,X ) with r, L > 0, where X is the union of the supports of all ft, and X has bounded
Lebesgue measure.
b. Let gt be the joint density of X1 and Xt+1. It satisfies that ∥gt∥L∞ <∞.
c. The minimal spacing between two consecutive change points ∆ = minK+1

k=1 (ηk − ηk−1) > 0.
d. The minimal jump size between two consecutive change points κ = mink=1,...,K κk > 0, where
κk = ∥fηk

− fηk+1
∥L2 denotes the jump size at the kth change point.

e. The process {Xt}t∈Z is α-mixing with mixing coefficients

αk = sup
t∈Z

α(σ(Xs, s ≤ t), σ(Xs, s ≥ t+ k)) ≤ e−2ck for all k ∈ Z. (2)

The minimal spacing ∆ and the minimal jump size κ are two key parameters characterizing the
change point phenomenon. Assumption 1d. characterizes the changes in density functions through
the function’s L2-norm, enabling us to detect local and global changes in non-parametric settings.
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The decay rate of αk in Assumption 1e. imposes an upper bound on the temporal dependence. This
is a standard requirement in the literature (e.g Abadi 2004, Merlevède et al. 2009).

Revolving the change point estimators, we are to conduct the estimation and inference tasks. For
a sequence of estimators η̂1 < . . . < η̂K̂ ⊂ {1, . . . , T}, our first task is to show the localization
consistency, i.e. with probability tending to one as the sample size T grows unbounded, it holds that

K̂ = K and max
k=1,...,K̂

|η̂k − ηk| ≤ ϵ, with lim
T→∞

ϵ

∆
= 0. (3)

We refer to ϵ as the localization error in the rest of this paper.

With a consistent estimation result, we further refine {η̂k}K̂k=1 and obtain {η̃k}K̂k=1 with error bounds

|η̃k − ηk| = Op(1) and derive the limiting distribution of (η̃k − ηk)κ
p
r+2

k .

We briefly summarize the contributions of our paper as follows.

• We develop a multivariate non-parametric seeded change point detection algorithm detailed Algo-
rithm 1, which is based on the seeded binary segmentation method (SBS), proposed in Kovács et al.
(2020) in the univariate setting. To the best of our knowledge, we are the first to innovatively adapt
SBS to a multivariate non-parametric change point model.

• Under the signal-to-noise ratio condition in Assumption 3 that κ2∆ ≳ log(T )T p/(2r+p),
we demonstrate that the output of Algorithm 1 is consistent, with localization errors ϵ ≍
κ−2
k T p/(2r+p) log(T ), for k ∈ {1, . . . ,K}. This localization error is first obtained for α-mixing

time series with a generic smoothness assumption, while the state-of-the-art method from Padilla
et al. (2021) only focuses on Lipschitz smooth densities and under temporal independence.

• Based on the consistent estimators {η̂}K̂k=1, we construct the refined estimators {η̃k}K̂k=1 and derive
their limiting distributions in different regimes, as detailed in Theorem 2. These results are novel in
the literature of change point and time series analysis.

• Extensive numerical results are presented in Section 5 to corroborate the theoretical findings. The
code used for numerical experiments is available upon request prior to publication.

3 A two-step multivariate non-parametric change point estimators

In this section, we present the initial and refined change point estimators, both of which share the
same building block, namely the non-parametric CUSUM statistic.
Definition 1 (Non-parametric CUSUM statistic). For any integer triplet 0 ≤ s < t < e ≤ T , let the
CUSUM statistic be

F̃
(s,e]
t,h (x) =

√
e− t

(e− s)(t− s)

t∑
i=s+1

Fi,h(x)−

√
t− s

(e− s)(e− t)

e∑
i=t+1

Fi,h(x), x ∈ Rp,

where Ft,h is a kernel estimator of ft, i.e. Ft,h(x) = Kh(x−Xt) with the kernel function

Kh(x) =
1

hp
K
(
x

h

)
, x ∈ Rp,

accompanied with the bandwidth h > 0.

The CUSUM statistic is a key ingredient of our algorithm and is based on the kernel estimator Ft,h(·).
We highlight that kernel-based change-point estimation techniques have been employed in detecting
change points in non-parametric models in existing literature, as demonstrated in, for instance, Arlot
et al. (2019), Li et al. (2019), Padilla et al. (2021).

Our preliminary estimator is obtained by combining the CUSUM statistic in Definition 1 with a
modified version of SBS based on a collection of deterministic seeded intervals defined in Definition 2.

Definition 2 (Seeded intervals). Let K =
⌈
CK log2

(
T
∆

)⌉
, with some sufficiently large absolute

constant CK > 0. For k ∈ {1, . . . ,K}, let Jk be the collection of 2k − 1 intervals of length
lk = T2−k+1 that are evenly shifted by lk/2 = T2−k, i.e.

Jk = {(⌊(i− 1)T2−k⌋, ⌈(i− 1)T2−k + T2−k+1⌉], i = 1, . . . , 2k − 1}.
The overall collection of seeded intervals is denoted as J = ∪Kk=1Jk.
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With the CUSUM statistics and the seeded intervals as building blocks, we are now ready to present
our multivariate non-parametric seeded change point detection algorithm.

Algorithm 1 Multivariate non-parametric Seeded Binary Segmentation. MNSBS ((s, e),J , τ, h)
INPUT: Sample {Xt}et=s ⊂ Rp, collection of seeded intervals J , tuning parameter τ > 0 and

bandwidth h > 0.
initialization: If (s, e] = (0, n], set S→ ∅ and set ρ→ log(T )h−p.
for I = (α, β] ∈ J do

if I = (α, β] ⊆ (s, e] and β − α > 2ρ then
bI ← argmaxα+ρ≤t≤β−ρ ∥F̃

(α,β]
t,h ∥L2

aI ← ∥F̃ (α,β]
bI ,h
∥L2

else
aI ← −1

end if
end for
Ms,e = {I : aI > τ}
ifMs,e ̸= ∅ then
I∗ ← argminI∈Ms,e |I|
S← S ∪ {bI∗}
MNSBS((s, bI∗),J , τ, h)
MNSBS((bI∗ + 1, e),J , τ, h)

end if
OUTPUT: The set of estimated change points S.

Algorithm 1 presents a methodological approach to addressing the problem of estimating multiple
change points in multivariate time series data. At its core, the algorithm leverages the strength of
seeded intervals, forming a multi-scale search mechanism. To identify potential change points, the
method recursively employs the CUSUM statistics. For the functionality of the algorithm, specific
inputs are required. These include the observed data set, represented as Xt

T
t=1, the seeded intervals

denoted by J , the bandwidth h that is crucial for constructing the CUSUM statistics, and a threshold,
τ , which is instrumental in change point detection. We provide theoretical and numerical guidance
for tuning parameters in Sections 4 and 5, respectively.

Delving deeper into the architecture of Algorithm 1, it becomes evident that the SBS functions as
its foundational framework, while the nonparametric version of the CUSUM statistics acts as its
functional units. The design of this algorithm is particularly tailored given its inclination toward
nonparametric detection and its ability to identify multiple change points. The SBS is, in essence,
an advanced version of the moving-window scanning technique. Its distinctive characteristic is its
adaptability in handling the challenges posed by multiple change points that exhibit unpredictable
spacing. Instead of being confined to a fixed window width, the SBS introduces versatility by
incorporating a range of window width options. Each of these widths is methodically applied during
a moving-window scan.

Based on the preliminary estimators {η̂k}K̂k=1 provided by Algorithm 1, we further develop a refine-
ment procedure to enhance the localization accuracy. To be more specific, let

sk =
9

10
η̂k−1 +

1

10
η̂k and ek =

9

10
η̂k+1 +

1

10
η̂k. (4)

Then, the preliminary estimators {η̂k}K̂k=1 and h̃ ≍ h produce an estimator of κk as:

κ̂k =

∥∥∥∥∥∥
√

η̂k+1 − η̂k
(η̂k+1 − η̂k−1)(η̂k − η̂k−1)

η̂k∑
i=η̂k−1+1

Fi,h̃ −

√
(η̂k − η̂k−1)

(η̂k+1 − η̂k−1)(η̂k+1 − η̂k)

η̂k+1∑
i=η̂k+1

Fi,h̃

∥∥∥∥∥∥
L2

×

√
η̂k+1 − η̂k−1

(η̂k − η̂k−1)(η̂k+1 − η̂k)
. (5)
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We then propose the final change points estimators as

η̃k = argmin
sk<η<ek

Q̂k(η), (6)

where

Q̂k(η) =
{ η∑

t=sk+1

∥Ft,h1
− F(sk,η̂k],h1

∥2L2
+

ek∑
t=η+1

∥Ft,h1
− F(η̂k,ek],h1

∥2L2

}
,

with h1 = cκ̂k
κ̂
1/r
k and F(s,e],h1

= 1
e−s

∑e
i=s+1 Fi,h1

for integers e > s.

If the initial change point estimators are consistent, i.e. (3) holds with probability tending to 1,
then the interval (η̂k−1, η̂k+1) is anticipated to contain merely one undetected change point. By
conservatively trimming this interval to (sk, ek), we can safely any change points previously detected
within (η̂k−1, η̂k+1). Consequently, the trimmed interval (sk, ek) contains only true change point
ηk with high probability. Due to the same reason, our choice of weight in Equation 4,1/10, is a
convenient choice. In general, any constant weight between 0 and 1/2 would suffice. Inspired by
Padilla et al. (2021), who proposed to use O (κk) as an optimal bandwidth in the context of Lipschitz
densities, we adopt h1 = O

(
κ̂
1/r
k

)
as the bandwidth for our kernel density estimator. This choice

incorporates the broader scope of our work, which studies a more general degree of smoothness.
Notably, if the underlying density functions strictly adhere to the Lipschitz criterion and r = 1,
our bandwidth selection aligns with that recommended by Padilla et al. (2021). We would like to
emphasize that while the procedure proposed by Padilla et al. (2021) required knowledge of the
population quantities κk, our approach is adaptive as we provide data-driven methods to estimate κk

accurately.

With our newly proposed estimators, in Theorem 2, we derive an improved error bound for the refined
estimators {η̃k}K̃k=1 over the preliminary estimators {η̂k}K̂k=1. We also study the limiting distributions
of the refined estimators. Section 4.4 and Section 5 will discuss the theoretically justified rates and
practical choices of tuning parameters, respectively.

The computational complexity of Algorithm 1 is O(T 2 log(T )∆−1 · Kernel), where
O(T 2 log(T )∆−1) is due to the computational cost of the SBS, and “Kernel” stands for the computa-
tional cost of numerical computation of the L2-norm of the CUSUM statistics based on the kernel
function evaluated at each time point. The dependence on the dimension p is only through the evalua-
tion of the kernel function. The computational complexity of the final estimators (including estimating
κ̂k’s) is O(T ·Kernel). Therefore, the overall cost for deriving {η̃k}K̂k=1 is O(T 2 log T∆−1 ·Kernel).

4 Consistent estimation and limiting distributions

To establish the theoretical guarantees of our estimators, we first state conditions needed for the
kernel function K(·).
Assumption 2 (The kernel function). Assume that the kernel function K(·) has compact support and
satisfies the following additional conditions.

a. For the Hölder smooth parameter r in Assumption 1a, assume that K(·) is adaptive toHr(L,Rp),
i.e. for any f ∈ Hr(L,Rp), it holds that

sup
x∈Rp

∣∣∣ ∫
Rp

h−pK
(x− z

h

)
f(z) dz − f(x)

∣∣∣ ≤ C̃hr,

for some absolute constant C̃ > 0 and tuning parameter h > 0.

b. The class of functions FK = {K(x − ·)/h : Rp → R+, h > 0} is separable in L∞(Rp) and
is a uniformly bounded VC-class; i.e. there exist constants A, ν > 0 such that for any probability
measure Q on Rp and any u ∈ (0, ∥K∥L∞), it holds that N (FK, L2(Q), u) ≤ (A∥K∥L∞/u)ν ,
where N (FK, L2(Q), u) denotes the u-covering number of the metric space (FK, L2(Q)).

c. Let m = ⌊r⌋ and it holds that
∫∞
0

tm−1 sup∥x∥≥t |K(x)|m dt < ∞,
∫
Rp K(z)∥z∥ dz ≤ CK ,

where CK > 0 is an absolute constant.
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Assumption 2 is a standard condition in the non-parametric literature (e.g. Giné & Guillou 1999, 2001,
Sriperumbudur & Steinwart 2012, Kim et al. 2019, Padilla et al. 2021) and holds for various kernels,
such as the Triweight, Epanechnikov and Gaussian kernels, which are considered in Section 5.

4.1 Consistency of preliminary estimators

To establish the consistency of the preliminary estimators outputted by Algorithm 1, we impose the
following signal-to-noise ratio condition.
Assumption 3 (Signal-to-noise ratio). Assume there exists an arbitrarily slow diverging sequence
γT > 0 such that

κ2∆ > γT log(T )T
p

2r+p .

We note that Assumption 3 is a mild condition, as it allows both the jump size κ to vanish asymptoti-
cally and/or the spacing ∆ between change points to be much smaller than T . The consistency of
Algorithm 1 is established in the following theorem.

Theorem 1. Suppose Assumptions 1, 2 and 3 hold. Let {η̂k}K̂k=1 be the estimated change points
returned by Algorithm 1 with tuning parameters τ = cτT

p/(4r+2p) log1/2(T ) and h = chT
−1/(2r+p)

for sufficiently large constants ch, cτ > 0. Then

P
{
K̂ = K, |η̂k − ηk| ≤ Cϵκ

−2
k T

p
2r+p log(T ),∀k = 1, . . . ,K

}
≥ 1− 3Cp,KT

−1,

where Cϵ and Cp,K are positive constants only depending on the kernel and the dimension p.

4.2 Refined estimators and their limiting distributions

To develop refined estimators based on the preliminary estimators and study their limiting distributions,
we would need to require a slightly stronger signal-to-noise ratio condition below.
Assumption 4 (Signal-to-noise ratio for inference). Assume that there exists an arbitrarily slow
diverging sequence γT > 0 such that

κ
2p
r +3∆ > γT log(T )T

p
2r+p .

Assumption 4 is slightly stronger than Assumption 3. This is because our refined estimators are based
on a sequence of random endpoints, i.e. the preliminary estimators. This brings theoretical challenges
in deriving limiting distributions and estimating the long-run variances. It is worth noting that a
similar phenomenon has been observed in the study on conducted by Xu, Wang, Zhao & Yu (2022).

Theorem 2. Suppose that Assumptions 1, 2 and 3 hold. Let {η̃k}K̂k=1 be the refined change point
estimators defined in Section 3, with the preliminary estimators {η̂k}K̂k=1 returned by Algorithm 1,
the intervals {(sk, ek)}K̂k=1 defined in (4), and κ̂k defined as in (5). The following holds:

a. (Non-vanishing regime) Suppose the jump size at the change point ηk satisfies limT→∞ κk → ϱk
for some absolute constant ϱk > 0. Then, as T →∞, it holds that |η̃k − ηk| = Op(1) and that

(η̃k − ηk)κ
p
r+2

k
D−→ argmin

r̃∈Z
Pk(r̃)

where

Pk(r̃)

=


∑0

t=r̃+1 2
〈
Fηk+t,h2 − fηk+t ∗ Kh2 , (fηk

− fηk+1
) ∗ Kh2

〉
L2

+ r̃∥(fηk+1
− fηk

) ∗ Kh2∥2L2
, r̃ < 0;

0, r̃ = 0;∑r̃
t=1 2

〈
Fηk+t,h2 − fηk+t ∗ Kh2 , (fηk+1

− fηk
) ∗ Kh2

〉
L2

+ r̃∥(fηk+1
− fηk

) ∗ Kh2∥2L2
, r̃ > 0.

Here ∗ denotes convolution and h2 = cκk
κ
1/r
k for some absolute constant cκk

> 0.
b. (Vanishing regime) Suppose the jump size at the change point ηk satisfies limT→∞ κk = 0. Then,
as T →∞, it holds that |η̃k − ηk| = Op(κ

−2−p/r
k ) and that

(η̃k − ηk)κ
p
r+2

k
D→ argmin

r̃∈Z
{σ̃∞(k)B(r̃) + |r̃|}, (7)
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where h2 = cκk
κ
1/r
k for some absolute constant cκk

> 0. Here

B(r̃) =


B1(−r̃), r̃ < 0,

0, r̃ = 0,

B2(r̃), r̃ > 0,

with B1(r) and B2(r) being two independent standard Brownian motions, and

σ̃2
∞(k) = lim

T→∞

κ
p
r−2

k

T
Var

( T∑
t=1

〈
Ft,h2 − ft ∗ Kh2 , (fηk

− fηk+1
) ∗ Kh2

〉
L2

)
. (8)

Theorem 2 considers vanishing and non-vanishing regimes of the jump sizes. The upper bounds on
the localization error in both regimes can be written as

max
1≤k≤K

|η̃k − ηk|κ
p
r+2

k = Op(1).

Therefore, when the Hölder smoothness parameter r = 1, our final estimator {η̃k} attains the minimax
optimal convergence rate developed in Lemma 3 by Padilla et al. (2021). Furthermore, when r = 1,
our resulting rate is sharper than that in Theorem 1 in Padilla et al. (2021), as we are able to remove
the logarithmic factors from the upper bound. Additionally, our method can achieve optimal rates
with choices of tuning parameters that do not depend on the unknown jump sizes κk.

Theorem 2 summarizes the limiting distributions of the refined estimators {η̃k}K̂k=1. In the non-
vanishing case, the resulting limiting distribution can be approximated by a two-sided random walk
and the change points can be accurately estimated within a constant error rate. In contrast, in the
vanishing regime, a central limit theorem under mixing conditions leads to a two-sided Brownian
motion distribution in the limit, which quantifies the asymptotic uncertainty of {η̃k}K̂k=1, enabling
inference on change point locations, and allowing for the construction of confidence intervals.

4.3 Consistent long-run variance estimation

To obtain valid confidence intervals for change points using the limiting distributions in Theorem 2b.,
it is crucial to access robust estimators for the long-run (asymptotic) variances {σ̃2

∞(k)}K̂k=1 defined
in (8). We propose a block-type long-run variance estimator in Algorithm 2 to fulfill this task and
demonstrate its consistency in the following theorem.

Theorem 3. Suppose Assumptions 1, 2 and 3 hold. Let
{
σ̃2
∞(k)

}K̂

k=1
be the population long-run vari-

ance defined in (8) and σ̂2
∞(k) the output of Algorithm 2 with R = O(T (p+r)/(2r+p)/κ

p/(2r)+3/2
k ).

Then it holds that
K

max
k=1

∣∣σ̂2
∞(k)− σ̃2

∞(k)
∣∣ P−→ 0 as T →∞.

4.4 Discussions on MNSBS

Tuning parameters. Our procedure comprises three steps: (1) preliminary estimation, (2) local
refinement, and (3) confidence interval construction with three key tuning parameters. For step (1),
we use a kernel density estimator with bandwidth h ≍ T−1/(2r+p), which follows from the classical
non-parametric literature (e.g. Yu 1993, Tsybakov 2009). The threshold tuning parameter τ is set to a
high-probability upper bound on the CUSUM statistics when there is no change point, which reflects
the requirement on the signal-to-noise ratio detailed in Assumption 3. For refined estimation in step
(2) and long-run variance estimation in step (3), we set the bandwidth parameter h1 ≍ κ̂

1/r
k . This

choice of bandwidth is inspired by the minimax rate-optimal bandwidth used in Padilla et al. (2021).

Comparison with Padilla et al. (2021). Our main contribution is deriving the limiting distribution
of multivariate non-parametric change point estimators. This problem has not been formally studied
in the existing literature. Additionally, our Hölder assumption is more general than the Lipschitz
assumption used in Padilla et al. (2021). Our Assumption 1d specifies changes through the L2-norm
of probability density functions, which is a weaker assumption than the L∞-norm used in Padilla

7



Algorithm 2 Long-run variance estimators

INPUT: {Xt}Tt=1, {η̂k}K̂k=1, {κ̂k}K̂k=1, {(sk, ek)}K̂k=1 and tuning parameter R ∈ N
for k = 1, . . . , K̂ do

Let h1 = cκ̂κ̂
1
r

k
for t ∈ {sk, . . . , ek − 1} do

Yt = κ̂
p
2r−1

k

〈
Ft,h1

− ft ∗ Kh1
, (fη̂k

− fη̂k+1
) ∗ Kh1

〉
L2

end for
S = ⌊ ek−sk

R ⌋
for r ∈ {1, . . . , R} do
Sr = {sk + (r − 1)S, . . . , sk + rS − 1}

end for
σ̂2
∞(k) = 1

R

∑R
r=1

(
1√
S

∑
i∈Sr

Yi

)2

end for
OUTPUT: {σ̂2

∞(k)}K̂k=1.

et al. (2021). Furthermore, our assumptions allow for temporal dependence captured by α-mixing
coefficients, whereas Padilla et al. (2021) assumed independent observations.

Comparison with existing literature in nonparametric, online, and inference change point.
In the nonparametric change point literature, different kernel-based methods are adopted for change
point localisation and testing. In the offline setting, the penalized kernel least squares estimator, origi-
nally introduced by Harchaoui & Cappé (2007), was explored by Arlot et al. (2012) for multivariate
change point problems, and an oracle inequality was derived. An upper bound on the localization
rate provided by this method was established by Garreau & Arlot (2018) and was computationally
enhanced further in Celisse et al. (2018). With a focus on a so-called running maximum partition
strategy, Harchaoui et al. (2008) formulated a kernel-based test statistic to ascertain the existence of a
change-point. In a similar vein, Zou et al. (2014) investigated a problem where s out of n sequences
are anomalous and devised a test statistic using the kernel maximum mean discrepancy.

In the online setting, Kifer et al. (2004) introduces a meta-algorithm comparing data from a "reference
window" to current data using empirical measures. Desobry et al. (2005) detects shifts by comparing
two descriptor sets from the signal’s immediate past and future, using a dissimilarity metric resembling
the Fisher ratio in Gaussian cases via a soft margin single-class SVM. Meanwhile, Liu et al. (2013)
adopts density ratio estimation with a non-parametric Gaussian kernel model for change-point
detection, updating its parameters online through stochastic gradient descent.

The core methodology is largely shared but with different goals and performance measurements
regarding online and offline change point literature comparisons. How to conduct inference in the
online change point context is also unclear.

Compared to the existing work, in this paper, we follow the suit of using kernel-based CUSUM
statistics but incorporate temporal dependence, which is rarely seen in the literature. Most importantly,
we are unaware of existing work on nonparametric change point inference, which is the main selling
point of our paper.

Most change point inference work focuses on fixed-dimensional parameters as well as lacks tracking
of many model parameters. Xu, Wang, Zhao & Yu (2022), in terms of style, is indeed the most
closely related. But tackles high-dimensional linear regression, fundamentally distinct from our
nonparametric density estimation.

5 Numerical Experiments

We refer to MNSBS as our final estimator, which is used for both localization and inference tasks. To
evaluate its localization performance, we compare our proposed method against four competitors –
MNP (Padilla et al. 2021), EMNCP (Matteson & James 2014), SBS (Cho & Fryzlewicz 2015) and
DCBS (Cho 2016) – across a wide range of simulation settings, using corresponding R functions
in changepoints (Xu, Padilla, Wang & Li 2022), ecp (James et al. 2019) and hdbinseg (Cho
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& Fryzlewicz 2018) packages. However, to the best of our knowledge, no competitor is currently
available for the inference task.

Tuning parameters. For MNSBS implementation, we use the Gaussian kernel and the false discovery
rate control-based procedure of Padilla et al. (2021) for τ selection. Preliminary estimators are set
as h = 2 × (1/T )1/(2r+p), while the second stage estimator has bandwidths respectively set as
h̃ = 0.05 and h1 = 2 × κ̂

1/r
k . Selection of R =

⌊(
maxK̂k=1{ek − sk}

)3/5⌋
with {(sk, ek)}K̂k=1 is

guided by Theorem 3 using {(sk, ek)}K̂k=1 from (4). For the confidence interval construction, we
use {κ̂k}K̂k=1 and {σ̂2

∞(k)}K̂k=1 to estimate the required unknown quantities. We evaluate L2 based
statistics in Change point estimation and Long-run variance estimation using the Subregion-Adaptive
Vegas Algorithm1 with a maximum of 105 function evaluations.

Evaluation measurements For a given set of true change points C = {ηk}K+1
k=0 , to assess the accuracy

of the estimator Ĉ = {η̂k}K̂+1
k=0 with η̂0 = 1 and η̂T+1 = T + 1f , we report (1) Misestimation

rate: the proportion of misestimating K and (2) Scaled Hausdorff distance: dH(Ĉ, C), defined by
dH(Ĉ, C) = 1

T max{maxx∈Ĉ miny∈C{|x− y|},maxy∈Ĉ minx∈C{|x− y|}}.

The performance of our change point inference is measured by the coverage of ηk, defined as
coverk(1− α) for significance level α ∈ (0, 1). For, k = 1, . . . ,K,

coverk(1− α) = 1

{
ηk ∈

[
η̃k +

q̂u(α/2)

κ̂
p/r+2
k

, η̃k +
q̂u(1− α/2)

κ̂
p/r+2
k

]}
,

with q̂u(α/2) and q̂u(1−α/2) are the α/2 and 1−α/2 empirical quantiles of the simulated limiting
distribution given in (7), κ̂k is defined in (5), and k = 1, . . . ,K.

5.1 Localization

We consider three different scenarios with two equally spaced change points. For each scenario, we
set r = 2, and vary T ∈ {150, 300} and p ∈ {3, 5}. Moreover, we consider {Yt = 1{⌊T/3⌋ < t ≤
⌊2T/3⌋}Zt +Xt}Tt=1 ⊂ Rp with Xt = 0.3Xt−1 + ϵt.

• Scenario 1 (S1) Let Zt = µ ∈ Rp, where µj = 0 for j ∈ {1, . . . , ⌈p/2⌉} and µj = 2 otherwise.
Let {ϵt} be i.i.d. N (0p, Ip).

• Scenario 2 (S2) Let Zt|{ut = 1} = 1.5 × 1p, Zt|{ut = 0} = −1.5 × 1p, where {ut} are i.i.d.
Bernoulli(0.5) random variables. Let {ϵt} be i.i.d. N (0p, Ip).

• Scenario 3 (S3) Let Zt = 0.3Zt−1 +0.5× 1p + ϵ∗t , where {ϵ∗t } ⊂ Rp and {ϵt} ⊂ Rp are mutually
independent. They are i.i.d. with entries independently follow Unif(−

√
3,
√
3) and the standardized

Pareto(3, 1), respectively.

S1-S3 encompass a variety of simulation settings, including the same type of distributions, changed
mean and constant covariance in S1; a mixture of distributions in S2; and change between light-tailed
and heavy-tailed distributions in S3. We conduct 200 repetitions of each experiment and present
the results for localization in Figure 1. Our proposed method, MNSBS, generally outperforms all
other methods in all scenarios, except for S2, where ECP performs better. However, we observe that
MNSBS achieves comparable performance to ECP for large T in S2.

5.2 Inference

In this section, we focus solely on analyzing the limiting distribution obtained in Theorem 2.b., which
pertains to the vanishing regime. We explain this from two different perspectives. Firstly, in the
non-vanishing regime (Theorem 2.a.), the localization error is at the order of O(1). As a result, the
construction of confidence intervals, which is a direct application of the limiting distribution, is of
little demand with such estimation results. Secondly, since the localization error is only at the order
of O(1), the universality cannot come into play to produce a useful limiting distribution.

We consider the process {Yt = 1{⌊T/2⌋ < t ≤ T}µ + Xt}Tt=1, with Xt = 0.3Xt−1 + ϵt, Here,
µ = 1p and {ϵt} are i.i.d. N (0p, Ip). We vary T ∈ {100, 200, 300} and p ∈ {2, 3}, and observe

1The Subregion-Adaptive Vegas Algorithm is available in R package cubature (Narasimhan et al. 2022)
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Figure 1: From top to bottom: Misestimation rate of the number of change point K; Scaled Hausdorff
distances. From left to right: Scenarios S1-S3. Different colors represent different methods, ordered
as MNSBS, NMP, ECP, SBS, DCBS.

Table 1: Results for change point inference.

α = 0.01 α = 0.05
n cover(1− α) width(1− α) cover(1− α) width(1− α)

p = 2
100 0.864 17.613 (6.712) 0.812 14.005 (5.639)
200 0.904 22.940 (7.740) 0.838 18.407 (6.541)
300 0.993 26.144 (9.027) 0.961 20.902 (5.936)

p = 3
100 0.903 15.439 (5.792) 0.847 11.153 (4.361)
200 0.966 20.108 (7.009) 0.949 13.920 (5.293)
300 0.981 22.395 (6.904) 0.955 15.376 (4.763)

that our localization results are robust to the bandwidth parameters, yet sensitive to the smoothness
parameter r. We thus set r = 1000 in our simulations, as the density function of a multivariate normal
distribution belongs to the Hölder function class with r = ∞. Table 1 shows that our proposed
inference procedure produces good coverage in the considered setting.

6 Conclusion

We tackle the problem of change point detection for short range dependent multivariate non-parametric
data, which has not been studied in the literature. Our two-stage algorithm MNSBS can consistently
estimate the change points in stage one, a novelty in the literature. Then, we derived limiting
distributions of change point estimators for inference in stage two, a first in the literature.

Our theoretical analysis reveals multiple challenging and interesting directions for future exploration.
Relaxing the assumption ∆ ≍ T may be of interest. In addition, in Theorem 2.a, we can see the
limiting distribution is a function of the data-generating mechanisms, lacking universality, therefore
deriving a practical method to derive the limiting distributions in the non-vanishing regime may be
interesting.
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A Additional simulation results

A.1 Robustness to Kernel Selection and Bandwidth Parameters

In this subsection, we provide additional simulation results in Table 2 to show that our proposed
localization method, i.e. MNSBS, is robust against both the choice of Kernel functions and the choice
of bandwidth parameters.

We consider the setting with T = 150 and p = 3 of Scenario 1. In addition to the Gaussian kernel
used in the previous numeric experiments, we consider the Epanechnikov kernel and the Triweight
kernel. We also let the bandwidth h = ch × (1/T )1/(2r+p) with r = 2 and ch ∈ {1, 2, 5, 10, 20}.
Out of the 500 iterations for each case, the table below reports the proportion of the number of change
points K and the averaged localization errors.

Table 2: Additional localization results of Scenario 1.

T = 150, p = 3 and r = 2
Kernel ch = 1 ch = 2 ch = 5 ch = 10 ch = 20

Propotion of times K̂ ̸= K
Gaussian 0.138 0.070 0.066 0.070 0.068

Epanechnikov 0.748 0.184 0.070 0.070 0.064
Triweight 0.280 0.082 0.068 0.066 0.060

Average (standard deviation) of dH
Gaussian 0.038(0.050) 0.029(0.043) 0.025(0.039) 0.026(0.040) 0.026(0.038)

Epanechnikov 0.118(0.045) 0.037(0.049) 0.012(0.035) 0.011(0.035) 0.010(0.035)
Triweight 0.053(0.057) 0.017(0.038) 0.010(0.034) 0.010(0.035) 0.010(0.034)

A.2 Runtime and localization for Independent Data

Examination of Scenario 1 with independent data.
We examined Scenario 1 where p = 3, n is in the set {150, 300}, and Xt is i.i.d. distributed as
N (0p, Ip). Our results indicate that MNSBS excels in change point localization. The refinement
process further enhances its performance. Refer to Table 3 for specifics.

Runtime Comparison.
We benchmarked the runtime of our method against others. The tests were conducted on a machine
powered by an Apple M2 chip with an 8-core CPU. The parameters were set at p = 3 and n in the
set {150, 300} for the independent setting. Our method performs comparably at n = 150. However,
it is slower at n = 300, attributed to the computational demands of CUSUM. Detailed findings are
presented in Table 3.

Table 3: Runtime and localization results of Scenario 1 with independent data.

T = 150 T = 300
METHOD p = 3 p = 3

AVERAGE (STANDARD DEVIATION) OF RUNTIME (IN SECONDS)
MNSBS(INITIAL & REFINED) 1.130 (0.171) 13.134 (2.006)

NMP 0.812 (0.142) 10.899 (1.742)
ECP 0.117 (0.053) 0.646 (0.140)
SBS 0.619 (0.033) 0.656 (0.040)

DCBS 0.866 (0.092) 1.254 (0.134)
PROPOTION OF TIMES K̂ ̸= K

MNSBS(INITIAL) 0.000 0.005
MNSBS(REFINED) 0.000 0.005

NMP 0.000 0.000
ECP 0.000 0.040
SBS 0.445 0.015

DCBS 0.075 0.065
AVERAGE (STANDARD DEVIATION) OF dH

MNSBS(INITIAL) 0.010 (0.013) 0.009 (0.012)
MNSBS(REFINED) 0.006 (0.011) 0.005 (0.011)

NMP 0.016 (0.019) 0.008 (0.010)
ECP 0.007 (0.011) 0.009 (0.028)
SBS 0.158 (0.157) 0.012 (0.041)

DCBS 0.021 (0.037) 0.011 (0.022)
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B Real data application

We applied our proposed change point inference procedure to analyze stock price data2, which
consisted of daily adjusted close price of the 3 major stock market indices (S&P 500, Dow Jones and
NASDAQ) from Jan-01-2021 to Jan-19-2023. After removing missing values and standardizing the
raw data, the sample size was n = 515 and the dimension p = 3.

We localized 6 estimated change points and performed inference based on them; results are summa-
rized in Table 4. We also implemented the NMP and ECP methods on the same dataset, the estimated
change points being presented below. Except for the time point Aug-24-2022 estimated by ECP,
all other estimated change points were located in the constructed 99% confidence intervals by our
proposed method.

The transformed real data is illustrated in the figure below. These data correspond to the daily adjusted
close price, from Jan-01-2021 to Jan-19-2023, of the 3 major stock market indices, S&P 500, Dow
Jones and NASDAQ. Moreover, in Table 4, we present the estimated change point by our proposed
method MNSBS on the data before mentioned, together with their respective inference.
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Figure 2: Plot of the standardized daily close price, from Jan-01-2021 to Jan-19-2023, of the 3 major
stock market indices.

Table 4: Confidence intervals constructed for change point locations in the Real data example.

α = 0.01 α = 0.05
η̂ LOWER BOUND UPPER BOUND LOWER BOUND UPPER BOUND

APRIL-07-2021 APRIL-01-2021 APRIL-12-2021 APRIL-05-2021 APRIL-09-2021
JUNE-30-2021 JUNE-23-2021 JULY-09-2021 JUNE-25-2021 JULY-07-2021
OCT-19-2021 OCT-12-2021 OCT-26-2021 OCT-14-2021 OCT-22-2021
JAN-18-2022 JAN-12-2022 JAN-21-2022 JAN-13-2022 JAN-20-2022
APRIL-25-2022 APRIL-20-2022 APRIL-28-2022 APRIL-21-2022 APRIL-27-2022
OCT-27-2022 OCT-24-2022 NOV-01-2022 OCT-25-2022 OCT-31-2022

The result of the implementation of NMP and ECP methods on the same dataset are {April-01-2021,
July-01-2021, Oct-19-2021, Jan-14-2022, April-21-2022, Oct-26-2022} and {April-08-2021,
June-25-2021, Oct-18-2021, Jan-18-2022, April-28-2022, Aug-24-2022, Oct-27-2022} respectively.

2The stock price data are downloaded from https://fred.stlouisfed.org/series.
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C α-mixing coefficients

This paper focuses on multivariate time series that exhibit α-mixing behavior with exponential decay
coefficients. This condition is denoted as Assumption 1e. While the constant 2c is present in the
exponent of the exponential function, it plays a non-essential role in our theoretical framework. We
include it solely for the sake of convenience during verification.

The α-mixing condition with exponential decay as specified in Assumption 1e is a commonly
held assumption in time series analysis. A broad spectrum of multivariate time series satisfies this
condition, including linear/nonlinear VAR models [e.g. Liebscher (2005)], a comprehensive class of
GARCH models [e.g. Boussama et al. (2011)], and various Markov processes [e.g. Chan & Tong
(2001)]. To further elaborate, consider the p dimensional stationary VAR(1) model:

Xt = AXt−1 + ϵt

where A is the p×p transition matrix whose spectral norm satisfying ∥A∥ ∈ (0, 1) and the innovations
ϵt are i.i.d. Gaussian vectors. Denote Σ = cov (X1), and let λmax and λmin be the largest and smallest
eigenvalues of Σ. Then by Theorem 3.1 in Han & Wu (2023), we have that for any k ≥ 0, the
α-mixing coefficient of the time series Xt satisfying

αk ≤
√

λmax

λmin
|A|k ≤ e−C log(1/|A|)k

where C > 0 is some constant depending only on
√

λmax/λmin. In this example, the constant
C log(1/|A|) corresponds to the constant 2c in Assumption 1e. Essentially, Assumption 1e is useful
to unlock several technical tools under temporal dependence, which include a Bernstein’s inequality
Merlevède et al. (2012), a moment inequality [see Proposition 2.5 in Fan & Yao (2003)], maximal
inequalities (see Section G.1) and a central limit theorem (see Section G.2). For instance, we utilize
the moment inequality to bound the autocovariances of a dependence process with all lags by α-
mixing coefficients, thereby demonstrating the existence of the long-run variance, which is the sum
of all the autocovariances.
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D Proof of Theorem 1

In this section, we present the proof of theorem Theorem 1.

Proof of Theorem 1. For any (s, e] ⊆ (0, T ], let

f̃
(s,e]
t (x) =

√
e− t

(e− s)(t− s)

t∑
l=s+1

fl(x)−

√
t− s

(e− s)(e− t)

e∑
l=t+1

fl(x), x ∈ X .

For any r̃ ∈ (ρ, T − ρ], we consider

A((s, e], ρ, λ) =
{

e−ρ
max

t=s+ρ+1
sup
x∈Rp

|F̃ s,e
t,h (x)− f̃s,e

t (x)| ≤ λ

}
;

B(r̃, ρ, λ) =
{

T−r̃
max
N=ρ

sup
x∈Rp

∣∣∣∣ 1√
N

r̃+N∑
t=r̃+1

Ft,h(x)−
1√
N

r̃+N∑
t=r̃+1

ft(x)

∣∣∣∣ ≤ λ

}⋃
{

r̃
max
N=ρ

sup
x∈Rp

∣∣∣∣ 1√
N

r̃∑
t=r̃−N+1

Ft,h(x)−
1√
N

r̃∑
t=r̃−N+1

ft(x)

∣∣∣∣ ≤ λ

}
.

From Algorithm 1, we have that

ρ =
log(T )

hp
.

Therefore, Proposition 2 imply that with

λ = Cλ

(
2C

√
log T

hp
+

2C1
√
p

√
hp

+ 2C2

√
Thr.

)
, (9)

for some diverging sequence Cλ, it holds that

P

{
Ac((s, e], ρ, λ)

}
≲

1

T 2
,

and,

P

{
Bc(r̃, ρ, λ

2
)

}
≲

1

T 2
.

Now, we notice that,

K∑
k=1

ñk =

K∑
k=1

(2k − 1) ≤
K∑

k=1

2k ≤ 2(2

⌈
CK

( log

(
T
∆

)
log(2)

)⌉
− 1) ≤ 2(2

⌈
CK

(
log(T )
log(2)

)⌉
− 1) = O(T ).

since 2−x < 1 for any x > 0. In addition, there are K = O(1) number of change points. In
consequence, it follows that

P

{
A(I, ρ, λ) for all I ∈ J

}
≥ 1− 1

T
, (10)

P

{
B(s, ρ, λ) ∪ B(e, ρ, λ) for all (s, e] = I ∈ J

}
≥ 1− 1

T
, (11)

P

{
B(ηk, ρ, λ) for all 1 ≤ k ≤ K

}
≥ 1− 1

T
. (12)

The rest of the argument is made by assuming the events in equations (10), (11) and (12) hold. By
Remark 1, we have that on these events, it is satisfied that

e−ρ
max

t=s+ρ+1
||F̃ s,e

t,h (x)− f̃s,e
t (x)||L2

≤ λ.
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Denote

Υk = C log(T )

(
T

p
2r+p

)
κ−2
k and Υmax = C log(T )

(
T

p
2r+p

)
κ−2,

where κ = min{κ1, . . . , κK}. Since Υk is the desired localisation rate, by induction, it suffices to
consider any generic interval (s, e] ⊆ (0, T ] that satisfies the following three conditions:

ηm−1 ≤ s ≤ ηm ≤ . . . ≤ ηm+q ≤ e ≤ ηm+q+1, q ≥ −1;
either ηm − s ≤ Υm or s− ηm−1 ≤ Υm−1;

either ηm+q+1 − e ≤ Υm+q+1 or e− ηm+q ≤ Υm+q.

Here q = −1 indicates that there is no change point contained in (s, e].

Denote

∆k = ηk−1 − ηk for k = 1, . . . ,K + 1 and ∆ = min{∆1, . . . ,∆K+1}.
Observe that by assumption 3,

Υmax = C log(T )
(
T

p
2r+p

)
κ−2 ≤ ∆

4

Therefore, it has to be the case that for any true change point ηm ∈ (0, T ], either |ηm − s| ≤ Υm or
|ηm − s| ≥ ∆−Υmax ≥ 3

4∆. This means that min{|ηm − e|, |ηm − s|} ≤ Υm indicates that ηm is
a detected change point in the previous induction step, even if ηm ∈ (s, e]. We refer to ηm ∈ (s, e]
as an undetected change point if min{ηm − s, ηm − e} ≥ 3

4∆. To complete the induction step, it
suffices to show that MNSBS((s, e], h, τ)
(i) will not detect any new change point in (s, e] if all the change points in that interval have been
previously detected, and
(ii) will find a point DI∗

in (s, e] such that |ηm −DI∗ | ≤ Υm if there exists at least one undetected
change point in (s, e].

In order to accomplish this, we need the following series of steps.

Step 1. We first observe that if ηk ∈ {ηk}Kk=1 is any change point in the functional time series, by
Lemma 5, there exists a seeded interval Ik = (sk, ek] containing exactly one change point ηk such
that

min{ηk − sk, ek − ηk} ≥
1

16
∆, and max{ηk − sk, ek − ηk} ≤

9

10
∆

Even more, we notice that if ηk ∈ (s, e] is any undetected change point in (s, e]. Then it must hold
that

s− ηk−1 ≤ Υmax.

Since Υmax = O(log(T )T
p

2r+p ) and by assumption 3, we have that Υmax < 1
10∆. Moreover,

ηk − sk ≤ 9
10 (ηk − ηk−1), so that it holds that

sk − ηk−1 ≥
1

10
(ηk − ηk−1) > Υmax ≥ s− ηk−1

and in consequence sk ≥ s. Similarly ek ≤ e. Therefore

Ik = (sk, ek] ⊆ (s, e].

Step 2. Consider the collection of intervals {Ik = (sk, ek]}Kk=1 in Step 1. In this step, it is shown
that for each k ∈ {1, . . . ,K}, it holds that

t=ek−ρ
max

t=sk+ρ
||F̃ (sk,ek]

t,h ||L2
≥ c1
√
∆κk, (13)

for some sufficient small constant c1.

Let k ∈ {1, . . . ,K}. By Step 1, Ik contains exactly one change point ηk. Since ft is a
one-dimensional population time series and there is only one change point in Ik = (sk, ek], it holds
that

fsk+1 = ... = fηk
̸= fηk+1 = ... = fek
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which implies, for sk < t < ηk

f̃
(sk,ek]
t =

√
ek − t

(ek − sk)(t− sk)

t∑
l=sk+1

fηk
−

√
t− sk

(ek − sk)(ek − t)

ηk∑
l=t+1

fηk

−

√
t− sk

(ek − sk)(ek − t)

ek∑
l=ηk+1

fηk+1

=(t− sk)

√
ek − t

(ek − sk)(t− sk)
fηk
− (ηk − t)

√
t− sk

(ek − sk)(ek − t)
fηk

−(ek − ηk)

√
t− sk

(ek − sk)(ek − t)
fηk+1

=

√
(t− sk)(ek − t)

(ek − sk)
fηk
− (ηk − t)

√
t− sk

(ek − sk)(ek − t)
fηk

−(ek − ηk)

√
t− sk

(ek − sk)(ek − t)
fηk+1

=(ek − t)

√
t− sk

(ek − t)(ek − sk)
fηk
− (ηk − t)

√
t− sk

(ek − sk)(ek − t)
fηk

−(ek − ηk)

√
t− sk

(ek − sk)(ek − t)
fηk+1

=(ek − ηk)

√
t− sk

(ek − t)(ek − sk)
fηk
− (ek − ηk)

√
t− sk

(ek − sk)(ek − t)
fηk+1

=(ek − ηk)

√
t− sk

(ek − t)(ek − sk)
(fηk
− fηk+1).

Similarly, for ηk ≤ t ≤ ek

f
(sk,ek]
t =

√
ek − t

(ek − sk)(t− sk)
(ηk − sk)(fηk

− fηk+1).

Therefore,

f̃
(sk,ek]
t =


√

t−sk
(ek−sk)(ek−t) (ek − ηk)(fηk

− fηk+1), sk < t < ηk;√
ek−t

(ek−sk)(t−sk)
(ηk − sk)(fηk

− fηk+1), ηk ≤ t ≤ ek.
(14)

Since ρ = O(log(T )T
p

2r+p ), by Assumption 3, we have that

min{ηk − sk, ek − ηk} ≥
1

16
∆ > ρ, (15)

so that ηk ∈ [sk+ρ, ek−ρ]. Then, from (14), (15) and the fact that |ek−sk| < ∆ and |ηk−sk| < ∆,

||f̃ (sk,ek]
ηk

||L2
=

√
ek − ηk

(ek − sk)(ηk − sk)
(ηk − sk)||fηk

− fηk+1||L2
≥ c2
√
∆
3

4
κk. (16)

Therefore, it holds that
t=ek−ρ
max

t=sk+ρ
||F̃ (sk,ek]

t,h ||L2 ≥||F̃
(sk,ek]
ηk,h

||L2

≥||f̃ (sk,ek]
ηk

||L2
− λ

≥c2
3

4

√
∆κk − λ,
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where the first inequality follows from the fact that ηk ∈ [sk + ρ, ek − ρ], the second inequality
follows from the good event in (10) and Remark 2, and the last inequality follows from (16).
Next, we observe that by Assumption 3

log
1
2 (T )

√
1

hp
=

√
T

p
2r+p

√
log(T ) ≤ c2

4

√
∆κk,

and, √
Thr = T

1
2−

r
2r+p = T

p
4r+2p .

In consequence, since κk is a positive constant, by the upper bound of λ on Equation (9), for
sufficiently large T , it holds that

c2
4

√
∆κk ≥ λ.

Therefore,
t=ek−ρ
max

t=sk+ρ
||F̃ (sk,ek]

t,h ||L2 ≥
c2
2

√
∆κk.

Therefore Equation (13) holds with c1 = c2
2 .

Step 3. In this step, it is shown that SBS((s, e], h, τ) can consistently detect or reject the
existence of undetected change points within (s, e].

Suppose ηk ∈ (s, e] is any undetected change point. Then by the second half of Step 1,
Ik ⊆ (s, e], and moreover

aI∗ ≥ t=ek−ρ
max

t=sk+ρ
||F̃ (sk,ek]

t,h ||L2
≥ c1
√
∆κk > τ,

where the second inequality follows from Equation (13), and the last inequality follows from

Assumption 3 and the choice of τ = Cτ

(
log

1
2 (T )

√
1
hp

)
. Therefore,Ms,e ̸= ∅, since Ik ∈Ms,e.

Suppose there does not exist any undetected change point in (s, e]. Then for any I = (α, β] ⊆ (s, e],
one of the following situations must hold,

(a) There is no change point within (α, β];

(b) there exists only one change point ηk within (α, β] and min{ηk − α, β − ηk} ≤ Υk;

(c) there exist two change points ηk, ηk+1 within (α, β] and

ηk − α ≤ Υk and β − ηk+1 ≤ Υk+1.

Observe that if (a) holds, then we have

max
α+ρ<t<β−ρ

||F̃ (α,β]
t,h ||L2 ≤ max

α+ρ<t<β−ρ
||f̃ (α,β]

t ||L2 + λ = λ.

Cases (b) and (c) can be dealt with using similar arguments. We will only work on (c) here. It follows
that, in the good event in Equation (10),

max
α+ρ<t<β−ρ

||F̃ (α,β]
t,h ||L2

≤ max
α<t<β

||f̃ (α,β]
t ||L2

+ λ (17)

≤
√
e− ηkκk+1 +

√
ηk − sκk + λ (18)

≤ 2
√
C log

1
2 (T )

√
T

p
2r+p + λ (19)

where the second inequality is followed by Lemma 7. Therefore in the good event in Equation (10),
for any I = (α, β] ⊆ (s, e], it holds that

aI =
β−ρ
max
t=α+ρ

||F̃ (α,β]
t,h ||L2

≤ 2
√
C log

1
2 (T )

√
T

p
2r+p + λ,

Then,

2
√
C log

1
2 (T )

√
1 + T

p
2r+p + λ

=2
√
C log

1
2 (T )

√
1

hp
+ 1 + 2C

√
log T

hp
+

2C1
√
p

√
hp

+ 2C2

√
Thr.
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We observe that
√

log(T )
hp = O

(
log(T )1/2

√
1
hp

)
. Moreover,

√
Thr =

√
T
( 1

T

) r
2r+p ≤

(
T

1
2−

r
2r+p

)
,

and given that,
1

2
− r

2r + p
=

p

2(2r + p)

we get,
√
Thr = o

(
log

1
2 (T )

√
1

hp

)
.

Therefore, by the choice of τ , we will always correctly reject the existence of undetected change
points, since

2
√
C log

1
2 (T )

√
T

p
2r+p + λ ≤ τ.

Thus, by the choice of τ , it holds that with sufficiently large constant Cτ ,

aI ≤ τ for all I ⊆ (s, e]. (20)

As a result, MNSBS((s, e], h, τ) will correctly reject if (s, e] contains no undetected change points.

Step 4. Assume that there exists an undetected change point ηk̃ ∈ (s, e] such that

min{ηk̃ − s, ηk̃ − e} = 3

4
∆.

Then,Ms,e ̸= ∅. Let I∗ be defined as in MNSBS ((s, e], h, τ) with

I∗ = (α∗, β∗].

To complete the induction, it suffices to show that, there exists a change point ηk ∈ (s, e] such that
min{ηk − s, ηk − e} ≥ 3

4∆ and |bI∗ − ηk| ≤ Υk. To this end, we consider the collection of change
points of {ft}t∈(α∗,β∗] We are to ensure that the assumptions of Lemma 12 are satisfied. In the
following, λ is used in Lemma 12. Then Equation (68) and Equation (69) are directly consequence of
Equation (10), Equation (11), Equation (12). By the narrowest of I∗,

|I∗| ≤ |Ik| ≤ ∆,

and by Step 1 with Ik = (sk, ek], it holds that

min{ηk − sk, ek − ηk} ≥
1

16
ζk ≥ c2∆,

Therefore for all k ∈ {k̃ : min{ηk̃ − s, e− ηk̃} ≥ c2∆},

t=β∗−ρ
max

t=α∗+ρ
||F̃ (α∗,β∗]

t,h ||L2
≥ t=ek−ρ

max
t=sk+ρ

||F̃ (sk,ek]
t,h ||L2

≥ c1
√
∆κk,

where the last inequality follows from Equation (13). Therefore (70) holds in Lemma 12. Finally,
Equation (71) is a direct consequence of the choices that

h = Ch(T )
−1

2r+d and ρ =
log(T )

nhd
.

Thus, all the conditions in Lemma 12 are met. So that, there exists a change point ηk of {ft}t∈I∗ ,
satisfying

min{β∗ − ηk, ηk − α∗} > c∆, (21)
and

|bI∗ − ηk| ≤ max{C3λ
2κ−2

k , ρ} ≤C4 log(T )

(
1

hp
+ Th2r

)
κ−2
k

≤C log(T )

(
T

p
2r+p

)
κ−2
k
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for sufficiently large constant C, where we have followed the same line of arguments as for the
conclusion of (20). Observe that
i) The change points of {ft}t∈I∗ belong to (s, e] ∩ {ηk}Kk=1; and
ii) Equation (21) and (α∗, β∗] ⊆ (s, e] imply that

min{e− ηk, ηk − s} > c∆ ≥ Υmax.

As discussed in the argument before Step 1, this implies that ηk must be an undetected change point
of {ft}t∈I∗ .
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E Proof of Theorem 2

In this section, we present the proof of theorem Theorem 2.

Proof of Theorem 2. Uniform tightness of κ2+ p
r

k

∣∣∣η̃k − ηk

∣∣∣. Here we show a.1 and b.1. For this
purpose, we will follow a series of steps. On step 1, we rewrite (6) in order to derive a uniform bound.
Step 2 analyses the lower bound while Step 3 the upper bound.
Step 1: Denote r̃ = η̃k − ηk. Without loss of generality, suppose r̃ ≥ 0. Since η̃k = ηk + r̃, defined
in (6), is the minimizer of Q̂k(η), it follows that

Q̂k(ηk + r̃)− Q̂k(ηk) ≤ 0.

Let

Q∗(η) =

η∑
t=sk+1

||Ft,h2
− f(sk,ηk] ∗ Kh2

||2L2
+

ek∑
t=η+1

||Ft,h2
− f(ηk,ek] ∗ Kh2

||2L2
, (22)

where,

f(sk,ηk] =
1

ηk − sk

ηk∑
i=sk+1

fi, f(ηk,ek] =
1

ek − ηk

ek∑
i=ηk+1

fi. (23)

Observe that,

Q∗(ηk + r̃)−Q∗(ηk) ≤Q̂k(ηk)− Q̂k(ηk + r̃)−Q∗(ηk) +Q∗(ηk + r̃). (24)

If r̃ ≤ 1/κ
2+ p

r

k , then there is nothing to show. So for the rest of the argument, for contradiction,
assume that

r̃ ≥ 1

κ
2+ p

r

k

. (25)

Step 2: Finding a lower bound. In this step, we will find a lower bound of the inequality (24). To
this end, we observe that,

Q∗(ηk + r̃)−Q∗(ηk) =

ηk+r̃∑
t=ηk+1

||Ft,h2 − f(sk,ηk] ∗ Kh2 ||2L2
−

ηk+r̃∑
t=ηk+1

||Ft,h2 − f(ηk,ek] ∗ Kh2 ||2L2

=

ηk+r̃∑
t=ηk+1

||f(sk,ηk] ∗ Kh2
− f(ηk,ek] ∗ Kh2

||2L2

− 2

ηk+r̃∑
t=ηk+1

⟨f(sk,ηk] ∗ Kh2
− f(ηk,ek] ∗ Kh2

, Ft,h2
− f(ηk,ek] ∗ Kh2

⟩L2

=

ηk+r̃∑
t=ηk+1

1

2
||f(sk,ηk] − f(ηk,ek]||

2
L2
− 2||f(sk,ηk] ∗ Kh2

− f(sk,ηk] + f(ηk,ek] ∗ Kh2
− f(ηk,ek]||

2
L2

− 2

ηk+r̃∑
t=ηk+1

⟨f(sk,ηk] ∗ Kh2 − f(ηk,ek] ∗ Kh2 , Ft,h2 − f(ηk,ek] ∗ Kh2
⟩L2

≥1

2
r̃κ2

k − 2

ηk+r̃∑
t=ηk+1

||f(sk,ηk] ∗ Kh2
− f(sk,ηk] + f(ηk,ek] ∗ Kh2

− f(ηk,ek]||
2
L2

− 2

ηk+r̃∑
t=ηk+1

⟨f(sk,ηk] ∗ Kh2
− f(ηk,ek] ∗ Kh2

, Ft,h2
− f(ηk,ek] ∗ Kh2

⟩L2
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We consider,

I1 := 2

ηk+r̃∑
t=ηk+1

||f(sk,ηk] ∗ Kh2 − f(sk,ηk] + f(ηk,ek] ∗ Kh2
− f(ηk,ek]||

2
L2
, and,

I2 := 2

ηk+r̃∑
t=ηk+1

⟨f(sk,ηk] ∗ Kh2
− f(ηk,ek] ∗ Kh2

, Ft,h2
− f(ηk,ek] ∗ Kh2

⟩L2
.

From above, we have that,

Q∗(ηk + r̃)−Q∗(ηk) ≥
1

2
r̃κ2

k − I1 − I2.

We now analyze the order of magnitude of term I1. Then, we get a lower bound for the term −I1. In
fact I1, has an upper bound of the form op(r̃k

p
r+2), where we use that ||fηk

∗ Kh2
− fηk

||L2
= o(1)

and ||fηk+1
∗ Kh2

− fηk+1
||L2

= o(1). For the term I2, we consider the random variable,

Yi =
⟨f[sk+1,ηk] ∗ Kh2 − f[ηk+1,ek] ∗ Kh2

, Ft,h2
− f[ηk+1,ek] ∗ Kh2

⟩L2

κkE(||Ft,h2
− fηk+1

∗ Kh2
||3L2)1/3

.

In order to use Lemma 3, we need to bound E(|Yi|3). For this, first we use Cauchy Schwartz
inequality,

E(|Yi|3) ≤
(||(fηk+1 − fηk

) ∗ Kh2
||L2)3E(||Ft,h2

− fηk+1
∗ Kh2

||3L2)

κ3
kE(||Ft,h2

− fηk+1
∗ Kh2

||3L2)

then, by Minkowski’s inequality,

||(fηk+1 − fηk
) ∗ Kh2 ||L2 =

∣∣∣∣∣∣ ∫
Rp

(fηk+1 − fηk
)(· − y)Kh2(y)dy

∣∣∣∣∣∣
L2

≤
∫
Rp

∣∣∣∣∣∣(fηk+1 − fηk
)(· − y)Kh2

(y)
∣∣∣∣∣∣
L2

dy

=
(∫

Rp

|Kh2(y)|dy
)∣∣∣∣∣∣(fηk+1 − fηk

)(· − y)
∣∣∣∣∣∣
L2

=||fηk+1 − fηk
||L2 ||Kh2

||L1 .

Therefore, by Assumption 2, we have

(||(fηk+1 − fηk
) ∗ Kh2

||L2)3E(||Ft,h2
− fηk+1

∗ Kh2
||3L2)

κ3
kE(||Ft,h2

− fηk+1
∗ Kh2

||3L2)

≤
(||fηk+1 − fηk

||L2 ||Kh2 ||L1)3E(||Ft,h2 − fηk+1
∗ Kh2 ||3L2)

κ3
kE(||Ft,h2 − fηk+1

∗ Kh2 ||3L2)

≤CK .

for any t ∈ (ηk, ek]. Moreover, we have that

E(||Ft,h2 − fηk+1
∗ Kh2 ||3L2)

1
3 =

( ∫ ( ∫
(Kh2(x− z)− E(Kh2(x−Xt)))

2dx
) 3

2

ft(z)dz
)1/3

≤
( ∫ ( ∫

(Kh2
(x− z))2dx

) 3
2

ft(z)dz
) 1

3

= 1
κp/2r .

(26)
Therefore, by Lemma 3, we have that I2 = op

(√
r̃κkκ

− p
2r

k (log(r̃κ
p
r+2

k ) + 1)
)
. Thus,

Q∗(ηk + r̃)−Q∗(ηk) ≥
1

2
r̃κ2

k −Op

(√
r̃κkκ

− p
2r

k (log(r̃κ
p
r+2

k ) + 1)
)
− op(r̃κ

p
r+2

k ). (27)

Step 3: Finding an upper bound. Now, we proceeded to get an upper bound of (24). This is, an
upper bound of the following expression,

Q̂k(ηk)− Q̂k(ηk + r̃)−Q∗(ηk) +Q∗(ηk + r̃). (28)
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Observe that, this expression can be written as,

Q̂k(ηk)− Q̂k(ηk + r̃)−Q∗(ηk) +Q∗(ηk + r̃)

=−
ηk+r̃∑

t=ηk+1

||Ft,h1 − F(sk,ηk],h1
||2L2

+

ηk+r̃∑
t=ηk+1

||Ft,h1 − F(η̂k,ek],h1
||2L2

+

ηk+r̃∑
t=ηk+1

||Ft,h2
− f(sk,ηk] ∗ Kh2

||2L2
−

ηk+r̃∑
t=ηk+1

||Ft,h2
− f(η̂k,ek] ∗ Kh2

||2L2

So that,
Q̂k(ηk)− Q̂k(ηk + r̃)−Q∗(ηk) +Q∗(ηk + r̃) = U1 + U2,

where,

U1 =

ηk+r̃∑
t=ηk+1

||Ft,h2
− f(sk,ηk] ∗ Kh2

||2L2
−

ηk+r̃∑
t=ηk+1

||Ft,h1
− F(sk,η̂k],h1

||2L2
, and,

U2 =

ηk+r̃∑
t=ηk+1

||Ft,h1 − F(η̂k,ek],h1
||2L2
−

ηk+r̃∑
t=ηk+1

||Ft,h2 − f(ηk,ek] ∗ Kh2 ||2L2
.

Now, we analyze each of the terms above. For U1, observe that

ηk+r̃∑
t=ηk+1

||Ft,h2 − f(sk,ηk] ∗ Kh2
||2L2
−

ηk+r̃∑
t=ηk+1

||Ft,h1
− F(sk,η̂k],h1

||2L2

=

ηk+r̃∑
t=ηk+1

||Ft,h2
− f(sk,ηk] ∗ Kh2

||2L2
−

ηk+r̃∑
t=ηk+1

||Ft,h2
− F(sk,ηk],h2

||2L2

+

ηk+r̃∑
t=ηk+1

||Ft,h2
− F(sk,ηk],h2

||2L2
−

ηk+r̃∑
t=ηk+1

||Ft,h1
− F(sk,ηk],h1

||2L2

=I3 + I4,

where,

I3 =

ηk+r̃∑
t=ηk+1

||Ft,h2 − f(sk,ηk] ∗ Kh2 ||2L2
−

ηk+r̃∑
t=ηk+1

||Ft,h2 − F(sk,ηk],h2
||2L2

, and,

I4 =

ηk+r̃∑
t=ηk+1

||Ft,h2
− F(sk,ηk],h2

||2L2
−

ηk+r̃∑
t=ηk+1

||Ft,h1
− F(sk,η̂k],h1

||2L2
.

To analyze I3, we rewrite it as follow,

I3 =

ηk+r̃∑
t=ηk+1

||f(sk,ηk] ∗ Kh2
− F(sk,ηk],h2

||2L2
− 2

ηk+r̃∑
t=ηk+1

⟨f(sk,ηk] ∗ Kh2
− F(sk,ηk],h2

, Ft,h2
− f(sk,ηk] ∗ Kh2

⟩L2

=I3,1 + I3,2,

where,

I3,1 =

ηk+r̃∑
t=ηk+1

||f(sk,ηk] ∗ Kh2
− F(sk,ηk],h2

||2L2
, and,

I3,2 = −2
ηk+r̃∑

t=ηk+1

⟨f(sk,ηk] ∗ Kh2 − F(sk,ηk],h2
, Ft,h2 − f(sk,ηk] ∗ Kh2⟩L2 .
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Now, we will get an upper bound for each of the terms above. The term I3,1 = Op

(
r̃ 1
T

log(T )

κ
p
r
k

)
,

which is followed by the use of Remark 1 . Even more, by Assumption 4, we get

I3,1 = op(r̃κ
p
r+2

k ). (29)

For the term I3,2, by Cauchy Schwartz inequality and triangle inequality,

⟨f(sk,ηk] ∗ Kκ − F(sk,ηk],κ, Ft,h2
− f(sk,ηk] ∗ Kh2

⟩L2

≤ ||f(sk,ηk] ∗ Kh2 − F(sk,ηk],h2
||L2 ||Ft,h2 − f(sk,ηk] ∗ Kh2

||L2

≤ ||f(sk,ηk] ∗ Kh2
− F(sk,ηk],h2

||L2

(
||Ft,h2

− f[ηk+1,ek] ∗ Kh2
||L2

+ ||f[ηk+1,ek] ∗ Kh2
− f[sk+1,ηk] ∗ Kh2

||L2

)
for any t ∈ (ηk, ηk + r̃]. By the Remark 1, we have that

||f(sk,ηk] ∗ Kh2 − F(sk,ηk],h2
||L2 = Op

( 1√
T

√
log(T )

κ
p
r

k

)
and using basic properties of integrals ||f[ηk+1,ek] ∗ Kh2 − f[sk+1,ηk] ∗ Kh2 ||L2 = O(κk). Therefore,

I3,2 ≤ Op

( 1√
T

√
log(T )

κ
p
r

k

)(
O(r̃κk) +

ηk+r̃∑
t=ηk+1

||Ft,h2
− f[ηk+1,ek] ∗ Kh2

||L2

)
Now, we need to get a bound of the magnitude of

ηk+r̃∑
t=ηk+1

||Ft,h2 − f[ηk+1,ek] ∗ Kh2 ||L2 ,

in order to get an upper for I3,2. This is done similarly to I2. We consider the random variable

Ỹi =
⟨Ft,h2 − f(ηk,ek] ∗ Kh2 , Ft,h2 − f(ηk,ek] ∗ Kh2⟩

1
2

L2
− E(||Ft,h2 − fηk+1

∗ Kh2 ||L2)

E(||Ft,h2
− fηk+1

∗ Kh2
||3L2)

1
3

.

In order to use Lemma 3, we observe that since ||Ft,h2 − fηk+1
∗ Kh2 ||L2 ≥ 0,

E(|Ỹi|3) ≤
E(||Ft,h2

− fηk+1
∗ Kh2

||3L2)

E(||Ft,h2
− fηk+1

∗ Kh2
||3L2)

= 1.

Therefore, using Lemma 3 and that E(||Ft,h2 − fηk+1
∗ Kh2 ||L2) = O(κ

−p
2r

k ) by (26), we get that
ηk+r̃∑

t=ηk+1

||Ft,h2 − f[ηk+1,ek] ∗ Kh2 ||2L2
= Op(

√
r̃κ

− p
r

k (log(r̃κ
p
r+2

k ) + 1)) +Op(r̃κ
−p
2r

k ).

Thus, by Assumption 4 and above,

I3,2 ≤ Op

( 1√
T

√
log(T )

κ
p
r

k

)(
O(r̃κk) +Op(

√
r̃κ

− p
r

k (log(r̃κ
p
r+2

k ) + 1)) +Op(r̃κ
−p
2r

k )
)
= op(r̃κ

p
r+2

k ).

(30)

Consequently, I3 has been bounded, and we only need to go over the term I4, to finalize the analysis
for U1. To analyze I4, we observe that

I4 =

ηk+r̃∑
t=ηk+1

||Ft,h2 − F(sk,ηk],h2
||2L2
−

ηk+r̃∑
t=ηk+1

||Ft,h1 − F(sk,η̂k],h1
||2L2

=

ηk+r̃∑
t=ηk+1

[
⟨Ft,h2

, Ft,h2
⟩L2
− 2⟨Ft,h2

, F(sk,ηk],h2
⟩L2

+ ⟨F(sk,ηk],h2
, F(sk,ηk],h2

⟩L2

]

+

ηk+r̃∑
t=ηk+1

[
− ⟨Ft,h1 , Ft,h1⟩L2 + 2⟨Ft,h1 , F(sk,η̂k],h1

⟩L2 − ⟨F(sk,η̂k],h1
, F(sk,η̂k],h1

⟩L2

]
=I4,1 + I4,2 + I4,3,
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where,

I4,1 =

ηk+r̃∑
t=ηk+1

⟨Ft,h2 , Ft,h2⟩L2 − ⟨Ft,h1 , Ft,h1⟩L2

I4,2 =

ηk+r̃∑
t=ηk+1

2⟨Ft,h1
, F(sk,η̂k],h1

⟩L2
− 2⟨Ft,h2

, F(sk,ηk],h2
⟩L2

, and,

I4,3 =

ηk+r̃∑
t=ηk+1

⟨F(sk,ηk],h2
, F(sk,ηk],h2

⟩L2
− ⟨F(sk,η̂k],h1

, F(sk,η̂k],h1
⟩L2

.

Now, we explore each of the terms I4,1, I4,2, and I4,3. First, I4,1 can be bounded as follows, we add
and subtract ⟨Ft,h1 , Ft,h2⟩L2 , to get

ηk+r̃∑
t=ηk+1

⟨Ft,h2 , Ft,h2⟩L2 − ⟨Ft,h1 , Ft,h1⟩L2

=

ηk+r̃∑
t=ηk+1

⟨Ft,h2
, Ft,h2

⟩L2
− ⟨Ft,h1

, Ft,h1
⟩L2

+ ⟨Ft,h1
, Ft,h2

⟩L2
− ⟨Ft,h1

, Ft,h2
⟩L2

=

ηk+r̃∑
t=ηk+1

⟨Ft,h2
− Ft,h1

, Ft,h2
⟩L2

+ ⟨Ft,h1
, Ft,h2

− Ft,h1
⟩L2

which, by Hölder’s inequality, is bounded by

ηk+r̃∑
t=ηk+1

||Ft,h2 ||L2 ||Ft,h2 − Ft,h1 ||L2 + ||Ft,h1 ||L2 ||Ft,h2 − Ft,h1 ||L2 = r̃Op(
T− r

2r+p

κ
p
2r+

1
2+

p
2r

k

log
r

2r+p (T )))

since ||Ft,h1 − Ft,h2 ||L2 = O( |κ−κ̂|
1
2

κ
p
2r

+1
2

k

) = Op

(
1

κ
p
2r

+1
2

k

((
log(T )

∆

) 2r
2r+p

+ T
p

2r+p log(T )
κ∆

) 1
2
)
, for

any t, see Remark 2 for more detail. Similarly, for I4,2, we have that adding and subtracting
2⟨Ft,h1 , F(sk,ηk],h2

⟩L2 ,

ηk+r̃∑
t=ηk+1

2⟨Ft,h1 , F(sk,η̂k],h1
⟩L2 − 2⟨Ft,h2 , F(sk,ηk],h2

⟩L2

=

ηk+r̃∑
t=ηk+1

2⟨Ft,h1 , F(sk,η̂k],h1
⟩L2
− 2⟨Ft,h2

, F(sk,ηk],h2
⟩L2

+ 2⟨Ft,h1
, F(sk,ηk],h2

⟩L2
− 2⟨Ft,h1

, F(sk,ηk],h2
⟩L2

=

ηk+r̃∑
t=ηk+1

2⟨Ft,h1
− Ft,h2

, F(sk,ηk],h2
⟩L2

+ 2⟨Ft,h1
, F(sk,η̂k],h1

− F(sk,ηk],h2
⟩L2

,

and by Hölder’s inequality and Remark 2, it is bounded by

ηk+r̃∑
t=ηk+1

||Ft,h1 − Ft,h2 ||L2 ||F(sk,ηk],h2
||L2 + ||Ft,h1 ||L2 ||F(sk,ηk],h2

− F(sk,η̂k],h1
||L2

=r̃Op

( 1

κ
p
2r+

1
2+

p
2r

k

(( log(T )
∆

) 2r
2r+p

+
T

p
2r+p log(T )

κ∆

) 1
2

+
T

p
2r+p log(T )

κ2

))
.
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Finally, for I4,3, we notice that, adding and subtracting ⟨F(sk,η̂k],h1
, F(sk,ηk],h2

⟩L2 , it is written as,

ηk+r̃∑
t=ηk+1

⟨F(sk,ηk],h2
, F(sk,ηk],h2

⟩L2
− ⟨F(sk,ηk],h1

, F(sk,ηk],h1
⟩L2

=

ηk+r̃∑
t=ηk+1

⟨F(sk,ηk],h2
, F(sk,ηk],h2

⟩L2
− ⟨F(sk,η̂k],h1

, F(sk,η̂k],h1
⟩L2

+⟨F(sk,η̂k],h1
, F(sk,ηk],h2

⟩L2
− ⟨F(sk,η̂k],h1

, F(sk,ηk],h2
⟩L2

=

ηk+r̃∑
t=ηk+1

⟨F(sk,ηk],h2
− F(sk,η̂k],h1

, F(sk,ηk],h2
⟩L2

+ ⟨F(sk,η̂k],h1
, F(sk,ηk],h2

− F(sk,η̂k],h1
⟩L2

which, by Hölder’s inequality and Remark 2, is bounded by
ηk+r̃∑

t=ηk+1

||F(sk,ηk],h2
||L2 ||F(sk,η̂k],h1

− F(sk,ηk],h2
||L2 + ||F(sk,η̂k],h1

||L2 ||F(sk,ηk],h2
− F(sk,η̂k],h1

||L2

=r̃Op

( 1

κ
p
2r+

1
2+

p
2r

k

(( log(T )
∆

) 2r
2r+p

+
T

p
2r+p log(T )

κ∆

) 1
2
)

Then, by above and Assumption 4, we conclude

I4 = op(r̃κ
p
r+2

k ). (31)

From (29), (30) and (31), we find that U1 has the following upper bound,
ηk+r̃∑

t=ηk+1

||Ft,h2 − f(sk,ηk] ∗ Kh2 ||2L2
−

ηk+r̃∑
t=ηk+1

||Ft,h1 − F(sk,η̂k],h1
||2L2

= op(r̃κ
p
r+2

k ). (32)

Now, making an analogous analysis, we have that U2 is upper bounded by,
ηk+r̃∑

t=ηk+1

||Ft,h1
− F(η̂k,ek],h1

||2L2
−

ηk+r̃∑
t=ηk+1

||Ft,h2
− f(ηk,ek] ∗ Kh2

||2L2
= op(r̃κ

p
r+2

k ). (33)

In fact, we observe that
ηk+r̃∑

t=ηk+1

||Ft,h1 − F(η̂k,ek],h1
||2L2
−

ηk+r̃∑
t=ηk+1

||Ft,h2 − f(ηk,ek] ∗ Kh2 ||2L2

=

ηk+r̃∑
t=ηk+1

||Ft,h2 − F(ηk,ek],h2
||2L2
−

ηk+r̃∑
t=ηk+1

||Ft,h2 − f(ηk,ek] ∗ Kh2
||2L2

+

ηk+r̃∑
t=ηk+1

||Ft,h1
− F(η̂k,ek],h1

||2L2
−

ηk+r̃∑
t=ηk+1

||Ft,h2
− F(ηk,ek],h2

||2L2

=I5 + I6,

where,

I5 =

ηk+r̃∑
t=ηk+1

||Ft,h2 − F(ηk,ek],h2
||2L2
−

ηk+r̃∑
t=ηk+1

||Ft,h2 − f(ηk,ek] ∗ Kh2
||2L2

, and,

I6 =

ηk+r̃∑
t=ηk+1

||Ft,h1
− F(η̂k,ek],h1

||2L2
−

ηk+r̃∑
t=ηk+1

||Ft,h2
− F(ηk,ek],h2

||2L2
.

Then, I5 is bounded as follows

I5 =

ηk+r̃∑
t=ηk+1

||f(ηk,ek] ∗ Kh2
− F(ηk,ek],h2

||2L2
+ 2

ηk+r̃∑
t=ηk+1

⟨f(ηk,ek] ∗ Kh2
− F(ηk,ek],h2

, Ft,h2
− f(ηk,ek] ∗ Kh2

⟩L2
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where,

I5,1 =

ηk+r̃∑
t=ηk+1

||f(ηk,ek] ∗ Kh2
− F(ηk,ek],h2

||2L2
, and,

I5,2 = 2

ηk+r̃∑
t=ηk+1

⟨f(ηk,ek] ∗ Kh2
− F(ηk,ek],h2

, Ft,h2
− f(ηk,ek] ∗ Kh2

⟩L2
.

The term I5,1 = Op

(
r̃ 1
T

log(T )

κ
p
r

)
, using Remark 1. Even more, by Assumption 4, we get

I5,1 = op(r̃κ
p
r+2

k ). (34)
For the term I5,2, by Cauchy Schwartz inequality,

⟨f(ηk,ek] ∗ Kh2 − F(ηk,ek],h2
, Ft,h2 − f(ηk,ek] ∗ Kh2⟩L2

≤ ||f(ηk,ek] ∗ Kh2
− F(ηk,ek],h2

||L2
||Ft,h2

− f(ηk,ek] ∗ Kh2
||L2

for any t ∈ (ηk, ηk + r̃]. By Remark 1, we have that ||f(ηk,ek] ∗ Kh2
− F(ηk,ek],h2

||L2
=

Op

(
1√
T

√
log(T )

κ
p
r
k

)
. Therefore,

I5,2 ≤ Op

( 1√
T

√
log(T )

κ
p
r

k

)( ηk+r̃∑
t=ηk+1

||Ft,h2 − f[ηk+1,ek] ∗ Kh2
||L2

)
Now, similarly to the bound for I2, we consider the random variable

Ȳi =
⟨Ft,h2 − f(ηk,ek] ∗ Kκ, Ft,h2 − f(ηk,ek] ∗ Kh2⟩

1
2

L2
− E(||Ft,h2 − f[ηk+1,ek] ∗ Kh2 ||L2)

E(||Ft,h2
− fηk+1

∗ Kh2
||3L2)

1
3

.

In order to use Lemma 3, we observe

E(|Ȳi|3) =
E(||Ft,h2 − fηk+1

∗ Kh2 ||3L2)

E(||Ft,h2 − fηk+1
∗ Kh2 ||3L2)

= 1.

so that, by Lemma 3,

I5,2 ≤ Op

( 1√
T

√
log(T )

κ
p
r

)(
Op(

√
r̃κ

− p
r

k (log(r̃κ
p
r+2

k ) + 1)) +Op(κ
−p
2r

k )
)
= op(r̃κ

p
r+2

k ). (35)

To analyze I6, we observe that

I6 =

ηk+r̃∑
t=ηk+1

||Ft,h2 − F(ηk,ek],h2
||2L2
−

ηk+r̃∑
t=ηk+1

||Ft,h1
− F(η̂k,ek],h1

||2L2

=

ηk+r̃∑
t=ηk+1

[
⟨Ft,h2

, Ft,h2
⟩L2
− 2⟨Ft,h2

, F(ηk,ek],h2
⟩L2

+ ⟨F(ηk,ek],h2
, F(ηk,ek],h2

⟩L2

]
ηk+r̃∑

t=ηk+1

[
− ⟨Ft,h1 , Ft,h1⟩L2 + 2⟨Ft,h1 , F(η̂k,ek],h1

⟩L2 − ⟨F(η̂k,ek],h1
, F(η̂k,ek],h1

⟩L2

]
=I6,1 + I6,2 + I6,3,

where,

I6,1 =

ηk+r̃∑
t=ηk+1

⟨Ft,h2
, Ft,h2

⟩L2
− ⟨Ft,h1

, Ft,h1
⟩L2

,

I6,2 =

ηk+r̃∑
t=ηk+1

2⟨Ft,h1 , F(η̂k,ek],h1
⟩L2 − 2⟨Ft,h2 , F(ηk,ek],h2

⟩L2

I6,3 =

ηk+r̃∑
t=ηk+1

⟨F(ηk,ek],h2
, F(ηk,ek],h2

⟩L2
− ⟨F(η̂k,ek],h1

, F(η̂k,ek],h1
⟩L2

.
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Then we bound each of these terms. First, we rewrite I6,1, as
ηk+r̃∑

t=ηk+1

⟨Ft,h2 , Ft,h2⟩L2 − ⟨Ft,h1 , Ft,h1⟩L2

=

ηk+r̃∑
t=ηk+1

⟨Ft,h2
, Ft,h2

⟩L2
− ⟨Ft,h1

, Ft,h1
⟩L2

+ ⟨Ft,h1
, Ft,h2

⟩L2
− ⟨Ft,h1

, Ft,h2
⟩L2

=

ηk+r̃∑
t=ηk+1

⟨Ft,h2
− Ft,h1

, Ft,h2
⟩L2

+ ⟨Ft,h1
, Ft,h2

− Ft,h1
⟩L2

which, by Hölder’s inequality, is bounded by
ηk+r̃∑

t=ηk+1

||Ft,h2
||L2
||Ft,h2

− Ft,h1
||L2

+ ||Ft,h1
||L2
||Ft,h2

− Ft,h1
||L2

=r̃Op

( 1

κ
p
2r+

1
2+

p
2r

k

)
( log(T )

∆

) 2r
2r+p

+
T

p
2r+p log(T )

κ∆

) 1
2
)

since ||Ft,κ−Ft,κ̂||2L2
= O( |κ−κ̂|

1
2

κ
p
2r

+1
2

k

) = Op(
1

κ
p
2r

+1
2

k

(
log(T )

∆

) 2r
2r+p

+ T
p

2r+p log(T )
κ∆

) 1
2

)), for any t, see

Remark 2 for more detail. Similarly, for I6,2 we have,
ηk+r̃∑

t=ηk+1

2⟨Ft,h1 , F(η̂k,ek],h1
⟩L2
− 2⟨Ft,h2

, F(ηk,ek],h2
⟩L2

=

ηk+r̃∑
t=ηk+1

2⟨Ft,h1
, F(η̂k,ek],h1

⟩L2
− 2⟨Ft,h2

, F(ηk,ek],h2
⟩L2

+ 2⟨Ft,h1
, F(ηk,ek],h2

⟩L2
− 2⟨Ft,h1

, F(ηk,ek],h2
⟩L2

=

ηk+r̃∑
t=ηk+1

2⟨Ft,h1
− Ft,h2

, F(ηk,ek],h2
⟩L2

+ 2⟨Ft,h1
, F(ηk,ek],h2

− F(η̂k,ek],h1
⟩L2

and by Hölder’s inequality and Remark 2, it is bounded by
ηk+r̃∑

t=ηk+1

||Ft,h1
− Ft,h2

||L2
||F(ηk,ek],h2

||L2
+ ||Ft,h1

||L2
||F(ηk,ek],h2

− F(η̂k,ek],h1
||L2

=r̃Op

( 1

κ
p
2r+

1
2+

p
2r

k

(( log(T )
∆

) 2r
2r+p

+
T

p
2r+p log(T )

κ∆

) 1
2
))

.

Now for I6,3, we write it as
ηk+r̃∑

t=ηk+1

⟨F(ηk,ek],h2
, F(ηk,ek],h2

⟩L2
− ⟨F(η̂k,ek],h1

, F(η̂k,ek],h1
⟩L2

=

ηk+r̃∑
t=ηk+1

⟨F(ηk,ek],h2
, F(ηk,ek],h2

⟩L2
− ⟨F(η̂k,ek],h1

, F(η̂k,ek],h1
⟩L2

+ ⟨F(η̂k,ek],h1
, F(ηk,ek],h2

⟩L2
− ⟨F(η̂k,ek],h1

, F(ηk,ek],h2
⟩L2

=

ηk+r̃∑
t=ηk+1

⟨F(ηk,ek],h2
− F(η̂k,ek],h1

, F(sk,ηk],h2
⟩L2

+ ⟨F(η̂k,ek],h1
, F(ηk,ek],h2

− F(η̂k,ek],h1
⟩L2

which, by Hölder’s inequality and Remark 2, is bounded by
ηk+r̃∑

t=ηk+1

||F(ηk,ek],h2
||L2
||F(ηk,ek],h2

− F(η̂k,ek],h1
||L2

+ ||F(η̂k,ek],h1
||L2
||F(ηk,ek],h2

− F(η̂k,ek],h1
||L2

=r̃Op

( 1

κ
p
2r+

1
2+

p
2r

k

(( log(T )
∆

) 2r
2r+p

+
T

p
2r+p log(T )

κ∆

) 1
2
))
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By above and Assumption 4, we conclude

I6 = op(r̃κ
p
r+2

k ). (36)
From, (34), (35) and (36), we get that U2 is bounded by

ηk+r̃∑
t=ηk+1

||Ft,κ̂ − F(η̂k,ek],κ̂||
2
L2
−

ηk+r̃∑
t=ηk+1

||Ft,κ − f(ηk,ek] ∗ Kκ||2L2
= op(r̃κ

p
r+2

k )

Therefore, from (32) and (33)

Q̂k(ηk)− Q̂k(ηk + r̃)−Q∗(ηk) +Q∗(ηk + r̃) = op(r̃κ
p
r+2

k ) (37)
Step 4: Combination of all the steps above. Finally, combining (24), (27) and (37), uniformly for
any r̃ ≥ 1

κ
p
r
+2

k

we have that

1

2
r̃κ2

k −Op

(√
r̃κkκ

− p
2r

k (log(r̃κ
p
r+2

k ) + 1)
)
− op(r̃κ

p
r+2

k ) ≤op(r̃κ
p
r+2

k )

which implies,
r̃κ

p
r+2

k = Op(1) (38)
and complete the proofs of a.1 and b.1.

Limiting distributions. For any k ∈ {1, . . . ,K}, due to the uniform tightness of r̃κ
p
r+2

k , (24) and
(37), as T →∞

Q∗(η) =

η∑
t=sk+1

||Ft,h2 − f(sk,ηk] ∗ Kh2 ||2L2
+

ek∑
t=η+1

||Ft,h2 − f(ηk,ek] ∗ Kh2
||2L2

,

satisfies ∣∣∣Q̂(
ηk + r̃

)
− Q̂

(
ηk

)
−
(
Q∗

(
ηk + r̃

)
−Q∗

(
ηk

))∣∣∣ p→ 0.

Therefore, it is sufficient to find the limiting distributions of Q∗
(
ηk + r̃

)
−Q∗

(
ηk

)
when T →∞.

Non-vanishing regime. Observe that for r̃ > 0, we have that when T →∞,

Q∗(ηk + r̃)−Q∗(ηk) =

ηk+r̃∑
t=ηk+1

||Ft,h2
− f(sk,ηk] ∗ Kh2

||2L2
−

ηk+r̃∑
t=ηk+1

||Ft,h2
− f(ηk,ek] ∗ Kh2

||2L2

=

ηk+r̃∑
t=ηk+1

||f(sk,ηk] ∗ Kh2 − f(ηk,ek] ∗ Kh2 ||2L2

− 2

ηk+r̃∑
t=ηk+1

⟨f(sk,ηk] ∗ Kh2
− f(ηk,ek] ∗ Kh2

, Ft,h2
− f(ηk,ek] ∗ Kh2

⟩L2

D−→

r̃∑
t=1

2
〈
Fh2,ηk+t − fηk+t ∗ Kh2 , (fηk+1

− fηk
) ∗ Kh2

〉
L2

+ r̃||(fηk+1
− fηk

) ∗ Kh2 ||2L2
.

When r̃ < 0 and T →∞, we have that

Q∗(ηk + r̃)−Q∗(ηk) =

ηk−1∑
t=ηk+r̃

||Ft,h2
− f(sk,ηk] ∗ Kh2

||2L2
−

ηk−1∑
t=ηk+r̃

||Ft,h2
− f(ηk,ek] ∗ Kh2

||2L2

=

ηk−1∑
t=ηk+r̃

||f(sk,ηk] ∗ Kh2 − f(ηk,ek] ∗ Kh2 ||2L2

− 2

ηk−1∑
t=ηk+r̃

⟨f(sk,ηk] ∗ Kh2
− f(ηk,ek] ∗ Kh2

, Ft,h2
− f(ηk,ek] ∗ Kh2

⟩L2

D−→

0∑
t=r̃+1

2
〈
Fh2,ηk+t − fηk+t ∗ Kh2 , (fηk

− fηk+1
) ∗ Kh2

〉
L2

+ r̃||(fηk+1
− fηk

) ∗ Kh2 ||2L2
.
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Therefore, using Slutsky’s theorem and the Argmax (or Argmin) continuous mapping theorem (see
3.2.2 Theorem van der Vaart and Wellner, 1996) we conclude

(η̃k − ηk)κ
p
r+2

k D−→ argmin
r̃∈Z

Pk(r̃) (39)

Vanishing regime. Vanishing regime. Let m = κ
−2− p

r

k , and we have that m → ∞ as T → ∞.
Observe that for r̃ > 0, we have that

Q∗
k

(
ηk + r̃m

)
−Q∗

k

(
ηk

)
=

ηk+r̃m−1∑
t=ηk

||f(sk,ηk] ∗ Kh2 − f(ηk,ek] ∗ Kh2 ||2L2

−2
ηk+r̃m−1∑

t=ηk

⟨f(sk,ηk] ∗ Kh2
− f(ηk,ek] ∗ Kh2

, Ft,h2
− f(ηk,ek] ∗ Kh2

⟩L2

Following the Central Limit Theorem for α−mixing, see Lemma 4, we get

1√
m

ηk+rm−1∑
t=ηk

⟨f(sk,ηk] ∗ Kh2 − f(ηk,ek] ∗ Kh2 , Ft,h2 − f(ηk,ek] ∗ Kh2⟩L2

κ
p
2r+1

k

D→ κ
− p

r

k σ̃∞(k)B(r̃),

where B(r̃) is a standard Brownian motion and σ̃(k) is the long-run variance given in (8). Therefore,
it holds that when T →∞

Q∗
k

(
ηk + r̃m

)
−Q∗

k

(
ηk

)
D→ κ

− p
r

k σ̃∞(k)B1(r) + r̃κ
− p

r−2

k ||f(sk,ηk] ∗ Kh2 − f(ηk,ek] ∗ Kh2 ||2L2
.

Similarly, for r̃ < 0, we have that when n→∞

Q∗
k

(
ηk + rm

)
−Q∗

k

(
ηk

)
D→ κ

− p
r

k σ̃∞(k)B1(−r̃)− r̃κ
− p

r−2

k ||f(sk,ηk] ∗ Kh2 − f(ηk,ek] ∗ Kh2
||2L2

..

Then, using Slutsky’s theorem and the Argmax (or Argmin) continuous mapping theorem (see
3.2.2 Theorem in van der Vaart & Wellner (1996)), and the fact that, E(||f(sk,ηk] ∗ Kh2

− f(ηk,ek] ∗
Kh2
||2L2

) = O(κ2
k), we conclude that

κ
2+ p

r

k

(
η̃k − ηk

)
D−→ argmin

r∈Z
σ̃∞(k)B(r̃) + |r̃|,

which completes the proof of b.2.
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F Proof of Theorem 3

In this section, we present the proof of theorem Theorem 3.

Proof of Theorem 3. First, letting h2 = cκκ
1
r

k and R = O( T
2r

2r+p

κ
p
2r

+3
2

k

), we consider

σ̆2
∞(k) =

1

R

R∑
r=1

( 1√
S

∑
i∈Sr

Y̆i

)2

, where, Y̆i = κ
p
2r−1

k

〈
Fh2,i − fi ∗ Kh2

, (fηk
− fηk+1

) ∗ Kh2

〉
L2

.

(40)

We will show that

(i)
∣∣∣σ̂2

∞(k)− σ̆2
∞(k)

∣∣∣ P−→ 0, T →∞, and

(ii)
∣∣∣σ̆2

∞(k)− σ̃2
∞(k)

∣∣∣ P−→ 0, T →∞

in order to conclude the result. For (i), we use a2 − b2 = (a+ b)(a− b), to write,

∣∣∣σ̂2
∞(k)− σ̆2

∞(k)
∣∣∣ =∣∣∣ 1

R

R∑
r=1

( 1√
S

∑
i∈Sr

Y̆i

)2

− 1

R

R∑
r=1

( 1√
S

∑
i∈Sr

Yi

)2∣∣∣
=
∣∣∣ 1
R

R∑
r=1

( 1√
S

∑
i∈Sr

Y̆i − Yi

)( 1√
S

∑
i∈Sr

Y̆i + Yi

)∣∣∣
=
∣∣∣ 1
R

R∑
r=1

I1I2

∣∣∣
Then, we bound each of the terms I1 and I2. For I1, we observe that,

I1 =
∣∣∣ 1√

S

∑
i∈Sr

Y̆i − Yi

∣∣∣ ≤ 1√
S

∑
i∈Sr

∣∣∣Y̆i − Yi

∣∣∣.
Then, adding and subtracting, κ̂

p
2r−1

k

〈
Fh1,i − fi ∗ Kh1

, (fηk
− fηk+1

) ∗ Kh2

〉
L2

and

κ̂
p
2r−1

k

〈
Fh2,i − fi ∗ Kh2 − Fh1,i + fi ∗ Kh1 , (fη̂k

− fη̂k+1
) ∗ Kh1

〉
L2

,

we get that,∣∣∣Y̆i − Yi

∣∣∣
=
∣∣∣κ p

2r−1

k

〈
Fh2,i − fi ∗ Kh2

, (fηk
− fηk+1

) ∗ Kh2

〉
L2

− κ̂
p
2r−1

k

〈
Fh1,i − fi ∗ Kh1

, (fη̂k
− fη̂k+1

) ∗ Kh1

〉
L2

∣∣∣
=
∣∣∣κ p

2r−1

k

〈
Fh2,i − fi ∗ Kh2

, (fηk
− fηk+1

) ∗ Kh2

〉
L2

− κ̂
p
2r−1

k

〈
Fh1,i − fi ∗ Kh1

, (fηk
− fηk+1

) ∗ Kh2

〉
L2

+κ̂
p
2r−1

k

〈
Fh1,i − fi ∗ Kh1 , (fηk

− fηk+1
) ∗ Kh2

〉
L2

− κ̂
p
2r−1

k

〈
Fh1,i − fi ∗ Kh1 , (fη̂k

− fη̂k+1
) ∗ Kh1

〉
L2

∣∣∣
+κ̂

p
2r−1

k

〈
Fh2,i − fi ∗ Kh2

− Fh1,i + fi ∗ Kh1
, (fη̂k

− fη̂k+1
) ∗ Kh1

〉
L2

−κ̂
p
2r−1

k

〈
Fh2,i − fi ∗ Kh2 − Fh1,i + fi ∗ Kh1 , (fη̂k

− fη̂k+1
) ∗ Kh1

〉
L2

33



which can be written as,∣∣∣〈κ p
2r−1

k (Fh2,i − fi ∗ Kh2
)− κ̂

p
2r−1

k (Fh1,i − fi ∗ Kh1
), (fηk

− fηk+1
) ∗ Kh2

− (fη̂k
− fη̂k+1

) ∗ Kh1

〉
L2

+
〈
κ̂

p
2r−1

k (Fh1,i − fi ∗ Kh1)− κ
p
2r−1

k (Fh2,i − fi ∗ Kh2), (fη̂k
− fη̂k+1

) ∗ Kh1 − (fηk
− fηk+1

) ∗ Kh2

〉
L2

+
〈
κ

p
2r−1

k (Fh2,i − fi ∗ Kh2
), (fηk

− fηk+1
) ∗ Kh2

− (fη̂k
− fη̂k+1

) ∗ Kh1

〉
L2

+
〈
κ̂

p
2r−1

k (Fh1,i − fi ∗ Kh1
)− κ

p
2r−1

k (Fh2,i − fi ∗ Kh2
), (fη̂k

− fη̂k+1
) ∗ Kh1

〉
L2

∣∣∣.
Now, we bound the expression above. For this purpose, by triangle inequality, it is enough to bound
each of the terms above. Then, we use Hölder’s inequality. First,∣∣∣〈κ p

2r−1

k (Fh2,i − fi ∗ Kh2
)− κ̂

p
2r−1

k (Fh1,i − fi ∗ Kh1
), (fηk

− fηk+1
) ∗ Kh2

− (fη̂k
− fη̂k+1

) ∗ Kh1

〉
L2

∣∣∣
≤ |κ

p
2r−1

k − κ̂
p
2r−1

k |||Fh2,i − fi ∗ Kh2
− Fh1,i + fi ∗ Kh1

||L2
||(fηk

− fηk+1
) ∗ Kh2

− (fη̂k
− fη̂k+1

) ∗ Kh1
||L2

.

Then, using (54), we have that |κ
p
2r−1

k − κ̂
p
2r−1

k | = Op

(
1

κ
2− p

2r
k

((
log(T )

∆

) 2r
2r+p

+ T
p

2r+p log(T )
κ∆

) 1
2
)

,

and using Remark 2, it follows that

||Fh2,i − fi ∗ Kh2
− Fh1,i + fi ∗ Kh1

||L2
≤||Fh2,i − Fh1,i||L2

+ ||fi ∗ Kh1
− fi ∗ Kh2

||L2

=Op

( 1

κ
p
2r+

1
2

k

(( log(T )
∆

) 2r
2r+p

+
T

p
2r+p log(T )

κ∆

) 1
2
)

and,

||(fηk
− fηk+1

) ∗ Kh2 − (fη̂k
− fη̂k+1

) ∗ Kh1 ||L2

≤||fηk
∗ Kh2 − fη̂k

∗ Kh1 ||L2 + ||fη̂k+1
∗ Kh1 − fηk+1

∗ Kh2 ||L2

=Op

( 1

κ
p
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1
2

k

(( log(T )
∆

) 2r
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+
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p
2r+p log(T )

κ∆

) 1
2
)
.

So that,∣∣∣〈κ p
2r−1

k (Fh2,i − fi ∗ Kh2
)− κ̂

p
2r−1

k (Fh1,i − fi ∗ Kh1
), (fηk

− fηk+1
) ∗ Kh2

− (fη̂k
− fη̂k+1

) ∗ Kh1

〉
L2

∣∣∣
= Op
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(( log(T )
∆

) 2r
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+
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2r+p log(T )

κ∆

) 1
2
)
Op

( 1

κ
p
2r+

1
2

k

(( log(T )
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+
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+
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) 1
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.

Now, in a similar way, we observe that〈
κ

p
2r−1

k (Fh2,i − fi ∗ Kh2), (fηk
− fηk+1

) ∗ Kh2 − (fη̂k
− fη̂k+1

) ∗ Kh1

〉
L2

≤||κ
p
2r−1

k (Fh2,i − fi ∗ Kh2
)||L2
||(fηk

− fηk+1
) ∗ Kh2
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)

where equality is followed by noticing that

||Fh2,i − fi ∗ Kh2 ||L2 ≤||Fh2,i||L2 + ||fi ∗ Kh2 ||L2 (41)

=O(κ
− p

2r

k ) +O(1), (42)
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and then using Remark 2 and Assumption 1. Finally,〈
κ̂

p
2r−1

k (Fh1,i − fi ∗ Kh1)− κ
p
2r−1

k (Fh2,i − fi ∗ Kh2), (fη̂k
− fη̂k+1

) ∗ Kh1
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≤|κ̂
p
2r−1

k − κ
p
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where equality is followed by Remark 2, Assumption 1 and Minkowski’s inequality. Therefore,
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To bound the I2 term, we add and subtract κ
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Then, as before, we bound each of the terms above using Hölder’s inequality. We start with the term∣∣∣κ p
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was previously bounded by,
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In order to conclude (i), we notice that by Assumption 4 and that S = O(T
−p
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implies, ∣∣∣σ̂2
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Now, we are going to see that
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∣∣∣ P−→ 0, T →∞. To this end, we will show that
the estimator is asymptotically unbiased, and its variance→ 0 as T →∞. First, we notice that, by
Hölder’s inequality and Minkowsky’s inequality,
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Now, we analyze the Bias. We observe that,
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∞(k)) =

1

R

R∑
r=1

E
(( 1√

S

∑
i∈Sr

Y̆i

)2)
=

1

S
E
(( ∑

i∈Sr

Y̆i

)2)
=

S+1∑
l=−S+1

S − l

S
E(Y̆iY̆i+l)
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so that, the bias has the following form,
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S
E(Y̆iY̆i+l).

Now, we show that each of the above terms vanishes as T →∞. We have that, by condition (2) and
covariance inequality
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∞∑
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S
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by condition (2), choice of S and Assumption 4. Therefore, we conclude that the Bias vanishes as

T →∞. To analyze the Variance, we observe that, if Yr = 1
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where, α̃l are the mixing coefficients of {Yr}r∈Z, which is bounded by the mixing coefficient αl.
From here, we conclude the result (ii).
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G Large probability events

In this section, we deal with all the large probability events that occurred in the proof of Theorem 1.
Recall that, for any (s, e] ⊆ (0, T ],

f̃s,e
t (x) =

√
e− t

(e− s)(t− s)

t∑
l=s+1
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√
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e∑
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fl(x), x ∈ X .
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Then, by proposition 2.5 on Fan & Yao (2008), |cov(Z1, Z1 + t)| ≤ Cα(t) 1
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where the last inequity is followed by the fact e−x < 1
x for x > −1. In consequence,
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Then, by Bernstein inequality for mixing dependence, see Merlevède et al. (2009) for more details,
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It follows that,
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Proposition 2. Define the events
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Then
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)
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where R is a positive constant.
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Proof. First, we notice that
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by an union bound argument,
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The term I1,2 is bounded as followed.
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√
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√
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Finally, we analyze the term I2. By the adaptive assumption, the following is satisfied,

max
ρ⩽k⩽T−r̃

sup
x∈Rp

∣∣∣ 1√
k

r+k∑
t=r̂+1

(∫
Kh(x− z)dFz(z)− ft(x)

)∣∣∣
≤ max

ρ⩽k⩽T−r̃

1√
k

r+k∑
t=r̂+1

sup
x∈Rp

∣∣∣ ∫ Kh(x− z)dFz(z)− ft(x)
∣∣∣

≤ max
ρ⩽k⩽T−r̃

1√
k

r+k∑
t=r̂+1

C2h
r

≤C2

√
Thr

We conclude the bound for event A2. We conclude the bound for event A2. Next, to derive the bound
for event A1, by definition of F̃ s,e

t,h and f̃s,e
t , we have that∣∣∣∣F̃ s,e

t,h (x)− f̃s,e
t (x)

∣∣∣∣ ≤ ∣∣∣∣
√

e− t

(e− s)(t− s)

t∑
l=s+1

(Fl,h(x)− fl,h(x))

∣∣∣∣
+

∣∣∣∣
√

t− s

(e− s)(e− t)

e∑
l=t+1

(Fl,h(x)− fl,h(x))

∣∣∣∣.
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Then, we observe that,√
e− t

(e− s)(t− s)
≤

√
1

t− s
if s ≤ t, and

√
t− s

(e− s)(e− t)
≤

√
1

e− t
if t ≤ e.

Therefore,

X =
e−ρ
max

t=s+ρ+1

∣∣∣∣F̃ (s,e
t,h (x)− f̃s,e

t (x)

∣∣∣∣ ≤ e−ρ
max

t=s+ρ+1

∣∣∣∣
√

1

t− s

t∑
l=s+1

(
Fl,h(x)− {fl,h(x)

)∣∣∣∣
+

e−ρ
max

t=s+ρ+1

∣∣∣∣
√

1

e− t

e∑
l=t+1

(
Fl,h(x)− fl,h(x)

)∣∣∣∣ = X1 +X2.

Finally, letting λ = 2C1

√
log T
hp +

2C2
√
p√

hp
+ 2C2

√
Thr, we get that

P(X ≥ λ) ≤P(X1 +X2 ≥
λ

2
+

λ

2
)

≤P(X1 ≥
λ

2
) + P(X2 ≥

λ

2
)

≤2RpT−2,

where the last inequality follows from above. This concludes the bound for A1.

Remark 1. On the events (A1)
c and, (A2)

c, by Assumption 1, we have that

e−ρ
max

t=s+ρ+1
||F̃ s,e

t,h (x)− f̃s,e
t (x)||L2

≤ e−ρ
max

t=s+ρ+1
C̃X sup

x∈Rp

∣∣∣∣F̃ s,e
t,h (x)− f̃s,e

t (x)

∣∣∣∣
≤2C̃XC

√
log T

hp
+

2C̃XC1
√
p

hp
+ 2C̃XC2

√
Thr

where C̃X is the volume of the set X . Moreover, using inequality (47), we have that

max
ρ⩽k≤T−r̃

∣∣∣∣∣∣ 1√
k

r̃+k∑
t=r̃+1

(
Kh(· −Xt)−

∫
Kh(· − z)dFt(z)

)∣∣∣∣∣∣
L2

≤CX max
ρ⩽k≤T−r̃

sup
x∈Rp

∣∣∣ 1√
k

r̃+k∑
t=r̃+1

(
Kh(x−Xt)−

∫
Kh(x− z)dFt(z)

)∣∣∣
=Op

(√ log T

hp

)
.
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H α-mixing condition

A process (Xt, t ∈ Z) is said to be α-mixing if

αk = sup
t∈Z

α(σ(Xs, s ≤ t), σ(Xs, s ≥ t+ k)) −→k→∞ 0.

The strong mixing, or α-mixing coefficient between two σ-fields A and B is defined as

α(A,B) = sup
A∈A,B∈B

|P(A ∩B)− P(A)P(B)|.

Suppose X and Y are two random variables. Then for positive numbers p−1 + q−1 + r−1 = 1, it
holds that

|Cov(X,Y )| ≤ 4∥X∥Lp
∥Y ∥Lq

{α(σ(X), σ(Y ))}1/r.

Let
{
Zt

}∞

t=−∞
be a stationary time series vectors. Denote the alpha mixing coefficients of k to be

α(k) = α
(
σ
{
. . . , Zt−1, Zt

}
, σ

{
Zt+k, Zt+k+1, . . .

})
.

Note that the definition is independent of t.

H.1 Maximal Inequality

The unstationary version of the following lemma is in Lemma B.5. of Kirch (2006).

Lemma 1. Suppose
{
yi

}∞

i=1
is a stationary alpha-mixing time series with mixing coefficient α(k)

and that E
(
yi

)
= 0. Suppose that there exists δ,∆ > 0 such that

E
(∣∣∣yi∣∣∣2+δ+∆)

≤ D1

and
∞∑
k=0

(k + 1)δ/2α(k)∆/(2+δ+∆) ≤ D2.

Then

E
(

max
k=1,...,n

∣∣∣ k∑
i=1

yi

∣∣∣2+δ)
≤ Dn(2+δ)/2,

where D only depends on δ and the joint distribution of
{
yi

}∞

i=1
.

Proof. This is Lemma B.8. of Kirch (2006).

Lemma 2. Suppose that there exists δ,∆ > 0 such that

E
(∣∣∣yi∣∣∣2+δ+∆)

≤ D1

and
∞∑
k=0

(k + 1)δ/2α(k)∆/(2+δ+∆) ≤ D2.

Then it holds that for any d > 0, 0 < ν < 1 and x > 0,

P
(

max
k∈[νd,d]

∣∣∣∑k
i=1 yi

∣∣∣
√
k

≥ x
)
≤ Cx−2−δ,

where C is some constant.
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Proof. Let

S∗
d = max

k=1,...,d

∣∣∣ k∑
i=1

yi

∣∣∣.
Then Lemma 1 implies that ∥∥∥S∗

d

∥∥∥
L2+δ

≤ C1d
1/2

Therefore it holds that

P
(∣∣∣ S∗

d√
d

∣∣∣ ≥ x
)
= P

(∣∣∣ S∗
d√
d

∣∣∣2+δ

≥ x2+δ
)
≤ C1x

−2−δ.

Observe that ∣∣∣S∗
d

∣∣∣
√
d

= max
k=1,...,d

∣∣∣∑k
i=1 yi

∣∣∣
√
d

≥ max
k∈[νd,d]

∣∣∣∑k
i=1 yi

∣∣∣
√
d

≥ max
k∈[νd,d]

∣∣∣∑k
i=1 yi

∣∣∣√
k/ν

Therefore

P
(

max
k∈[νd,d]

∣∣∣∑k
i=1 yi

∣∣∣
√
k

≥ x/
√
ν
)
≤ P

(∣∣∣ S∗
d√
d

∣∣∣ ≥ x
)
≤ C1x

−2−δ,

which gives

P
(

max
k∈[νd,d]

∣∣∣∑k
i=1 yi

∣∣∣
√
k

≥ x
)
≤ C2x

−2−δ.

Lemma 3. Let ν > 0 be given. Under the same assumptions as in Lemma 1, for any 0 < a < 1 it
holds that

P
(∣∣∣ r∑

i=1

yi

∣∣∣ ≤ C

a

√
r{log(rν) + 1} for all r ≥ 1/ν

)
≥ 1− a2,

where C is some absolute constant.

Proof. Let s ∈ Z+and Ts =
[
2s/ν, 2s+1/ν

]
. By Lemma 3, for all x ≥ 1,

P
(
sup
r∈Ts

∣∣∣∑r
i=1 yi

∣∣∣
√
r

≥ x
)
≤ C1x

−2−δ ≤ C1x
−2.

Therefore by a union bound, for any 0 < a < 1,

P
(
∃s ∈ Z+ : sup

r∈Ts

∣∣∣∑r
i=1 yi

∣∣∣
√
r

≥
√
C1

a
(s+ 1)

)
≤

∞∑
s=0

a2

(s+ 1)2
= a2π2/6.

For any r ∈
[
2s/ν, 2s+1/ν

]
, s ≤ log(rν)/ log(2), and therefore

P
(
∃s ∈ Z+ : sup

r∈Ts

∣∣∣∑r
i=1 yi

∣∣∣
√
r

≥
√
C1

a

{ log(rν)

log(2)
+ 1

})
≤ a2π2/6.

Equation (2) directly gives

P
(
sup
r∈Ts

∣∣∣∑r
i=1 yi

∣∣∣
√
r

≥ C

a
{log(rν) + 1}

)
≤ a2.
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H.2 Central Limit theorem

Below is the central limit theorem for α-mixing random variable. We refer to Doukhan (1994) for
more details.

Lemma 4. Let
{
Zt

}
be a centred α-mixing stationary time series. Suppose for the mixing coefficients

and moments, for some δ > 0 it holds
∞∑
k=1

α
δ/(2+δ)
k <∞, E

[∣∣∣Z1

∣∣∣2+δ

<∞
]
.

Denote Sn =
∑n

t=1 Zt and σ2
n = E

[∣∣∣Sn

∣∣∣2]. Then

S⌊nt⌋

σn
→W (t),

where convergence is in Skorohod topology and W (t) is the standard Brownian motion on [0, 1].
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I Additional Technical Results

Lemma 5. Let J be defined as in Definition 2 and suppose Assumption 1 e holds. Then for each
change point ηk there exists a seeded interval Ik = (sk, ek] such that
a. Ik contains exactly one change point ηk;
b. min{ηk − sk, ek − ηk} ≥ 1

16∆; and
c. max{ηk − sk, ek − ηk} ≤ 9

10∆;

Proof. These are the desired properties of seeded intervals by construction. The proof is the same as
theorem 3 of Kovács et al. (2020) and is provided here for completeness.

Let k ∈ {1, ...,K}, where K is from definition 2. By construction of seeded intervals, we
have that in Jk, we can find an interval (⌊(i − 1)T2−k⌋, ⌈(i − 1)T2−k + T2−k+1⌉], for some
i ∈ 1, ..., 2k − 1, such that

min{ηk − ⌊(i− 1)T2−k⌋, ⌈(i− 1)T2−k + T2−k+1⌉ − ηk} ≥
lk
4

(50)

and
max{ηk − ⌊(i− 1)T2−k⌋, ⌈(i− 1)T2−k + T2−k+1⌉ − ηk} ≤ lk, (51)

where lk = T2−k+1, is the size of each interval in Jk. By the choice of K, there exist k, such that
lk = 9

10∆, from where the claim is followed.

Lemma 6. Let {Xi}Ti=1 be random grid points sampled from a common density function ft : Rp → R,
satisfying Assumption 1-a and -b. Under Assumption (2), the density estimator of the sampling
distribution µ,

f̂t(x) =
1

T

T∑
t=1

Kh(x−Xi), x ∈ Rp,

satisfies,

||f̂T − ft||L∞ = Op

(( log(T )
T

) 2r
2r+p

)
. (52)

The verification of these bounds can be found in many places in the literature. See for example Yu
(1993) and Tsybakov (2009).
Remark 2. Even more, by Assumption 1,

||f̂T − ft||L2
≤ CX ||f̂T − ft||L∞ = O

(( log(T )
T

) 2r
2r+p

)
(53)

with high probability. Therefore, given that

κ =
||
√

ηk+1−ηk

(ηk+1−ηk−1)(ηk−ηk−1)

∑ηk

i=ηk−1+1 fi −
√

(ηk−ηk−1)
(ηk+1−ηk−1)(ηk+1−η k

)
∑ηk+1

i=ηk+1 fi||L2√
(ηk−ηk−1)(ηk+1−ηk)

ηk+1−ηk−1

(54)

and (5), by triangle inequality, (53), and Lemma 5, we have that

|κ− κ̂| = Op

(( log(T )
∆

) 2r
2r+p

+
T

p
2r+p log(T )

κ∆

)
.

From here, and Assumption 2, if h1 = O(κ
1
r ) and h2 = O(κ̂

1
r ), we conclude that

||Ft,h1 − Ft,h2 ||2L2
= O

( |κ− κ̂|
κ

p
r+1

)
.

In fact,
||Ft,h1

− Ft,h2
||2L2

=

∫
Rp

(
1

hp
1

K(x−Xt

h1
)− 1

hp
2

K(x−Xt

h2
))2dx

=

∫
Rp

( 1

hp
1

K(x−Xt

h1
)
)2

− 2
1

hp
1

K(x−Xt

h1
)
1

hp
2

K(x−Xt

h2
) +

( 1

hp
2

K(x−Xt

h2
)
)2

dx.
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Now, we analyze the two following terms,

I1 =

∫
Rp

( 1

hp
1

K(x−Xt

h1
)
)2

− 1

hp
1

K(x−Xt

h1
)
1

hp
2

K(x−Xt

h2
)dx

and

I2 =

∫
Rp

( 1

hp
2

K(x−Xt

h2
)
)2

− 1

hp
1

K(x−Xt

h1
)
1

hp
2

K(x−Xt

h2
)dx.

For I1, letting u = x−Xt

h1
, we have that∫
Rp

( 1

hp
1

K(x−Xt

h1
)
)2

dx =

∫
Rp

1

hp
1

(
K(u)

)2

du

and, letting v = x−Xt

h2
, we have that∫

Rp

1

hp
1

K(x−Xt

h1
)
1

hp
2

K(x−Xt

h2
)dx =

∫
Rp

1

hp
1

K(vh2

h1
)K(v)dv.

Therefore, by Assumption 2 and the Mean Value Theorem,

I1 =
1

hp
1

∫
Rp

K(v)
(
K(v)−K(vh2

h1
)
)
dv ≤C 1

hp
1

∣∣∣1− h2

h1

∣∣∣ ∫
Rp

K(v)||v||dv

≤C1
|h1 − h2|
hp+1
1

=O
( |κ− κ̂|

κ
p+1
r

κ
1
r−1

)
= O

( |κ− κ̂|
κ

p
r+1

)
.

Similarly, we have,

I2 =

∫
Rp

( 1

hp
2

K(x−Xt

h2
)
)2

− 1

hp
1

K(x−Xt

h1
)
1

hp
2

K(x−Xt

h2
)dx

=
1

hp
2

∫
Rp

K(v)
(
K(v)−K(vh1

h2
)
)
dv ≤ C

1

hp
2

∣∣∣1− h1

h2

∣∣∣ ∫
Rp

K(v)||v||dv = O
( |κ− κ̂|

κ
p
r+1

)
.

I.1 Multivariate change point detection lemmas

We present some technical results corresponding to the generalization of the univariate CUSUM to
the Multivariate case. For more details, we refer the interested readers to Padilla et al. (2021) and
Wang et al. (2020).

Let {Xt}Tt=1 ⊂ Rp a process with unknown densities {ft}Tt=1.
Assumption 5. We assume there exist {ηk}Kk=1 ⊂ {2, ..., T} with 1 = η0 < η1 < ... < ηk ≤ T <
ηK+1 = T + 1, such that

ft ̸= ft+1 if and only if t ∈ {η1, ..., ηK}, (55)

Assume

min
k=1,...,K+1

(ηk − ηk−1) ≥ ∆ > 0,

0 < ||fηk+1
− fηk

||L∞ = κk for all k = 1, . . . ,K.

In the rest of this section, we use the notation

f̃
(s,e]
t (x) =

√
e− t

(e− s)(t− s)

t∑
j=s+1

fj(x)−

√
t− s

(e− s)(e− t)

e∑
j=t+1

fj(x),

for all 0 ≤ s < t < e ≤ T and x ∈ Rp.
Lemma 7. If [s, e] contain two and only two change points ηr and ηr+1, then

sup
s≤t≤e

||f̃s,e
t ||L2 ≤

√
e− ηr+1||fr+1 − fr||L2 +

√
ηr − s||fr − fr−1||L2 .
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Proof. This is Lemma 15 in Wang et al. (2020). Consider the sequence
{
gt

}e

t=s+1
be such that

gt =
{

fηk
, if s+ 1 ≤ t < ηk,

ft, if ηk ≤ t ≤ e.

For any t ≥ ηk,
f̃s,e
t − g̃s,et

=

√
e− t

(e− s)(t− s)

( t∑
i=s+1

fi −
ηk∑

i=s+1

fηk
−

t∑
i=ηk+1

fi

)

−

√
t− s

(e− s)(e− t)

( e∑
i=t+1

fi −
e∑

i=t+1

fi

)

=

√
e− t

(e− s)(t− s)

(
ηk − s

)(
fηk
− fηk−1

)
.

So for t ≥ ηk, ||f̃s,e
t − g̃s,et ||L2

≤
√
ηk − sκk. Since sups≤t≤e ||f̃

s,e
t ||L2

=

max
{
||f̃s,e

ηk
||L2

, ||f̃s,e
ηk+1
||L2

}
, and that

max
{
||f̃s,e

ηk
||L2

, ||f̃s,e
ηk+1
||L2

}
≤ sup

s≤t≤e
||g̃s,et ||L2

+
√
ηk − sκk

≤
√

e− ηk+1κk+1 +
√
ηr − sκk

where the last inequality follows form the fact that gt has only one change point in [s, e].

Lemma 8. Suppose e− s ≤ CR∆, where CR > 0 is an absolute constant, and that
ηk−1 ≤ s ≤ ηk ≤ . . . ≤ ηk+q ≤ e ≤ ηk+q+1, q ≥ 0

Denote
κs,e
max = max

{
sup
x∈Rp

∣∣∣fηp
(x)− fηp−1

(x)
∣∣∣ : k ≤ p ≤ k + q

}
.

Then for any k − 1 ≤ p ≤ k + q, it holds that

sup
x∈Rp

∣∣∣ 1

e− s

e∑
i=s+1

fi(x)− fηp
(x)

∣∣∣ ≤ CRκ
s,e
max.

Proof. This is Lemma 18 in Wang et al. (2020). Since e− s ≤ CR∆, the interval [s, e] contains at
most CR + 1 change points. Observe that∣∣∣∣∣∣ 1

e− s

e∑
i=s

fi − fηp

∣∣∣∣∣∣
L∞

=
1

e− s

∣∣∣∣∣∣ ηk∑
i=s

(
fηk−1

− fηp

)
+

ηk+1∑
i=ηk+1

(
fηk
− fηp

)
+ . . .+

e∑
i=ηk+q+1

(
fηk+q

− fηp

)∣∣∣∣∣∣
L∞

≤ 1

e− s

ηk∑
i=s

|p− k|κs,e
max +

ηk+1∑
i=ηk+1

|p− k − 1|κs,e
max + . . .+

e∑
i=ηk+q+1

|p− k − q − 1|κs,e
max

≤ 1

e− s

e∑
i=s

(
CR + 1

)
κs,e
max,

where
∣∣∣p1 − p2

∣∣∣ ≤ CR + 1 for any ηp1
, ηp2

∈ [s, e] is used in the last inequality.

Lemma 9. Let (s, e) ⊂ (0, n) contains two or more change points such that
ηk−1 ≤ s ≤ ηk ≤ . . . ≤ ηk+q ≤ e ≤ ηk+q+1, q ≥ 1

If ηk − s ≤ c1∆, for c1 > 0, then∣∣∣∣∣∣f̃s,e
ηk

∣∣∣∣∣∣
L∞
≤
√
c1

∣∣∣∣∣∣f̃s,e
ηk+1

∣∣∣∣∣∣
L∞

+ 2κk

√
ηk − s
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Proof. This is Lemma 20 in Wang et al. (2020). Consider the sequence
{
gt

}e

t=s+1
be such that

gt =

{
fηr+1 , s+ 1 ≤ t ≤ ηk,

ft, ηk + 1 ≤ t ≤ e

For any t ≥ ηr, it holds that

||f̃s,e
ηk
− g̃s,eηk

||L∞ =
∣∣∣∣∣∣√ (e− s)− t

(e− s)(t− s)

(
ηk − s

)(
fηk+1

− fηk

)∣∣∣∣∣∣
L∞
≤
√
ηk − sκk.

Thus,

||f̃s,e
ηk
||L∞ ≤ ||g̃s,eηk

||L∞ +
√
ηk − sκk ≤

√√√√√
(
ηk − s

)(
e− ηk+1

)
(
ηk+1 − s

)(
e− ηk

) ||g̃s,eηk+1
||L∞ +

√
ηk − sκk

≤
√

c1∆

∆
||g̃s,eηk+1

||L∞ +
√
ηk − sκk ≤

√
c1||f̃s,e

ηk+1
||L∞ + 2

√
ηk − sκk,

where the first inequality follows from the observation that the first change point of gt in (s, e) is at
ηk+1.

Lemma 10. Under Assumption 5, for any interval (s, e) ⊂ (0, T ) satisfying

ηk−1 ≤ s ≤ ηk ≤ . . . ≤ ηk+q ≤ e ≤ ηk+q+1, q ≥ 0.

Let
b ∈ argmax

t=s+1,...,e
sup
x∈Rp

∣∣∣f̃ (s,e]
t (x)

∣∣∣.
Then b ∈

{
η1, . . . , ηK

}
. For any fixed z ∈ Rp, if f̃ (s,e]

t (z) > 0 for some t ∈ (s, e), then

f̃
(s,e]
t (z) is either strictly monotonic or decreases and then increases within each of the interval(
s, ηk

)
,
(
ηk, ηk+1

)
, . . . ,

(
ηk+q, e

)
.

Proof. We prove this by contradiction. Assume that b /∈ {η1, . . . , ηK}. Let z1 ∈ argmax
x∈Rp

∣∣∣f̄s,e
b (x)

∣∣∣.
Due to the definition of b, we have

b ∈ argmax
t=s+1,...,e

∣∣∣f̃ (s,e]
t

(
z1

)∣∣∣.
It is easy to see that the collection of change points {ft(z1)}et=s+1 is a subset of the change points of
{f}et=s+1. Then, from Lemma 2.2 in Venkatraman (1992) that

f̃
(s,e]
b

(
z1

)
< max

j∈{k,...,k+q}
f̃ (s,e]
ηj

(
z1

)
≤ max

t=s+1,...,e
sup
x∈Rp

∣∣∣f̃ (s,e]
t (x)

∣∣∣
which is a contradiction.

Recall that in Algorithm 1, when searching for change points in the interval (s, e), we actually restrict
to values t ∈

(
s+ ρ, e− ρ

)
. We now show that for intervals satisfying condition SE from Lemma

1, taking the maximum of the CUSUM statistic over
(
s + ρ, e − ρ

)
is equivalent to searching on

(s, e), when there are change points in
(
s+ ρ, e− ρ

)
.

Lemma 11. Let z0 ∈ Rp, (s, e) ⊂ (0, T ). Suppose that there exists a true change point ηk ∈ (s, e)
such that

min
{
ηk − s, e− ηk

}
≥ c1∆, (56)

and ∣∣∣f̃ (s,e]
ηk

(
z0

)∣∣∣ ≥ (
c1/2

) κ∆√
e− s

, (57)
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where c1 > 0 is a sufficiently small constant. In addition, assume that

max
t=s+1,...,e

∣∣∣f̃ (s,e]
t

(
z0

)∣∣∣− ∣∣∣f̃ (s,e]
ηk

(
z0

)∣∣∣ ≤ c2∆
4(e− s)−7/2κ, (58)

where c2 > 0 is a sufficiently small constant. Then for any d ∈ (s, e) satisfying∣∣∣d− ηk

∣∣∣ ≤ c1∆/32, (59)

it holds that ∣∣∣f̃ (s,e]
ηk

(
z0

)∣∣∣− ∣∣∣f̃ (s,e]
d

(
z0

)∣∣∣ > c
∣∣∣d− ηk

∣∣∣∆∣∣∣f̃ (s,e]
ηk

(
z0

)∣∣∣(e− s)−2, (60)

where c > 0 is a sufficiently small constant, depending on all the other absolute constants.

Proof. Without loss of generality, we assume that d ≥ ηk and f̃ηk

(
z0

)
≥ 0. Following the arguments

in Lemma 2.6 in Venkatraman (1992), it suffices to consider two cases: (i) ηk+1 > e and (ii) ηk+1 ≤ e
Case (i). Note that

f̃ (s,e]
ηk

(
z0

)
=

√√√√(
e− ηk

)(
ηk − s

)
e− s

{
fηk

(
z0

)
− fηk+1

(
z0

)}
and

f̃
(s,e]
d

(
z0

)
=

(
ηk − s

)√ e− d

(e− s)(d− s)

{
fηk

(
z0

)
− fηk+1

(
z0

)}
.

Therefore, it follows from (56) that

f̃ (s,e]
ηk

(
z0

)
−f̃ (s,e]

d

(
z0

)
=

(
1−

√√√√√ (e− d)
(
ηk − s

)
(d− s)

(
e− ηk

))f̃ (s,e]
ηk

(
z0

)
≥ c∆

∣∣∣d−ηk∣∣∣(e−s)−2f̃ (s,e]
ηk

(
z0

)
.

(61)
The inequality follows from the following arguments. Let u = ηk − s, v = e− ηk and w = d− ηk.
Then

1−

√√√√√ (e− d)
(
ηk − s

)
(d− s)

(
e− ηk

) − c∆
∣∣∣d− ηk

∣∣∣(e− s)2

=1−

√
(v − w)u

(u+ w)v
− c

∆w

(u+ v)2

=
w(u+ v)√

(u+ w)v(
√
(v − w)u+

√
(u+ w)v)

− c
∆w

(u+ v)2
.

The numerator of the above equals

w(u+ v)3 − c∆w(u+ w)v − c∆w
√

uv(u+ w)(v − w)

≥2c1∆w
{
(u+ v)2 − c(u+ w)v

2c1
−

c
√

uv(u+ w)(v − w)

2c1

}
≥2c1∆w

{(
1− c/

(
2c1

))
(u+ v)2 − 2−1/2c/c1uv

}
> 0

as long as

c <

√
2c1

4 + 1/
(√

2c1

) .
Case (ii). Let g = c1∆/16. We can write

f̃ (s,e]
ηk

(
z0

)
= a

√√√√ e− s(
ηk − s

)(
e− ηk

) , f̃
(s,e]
ηk+g

(
z0

)
= (a+ gθ)

√√√√ e− s(
e− ηk − g

)(
ηk + g − s

) ,
50



where

a =

ηk∑
j=s+1

{
fj

(
z0

)
− 1

e− s

e∑
j=s+1

fj

(
z0

)}

θ =

a

√(
ηk + g − s

)(
e− ηk − g

)
g

{ 1√(
ηk − s

)(
e− ηk

)− 1(
ηk + g − s

)(
e− ηk − g

)+ b

a
√
e− s

}
,

and b = f̃
(s,e]
ηk+g

(
z0

)
− f̃

(s,e]
ηk

(
z0

)
. To ease notation, let d − ηk = l ≤ g/2, N1 = ηk − s and

N2 = e− ηk − g. We have

El = f̃ (s,e]
ηk

(
z0

)
− f̃

(s,e]
d

(
z0

)
= E1l

(
1 + E2l

)
+ E3l, (62)

where

E1l =
al(g − l)

√
e− s√

N1

(
N2 + g

)√(
N1 + l

)(
g +N2 − l

)(√(
N1 + l

)(
g +N2 − l

)
+

√
N1

(
g +N2

)) ,

E2l =

(
N2 −N1

)(
N2 −N1 − l

)
(√(

N1 + l
)(

g +N2 − l
)
+

√(
N1 + g

)
N2

)(√
N1

(
g +N2

)
+

√(
N1 + g

)
N2

) ,
and

E3l = −
bl

g

√√√√√
(
N1 + g

)
N2(

N1 + l
)(

g +N2 − l
) .

Next, we notice that g − l ≥ c1∆/32. It holds that

E1l ≥ c1l

∣∣∣d− ηk

∣∣∣∆f̃ (s,e]
ηk

(
z0

)
(e− s)−2, (63)

where c1l > 0 is a sufficiently small constant depending on c1. As for E2l, due to (59), we have

E2l ≥ −1/2. (64)

As for E3l, we have

E3l ≥ −c3l,1b
∣∣∣d− ηk

∣∣∣(e− s)∆−2 ≥ −c3l,2b
∣∣∣d− ηk

∣∣∣∆−3(e− s)3/2f̃ (s,e]
ηk

(
z0

)
κ−1 (65)

≥ −c1l/2
∣∣∣d− ηk

∣∣∣∆f̃ (s,e]
ηk

(
z0

)
(e− s)−2, (66)

where the second inequality follows from (57) and the third inequality follows from (58), c3l,1, c3l,2 >
0 are sufficiently small constants, depending on all the other absolute constants. Combining (62),
(63), (64) and (65), we have

f̃ (s,e]
ηk

(
z0

)
− f̃

(s,e]
d

(
z0

)
≥ c

∣∣∣d− ηk

∣∣∣∆f̃ (s,e]
ηk

(
z0

)
(e− s)−2, (67)

where c > 0 is a sufficiently small constant. In view of (61) and (67), the proof is complete.

Consider the following events

A((s, e], ρ, γ) =
{

max
t=s+ρ+1,...,e−ρ

sup
z∈Rp

|F̃ s,e
t,h (z)− f̃s,e

t (z)| ≤ γ

}
;

B(r, ρ, γ) =
{

max
N=ρ,...,T−r

sup
z∈Rp

∣∣∣∣ 1√
N

r+N∑
t=r+1

(Ft,h − ft)

∣∣∣∣ ≤ γ

}
⋃{

max
N=ρ,...,r

∣∣∣∣ 1√
N

r∑
t=r−N+1

sup
z∈Rp

(Ft,h(z)− ft(z))

∣∣∣∣ ≤ γ

}
.
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Lemma 12. Suppose Assumption 5 holds. Let [s, e] be an subinterval of [1, T ] with e− s ≤ CR∆,
and contain at least one change point ηr with min{ηr − s, e− ηr} ≥ cT for some constant c > 0.
Let κs,e

max = max{κp : min{ηp − s, e− ηp} ≥ cT}. Let

b ∈ arg max
t=s+ρ,...,e−ρ

||F̃ s,e
t,h ||L2

.

For some c1 > 0, λ > 0 and δ > 0, suppose that the following events hold

A((s, e], ρ, γ), (68)

B(s, ρ, γ) ∪ B(e, ρ, γ) ∪
⋃

η∈{ηk}K
k=1

B(η, ρ, γ) (69)

and that
max

t=s+ρ,...,e−ρ
||F̃ s,e

t,h ||L2
= ||F̃ s,e

b,h ||L2
≥ c1κ

s,e
max

√
T (70)

If there exists a sufficiently small c2 > 0 such that

γ ≤ c2κ
s,e
max

√
T and that ρ ≤ c2T, (71)

then there exists a change point ηk ∈ (s, e) such that

min{e− ηk, ηk − s} > c3T and |ηk − b| ≤ C3 max{γ2κ−2
k , ρ},

where c3 is some sufficiently small constant independent of T .

Proof. Let z1 ∈ argmaxz∈Rp

∣∣∣f̃ (s,e]
b (z)

∣∣∣. Without loss of generality, assume that f̃ (s,e]
b

(
z1

)
> 0

and that f̃ (s,e]
b

(
z1

)
as a function of t is locally decreasing at b. Observe that there has to be a

change point ηk ∈ (s, b), or otherwise f̃
(s,e]
b

(
z1

)
> 0 implies that f̃ (s,e]

t

(
z1

)
is decreasing, as a

consequence of Lemma 10. Thus, there exists a change point ηk ∈ (s, b) satisfying that

sup
z∈Rp

∣∣∣f̃ (s,e]
ηk

(z)
∣∣∣ ≥ ∣∣∣f̃ (s,e]

ηk

(
z1

)∣∣∣ > ∣∣∣f̃ (s,e]
b

(
z1

)∣∣∣ ≥ sup
z∈Rp

∣∣∣F̃ (s,e]
b (z)

∣∣∣− γ ≥ cκk

√
∆ (72)

where the second inequality follows from Lemma 10, the third because of the good event A, and
fourth inequalities by (70) and Assumption 1, and c > 0 is an absolute constant. Observe that (s, e)
has to contain at least one change point or otherwise supz∈R

∣∣∣f̃ (s,e]
ηk (z)

∣∣∣ = 0 which contradicts (72).

Step 1. In this step, we are to show that

min
{
ηk − s, e− ηk

}
≥ min

{
1, c21

}
∆/16 (73)

Suppose that ηk is the only change point in (s, e). Then (73) must hold or otherwise it follows from
(14) that

sup
z∈Rp

∣∣∣f̃s,e
ηk

(z)
∣∣∣ ≤ κk

c1
√
∆

4
,

which contradicts (72).

Suppose (s, e) contains at least two change points. Then arguing by contradiction, if ηk − s <

min
{
1, c21

}
∆/16, it must be the cast that ηk is the left most change point in (s, e). Therefore

sup
z∈Rp

∣∣∣f̃s,e
ηk

(z)
∣∣∣ ≤ c1/4 sup

z∈Rp

∣∣∣f̃s,e
ηk+1

(z)
∣∣∣+ 2κk

√
ηk − s (74)

< c1/4 max
s+ρ<t<e−ρ

sup
z∈Rp

∣∣∣f̃s,e
t (z)

∣∣∣+ 2
√
∆κk (75)

≤ c1/4 max
s+ρ<t<e−ρ

sup
z∈Rp

∣∣∣F̃ s,e
t (z)

∣∣∣+ c1/4γ + 2
√
∆κk (76)

≤ sup
z∈Rp

∣∣∣F̃ s,e
b (z)

∣∣∣− γ (77)
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where the first inequality follows from Lemma 9, the second follows from the assumption of ηk − s,
the third from the definition of the event A and the last from (70) and Assumption 1. The last display
contradicts (72), thus (73) must hold.
Step 2. Let

z0 ∈ argmax
z∈Rp

∣∣∣f̃s,e
ηk

(z)
∣∣∣.

It follows from Lemma 11 that there exits d ∈
(
ηk, ηk + c1∆/32

)
such that

f̃s,e
ηk

(
z0

)
− f̃s,e

d

(
z0

)
≥ 2γ. (78)

We claim that b ∈
(
ηk, d

)
⊂

(
ηk, ηk + c1∆/16

)
. By contradiction, suppose that b ≥ d. Then

f̃s,e
b

(
z0

)
≤ f̃s,e

d

(
z0

)
≤ max

s<t<e
sup
z∈Rp

∣∣∣f̃s,e
t (z)

∣∣∣− 2γ ≤ sup
z∈Rp

∣∣∣F̃ s,e
b (z)

∣∣∣− γ, (79)

where the first inequality follows from Lemma 10, the second follows from (78) and the third follows
from the definition of the event A. Note that (79) is a contradiction to the bound in (72), therefore we
have b ∈

(
ηk, ηk + c1∆/32

)
.

Step 3. Let

j∗ ∈ argmax
j=1,...,T

∣∣∣F̃ s,e
b (X(j))

∣∣∣, fs,e =
(
fs+1

(
X
(
j∗
))

, . . . , fe

(
X
(
j∗
)))⊤

∈ R(e−s)

and

F s,e =
( 1

hp
k
(X(

j∗
)
−X(s)

h

)
, . . . ,

1

hp
k
(X(

j∗
)
−X(e)

h

))
∈ R(e−s).

By the definition of b, it holds that∥∥∥F s,e − Ps,e
b

(
F s,e

)∥∥∥2 ≤ ∥∥∥F s,e − Ps,e
ηk

(
F s,e

)∥∥∥2 ≤ ∥∥∥F s,e − Ps,e
ηk

(
fs,e

)∥∥∥2
where the operator Ps,e(·) is defined in Lemma 21 in Wang et al. (2020). For the sake of contradiction,
throughout the rest of this argument suppose that, for some sufficiently large constant C3 > 0 to be
specified,

ηk + C3λ
2
Aκ

−2
k < b. (80)

We will show that this leads to the bound∥∥∥F s,e − Ps,e
b

(
F s,e

)∥∥∥2 >
∥∥∥F s,e − Ps,e

ηk

(
fs,e

)∥∥∥2, (81)

which is a contradiction. If we can show that

2
〈
F s,e−fs,e,Ps,e

b

(
F s,e

)
−Ps,e

ηk

(
fs,e

)〉
<

∥∥∥fs,e−Ps,e
b

(
fs,e

)∥∥∥2−∥∥∥fs,e−Ps,e
ηk

(
fs,e

)∥∥∥2, (82)

then (81) holds. To derive (82) from (80), we first note that min
{
e−ηk, ηk−s

}
≥ min

{
1, c21

}
∆/16

and that
∣∣∣b− ηk

∣∣∣ ≤ c1∆/32 implies that

min{e− b, b− s} ≥ min
{
1, c21

}
∆/16− c1∆/32 ≥ min

{
1, c21

}
∆/32 (83)

As for the right-hand side of (82), we have∥∥∥fs,e − Ps,e
b

(
fs,e

)∥∥∥2 − ∥∥∥fs,e − Ps,e
ηk

(
fs,e

)∥∥∥2 =
(
f̃s,e
ηk

(
X
(
j∗
)))2

−
(
f̃s,e
b

(
X
(
j∗
)))2

(84)

≥
(
f̃s,e
ηk

(
X
(
j∗
))
− f̃s,e

b

(
X
(
j∗
)))∣∣∣f̃s,e

ηk

(
X
(
j∗
))∣∣∣ (85)
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On the event A ∩ B, we are to use Lemma 11. Note that (57) holds due to the fact that here we have∣∣∣f̃s,e
ηk

(
X
(
j∗
))∣∣∣ ≥ ∣∣∣f̃s,e

b

(
X
(
j∗
))∣∣∣ ≥ ∣∣∣F̃ s,e

b

(
X
(
j∗
))∣∣∣− γ ≥ c1κk

√
∆− γ ≥

(
c1

)
/2κk

√
∆,

(86)
where the first inequality follows from the fact that ηk is a true change point, the second inequality
holds due to the event A, the third inequality follows from (70), and the final inequality follows from
(71). Towards this end, it follows from Lemma 11 that

| f̃s,e
ηk

(
X
(
j∗
))∣∣∣− |f̃s,e

b

(
X
(
j∗
))∣∣∣| > c|b− ηk|∆|f̃s,e

ηk

(
X
(
j∗
)))

| (e− s)−2. (87)

Combining (84), (86) and (87), we have∥∥∥fs,e − Ps,e
b

(
fs,e

)∥∥∥2 − ∥∥∥fs,e − Ps,e
ηk

(
fs,e

)∥∥∥2 ≥ cc21
4

∆2κkA2(e− s)−2
∣∣∣b− ηk

∣∣∣. (88)

The left-hand side of (82) can be decomposed as follows.

2
〈
F s,e − fs,e,Ps,e

b

(
F s,e

)
− Ps,e

ηk

(
fs,e

)〉
(89)

=2
〈
F s,e − fs,e,Ps,e

b

(
F s,e

)
− Ps,e

b

(
fs,e

)〉
+ 2

〈
Y s,e − fs,e,Ps,e

b

(
fs,e

)
− Ps,e

ηk

(
fs,e

)〉
(90)

=(I) + 2
( ηk−s∑

i=1

+

b−s∑
i=ηk−s+1

+

e−s∑
i=b−s+1

)(
F s,e − fs,e

)
i

(
Ps,e
b

(
fs,e

)
− Ps,e

ηk

(
fs,e

))
i

(91)

=(I) + (II.1) + (II.2) + (II.3). (92)

As for the term (I), we have
(I) ≤ 2γ2. (93)

As for the term (II.1), we have

(II.1) = 2
√
ηk − s

{ 1√
ηk − s

ηk−s∑
i=1

(
F s,e − fs,e

)
i

}{ 1

b− s

b−s∑
i=1

(
fs,e

)
i
− 1

ηk − s

ηk−s∑
i=1

(
fs,e

)
i

}
.

In addition, it holds that∣∣∣ 1

b− s

b−s∑
i=1

(
fs,e

)
i
− 1

ηk − s

ηk−s∑
i=1

(
fs,e

)
i

∣∣∣ = b− ηk
b− s

∣∣∣− 1

ηk − s

ηk−s∑
i=1

fi

(
X
(
j∗
))

+ fηk+1

(
X
(
j∗
))∣∣∣

≤ b− ηk
b− s

(
CR + 1

)
κmax
s0,e0 ,

where the inequality is followed by Lemma 8. Combining with the good events,

(II.1) ≤ 2
√
ηk − s

b− ηk
b− s

(
CR + 1

)
κmax
s0,e0γ (94)

≤ 2
4

min
{
1, c21

}∆−1/2γ
∣∣∣b− ηk

∣∣∣(CR + 1
)
κmax
s0,e0 (95)

As for the term (II.2), it holds that

(II.2) ≤ 2

√∣∣∣b− ηk

∣∣∣γ(2CR + 3
)
κmax
s0,e0 (96)

As for the term (II.3), it holds that

(II.3) ≤ 2
4

min
{
1, c21

}∆−1/2γ
∣∣∣b− ηk

∣∣∣(CR + 1
)
κmax
s0,e0 (97)

Therefore, combining (94), (96), (97), (88), (89) and (93), we have that (82) holds if

∆2κ2
k(e− s)−2

∣∣∣b− ηk

∣∣∣ ≳ max
{
γ2,∆−1/2γ

∣∣∣b− ηk

∣∣∣κk,

√∣∣∣b− ηk

∣∣∣γκk

}
(98)

The second inequality holds due to Assumption 3, the third inequality holds due to (79) and the first
inequality is a consequence of the third inequality and Assumption 3.
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