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Abstract
Machine learning models often fail on out-of-distribution data. To avoid this, many2

works have sought to extract features with a stable or invariant relationship with3

the label across domains, improving robustness by discarding the “spurious” or4

unstable features whose relationship with the label may change across domains.5

However, the discarded unstable features often carry complementary information6

about the label that could boost performance if used correctly in the test domain.7

Our main contribution is to show that it is possible to learn how to use these unstable8

features in the test domain without labels. In particular, we prove that pseudo-9

labels based on stable features provide sufficient guidance for doing so, provided10

that stable and unstable features are conditionally independent given the label.11

Along the way, we present a solution to the so-called “marginal problem” from12

probability theory, in the special case of conditionally-independent features, which13

may be of independent interest. Based on this theoretical insight, we propose Stable14

Feature Boosting (SFB), an algorithm for: (i) learning a predictor that separates15

stable and conditionally-independent unstable features; and (ii) using the stable-16

feature predictions to adapt the unstable-feature predictions in the test domain.17

Theoretically, we prove that SFB can learn an asymptotically-optimal predictor18

in the test domain without using any test-domain labels, while, empirically, we19

demonstrate the effectiveness of SFB on real and synthetic datasets.20

1 Introduction21

Machine learning systems can be sensitive to distribution shift [25]. Often, this sensitivity is due to a22

reliance on “spurious” features whose relationship with the label changes across domains, ultimately23

leading to degraded performance in the test domain of interest [20]. To avoid this pitfall, recent24

works on out-of-distribution (OOD) generalization have sought predictors which do not rely on these25

spurious or unstable relationships, but instead leverage relationships which are invariant or stable26

across multiple domains [43, 2, 34, 14]. However, despite their instability, spurious features can often27

provide additional or complementary information about the target label. Thus, if a predictor could be28

adjusted to use spurious features optimally in the test domain, it would boost performance substantially.29

That is, perhaps we don’t need to discard spurious features at all, but rather use them in the right way.30

As a very simple but illustrative example, consider the ColorMNIST dataset [2]. This takes the31

original MNIST dataset and first turns it into a binary classification task (digit in 0–4 or 5–9), and32

then colorizes it such that digit color (red or green) is a highly-informative but spurious feature. In33

particular, as depicted in Fig. 1, the two training domains are constructed such that green digits34

generally belong to class 0, while the test domain is constructed such that they generally belong35

to class 1. Finally, some label noise is added so that, across all 3 domains, digit shape correctly36

determines the label with probability 0.75. In previous works, the goal is to learn an invariant predictor37

which uses only shape and avoids using color—a spurious or unstable feature whose relationship38

with the label varies across domains. In this work, however, we ask the question: when and how can39

these such informative but spurious features be safely harnessed without labels? As shown in Fig. 1,40

this question is motivated by the fact that the invariant predictor is not Bayes-optimal in many test41

domains, since color information can be used to improve predictions in a domain-specific manner.42
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Figure 1: Invariant (stable) and spurious (unstable) features. (Left) Illustrative images from the ColorMNIST
dataset. (Center) Performance across ColorMNIST test domains of decreasing color-label correlation for: an
ERM model; an invariant model; and an oracle model using both the invariant shape and spurious color features
optimally in the test domain. The shaded region depicts the performance boost from using the spurious feature
correctly in the test domain, alongside the invariant feature. Our main contribution shows how this can be
done without labels. (Right) Generally, invariant models use only the stable component XS of X, discarding
the spurious or unstable component XU . We prove that predictions based on XS can be used to harness a
sub-component of XU , highlighted in darkened orange, to reliably improve test-domain performance.

Structure and contributions. To answer this question, the remainder of this paper is organised as43

follows. We first discuss related work in § 2, providing context and high-level motivation for our44

proposed approach. In § 3, we then formalise the notion of stable and unstable features, showing how45

unstable features can be harnessed with test labels, and end with a number of challenges in doing so46

without labels. Next, in the theory of § 4, we provide concrete answers to these questions, before47

using our theoretical insights to propose a Stable Feature Boosting (SFB) algorithm with guarantees48

in § 5. Finally, § 6 presents our experimental results. Our main contributions can be summarised as:49

• Algorithmic: We propose the Stable Feature Boosting (SFB) algorithm for using stable/invariant50

predictions to reliably harness unstable/spurious features without test-domain labels. To the best of51

our knowledge, SFB is the first method to do so.52

• Theoretical: SFB is grounded in a novel theoretical result (Thm 4.4) giving sufficient conditions53

under which test-domain adaptation is provably possible without labels. Under these conditions,54

Thm 4.5 shows that, given enough unlabeled data, SFB learns the optimal adapted classifier.55

• Experimental: Our experiments on synthetic and real-world data demonstrate the effectiveness56

of SFB, even in practical scenarios where it is unclear if its assumptions are satisfied.57

2 Related Work58

Domain generalization, robustness and invariant prediction. A fundamental starting point for59

work in domain generalization and robustness is the observation that certain “stable” features, often60

direct causes of the label, may have an invariant relationship with the label across domains [43, 2, 58,61

49, 39, 65]. However, such stable or causal predictors often discard highly-informative but unstable62

information about the label. Rothenhäusler et al. [47] show that we may need to trade-off stability63

and predictiveness, with the causal predictor often too conservative. Eastwood et al. [14] seek such a64

trade-off via an interpretable probability-of-generalization parameter. The current work is motivated65

by the idea that one might avoid such a trade-off by changing how spurious features are used at test66

time, rather than discarding them are training time.67

Test-domain adaptation with labels. Fine-tuning part of a model using a small number of labelled68

test-domain examples is a common way to deal with distribution shift [16, 17, 13]. More recently,69

it has been shown that simply retraining the last layer of an ERM-trained model outperforms more70

robust feature-learning methods on spurious correlation benchmarks [46, 31, 64]. In particular, Jiang71

and Veitch [30] do so when using a conditional-independence assumption not too dissimilar to ours.72

However, all of these works require labels in the test domain, while we seek to adapt without labels.73

Learning with noisy labels. An intermediate goal in our work, namely learning a model to74

predict Y from XU using pseudo-labels based on XS, is an instance of learning with noisy labels,75

a widely studied problem [50, 42, 8, 51, 37, 55]. Specifically, under the complementarity assumption76

(XS ⊥⊥ XU |Y), the accuracy of the pseudo-labels on each class is independent of XU , placing77

us in the so-called class-conditional random noise model [50, 42, 8]. As we discuss in Section 4,78

our theoretical insights about the special structure of pseudo-labels complement existing results on79

learning under this model. Our bias-correction (Eq. (4.1)) for PY|XU
is also closely related to the80

“method of unbiased estimators” [42]. However, rather than correcting the loss used in ERM, our81

post-hoc bias correction applies to any calibrated classifier. Moreover, our ultimate goal, learning82

a predictor of Y jointly using XS and XU , is not captured by learning with noisy labels.83
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Table 1: Related work. ∗QRM [14] includes a continuous hyperparameter α ∈ [0, 1] trading off
between robustness and using more information from X.

Components of X Used
Method Stable Complementary All Robust No test-domain labels
ERM [56] ✓ ✓ ✓ ✗ ✓
DARE [46] ✓ ✓ ✓ ✓ ✗
IRM [2] ✓ ✗ ✗ ✓ ✓
ACTIR [30] ✓ ✓ ✗ ✓ ✗
QRM [14] ✓ ✓∗ ✓∗ ✓∗ ✓
SFB (Ours) ✓ ✓ ✗ ✓ ✓

Co-training. Our use of stable-feature pseudo-labels to train a classifier based on a disjoint subset84

of (unstable) features is reminiscent of co-training [10]. Both methods benefit from conditional85

independence of the two feature subsets given the label to ensure that they provide complementary86

information.1 The key difference is that while co-training requires (a small number of) labeled87

samples from the same distribution as the test data, our method instead uses labeled data from88

a different distribution (training domains), along with the assumption of a stable feature. Further89

related work is discussed in Appendix H.90

3 Stable and Unstable Features91

Setup. We consider the problem of domain generalization (DG) [9, 40, 23] where predictors are92

trained on data from multiple training domains and with the goal of performing well on data from93

unseen test domains. For example, in the Camelyon17 dataset, the task is to predict if a given image of94

cells contains tumor tissue, and domains correspond to the different hospitals in which the images were95

captured ([5], see Fig. 4 of Appendix E). More formally, we consider datasets De = {(Xe
i , Ye

i )}
ne
i=196

collected from m different training domains or environments Etr := {E1, . . . , Em}, with each dataset97

De containing data pairs (Xe
i , Ye

i ) sampled i.i.d. from P(Xe, Ye).2 The goal is then to learn a predictor98

f (X) that performs well on data from a larger set of all possible domains Eall ⊃ Etr.99

Average performance: use all features. The first approaches to DG sought predictors that perform100

well on average over domains [9, 40] using empirical risk minimization (ERM, Vapnik 57). However,101

predictors that perform well on average provably lack robustness [41], potentially performing quite102

poorly on large subsets of Eall. In particular, minimizing the average error leads predictors to make103

use of any features which are informative about the label (on average), including “spurious” or104

“shortcut” [20] features whose relationship with the label is subject to change across domains. In test105

domains where these feature-label relationships change in new or more severe ways than observed106

during training, this usually leads to significant performance drops or even complete failure [63, 6].107

Worst-case or robust performance: use only stable features. To mitigate this lack of robustness,108

subsequent works have sought predictors that only use stable or invariant features, i.e., those which109

have a stable or invariant relationship with the label across domains [43, 2]. In particular, Arjovsky110

et al. [2] learn features which have an invariant functional relationship with the label by enforcing that111

the classifier on top of these features is optimal for all domains simultaneously. We henceforth use112

stable features and XS to refer to these features, and stable predictors to refer to predictors which use113

only these features. Analogously, we use unstable features XU to refer to features with an unstable or114

changing relationship with the label across domains. Finally, note that XS and XU form a partition of115

the components of X which are informative about Y, as depicted in Fig. 1.116

3.1 Harnessing unstable features with labels117

A stable predictor fS(X) is unlikely to be the best predictor in any given domain. As depicted by the118

orange regions of Fig. 1, this is because it excludes unstable features XU which are informative about119

Y and can boost performance if used correctly. The main question we will address in the present work120

is how we can harness XU to reliably boost the performance of fS(X) in a new domain e. To explore121

this question, we assume that we are indeed able to learn a stable predictor using prior methods, e.g.,122

IRM [2], and, for now, that we have access to labelled examples in this new domain which can be123

used to update or re-learn the domain-specific relation between XU and Y.124

Boosting the stable predictor. To begin, note that we need only update the XU-Y relation since,125

by definition, the XS-Y relation is stable across domains. We will thus seek a feature space which126

1See Krogel and Scheffer [33] and Theorem 1 of Blum and Mitchell [10] for discussion of this assumption.
2We drop the domain superscript e when referring to random variables from any environment.
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separates XS and XU , allowing only the unstable XU-Y relation to be updated. To do so, let us first127

decompose a predictor f into a feature representation Φ and classifier h, with f = h ◦Φ, and then128

describe the boosted joint predictor f e(X) in domain e as:129

f e(X) = fS(X) + f e(X) = hS(ΦS(X)) + he(ΦU(X)) (3.1)
= hS(XS) + he(XU). (3.2)

Here, both fS(X) and f e(X) produce logits, meaning that the unstable predictor f e(X) essentially130

adds a domain-specific adjustment to the stable predictor f s(X) in logit space. As illustrated by131

Eqs. (3.1) and (3.2), the role of ΦS and ΦU is to extract XS and XU , respectively, from the observed132

features X. Note that the stable predictor fS and classifier hS, as well as the feature extractors ΦS133

and ΦU are shared across domains e, whereas the unstable classifier he
U is not. In principle, he

U could134

take any form, so long as we have enough labelled examples to learn it. In practice, however, we135

generally take he
U to be a linear classifier for sample efficiency.136

Adapting he
U with labels. Given a new domain e with labelled examples, we can boost the perfor-137

mance of our stable predictor by adapting he
U to minimize the joint-predictor loss. Specifically, letting138

ℓ : Y × Y → R be a loss function (e.g., cross-entropy) and Re( f ) = E(X,Y) [ℓ(Y, f (X))|E = e]139

the statistical risk of a predictor f : X → Y in domain e, we can adapt he
U to solve:140

min
hU

∑
e∈Etr

Re(σ ◦ ((hS ◦ΦS) + (hU ◦ΦU))) (3.3)

Note that Jiang and Veitch [30, Eq. 2.1] proposed a similar joint predictor for using labelled test-141

domain examples to update a domain-specific component. However, they do not explicitly separate142

stable and unstable features XS and XU , which will later prove crucial for our approach without labels.143

3.2 Harnessing unstable features without labels144

The previous section made clear how we can safely harness XU when we have test-domain labels. We145

now consider the main question of this work—can we safely harness XU without test-domain labels?146

More specifically, how can we update the unstable classifier he
U to capture the new XU-Y relation147

given only unlabelled test-domain examples {Xe
i }

ne
i=1? We could, of course, simply select a fixed148

unstable classifier he
U by relying solely on the training domains (e.g., by minimizing average error),149

and hope that this works for the test-domain XU-Y relation. However, by definition of XU being150

unstable, this is clearly not a robust or reliable approach—the focus of our efforts, as illustrated in151

Table 1. As in § 3.1, we assume that we are able to learn a stable predictor fS using prior methods [2].152

From stable predictions to robust pseudo-labels. While we do not have labels in the test domain,153

we do have stable predictions. By definition, such predictions are imperfect (i.e., noisy) but robust,154

and can be used to form pseudo-labels Ŷi = arg maxj fS(Xi)j, with fS(Xi)j denoting the jth logit155

of the stable prediction for Xi. Can we somehow use these noisy but robust pseudo-labels to guide156

our updating of he
U , and, ultimately, our use of XU in the test domain?157

From joint to unstable-only risk. Unfortunately, if we try to use our robust pseudo-labels as if they158

were true labels—updating he
U to minimize the joint risk as in Eq. (3.3)—we get a trivial solution159

of he
U(·)= 0. If our loss ℓ is accuracy, this trivial solution is clear since he

U(·)= 0 achieves 100%160

accuracy. For cross-entropy, the same trivial solution exists, as we show in Prop. D.1 of Appendix D.161

Thus, we cannot minimize a joint loss involving fS’s predictions when using fS’s pseudo-labels.162

Instead, we must consider updating he
U to minimize the unstable-only risk Re(σ ◦ hS ◦ΦS).163

More questions than answers. While this new procedure could work, it raises many questions about164

when it will work, or, more precisely, the conditions under which it can be used to safely harness XU .165

We now summarise these questions before addressing them in the next section (§ 4):166

1. Does it make sense to minimize the unstable-only risk? In particular, when can we minimize167

the unstable-predictor risk alone or separately, and then arrive at the optimal joint predictor? This168

cannot always work; e.g., for independent XS, XU ∼ Bernoulli(1/2) and Y = XS XOR XU , Y169

is independent of each of XS and XU and hence cannot be predicted from either alone.170

2. Can we just add the logits as before? Building on question 1, if we separately optimize the171

predictions of the unstable classifier he
U using the pseudo-labels Ŷ, does it make sense to simply172

add the logits afterwards as in Eq. (3.2)? Intuitively, simply adding the stable and unstable logits as173

before would require them both to be “of the same scale”, or, more precisely, properly calibrated.174

Do we have any reason to believe that, after training on hS’s pseudo-labels, he
U will properly175

calibrated and thus can be integrated with hS as in Eq. (3.2)?176
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3. Can the student outperform the teacher? Stable predictions likely make mistakes—indeed, this177

is the motivation for trying to improve them. Is it possible to correct these mistakes with unstable178

features, thus improving performance? In particular, is it possible to learn an unstable “student”179

predictor that outperforms its own supervision signal or teacher? Perhaps surprisingly, we show180

that, for certain types of features, the answer is yes; in fact, even a very weak stable predictor,181

with performance just above chance, can be used to learn an optimal unstable classifier in the test182

domain given enough unlabeled data.183

4 Theory: When can we safely harness unstable features without labels?184

Suppose we have already identified a stable feature XS and a potentially unstable feature XU (we185

will return to the question of how to learn XS and XU themselves in Section 5, after identifying the186

additional conditions we would like XS and XU to satisfy). In this section, we analyze the problem of187

using XS to leverage XU without labels in the test domain. We first reduce this to a special case of the188

so-called “marginal problem” in probability theory, i.e., the problem of identifying a joint distribution189

based on information about its marginals. In the special case where two variables are conditionally190

independent given a third, we show this problem can be solved exactly; this solution, which may be191

of interest beyond the context of domain adaptation, motivates our test-domain adaptation algorithm192

(Algorithm 1), presented in Section 5, and forms the basis of Theorem 4.5 showing that Algorithm 1193

converges to the best possible classifier given enough unlabeled data.194

To formalize our assumptions, we first pose a population-level model of our domain generalization195

setup. Let E be a random variable denoting the environment. Given an environment E, the stable196

feature XS, the unstable feature XU , and the label Y are distributed according to PXS ,XU ,Y|E. Given,197

this we can formalize the three key assumptions underlying our approach.198

We first formalize the notion of a stable feature, motivated in the previous section:199

Definition 4.1 (Stable and Unstable Predictors). XS is a stable predictor of Y if PY|XS
does not depend200

on E; equivalently, if Y and E are conditionally independent given XS (Y ⊥⊥ E|XS). Conversely,201

XU is an unstable predictor of Y if PY|XU
depends on E; equivalently, if Y and E are conditionally202

dependent given XU (Y ⊥̸⊥ E|XU).203

Next, we state our complementarity assumption, which we will show is key to justifying the approach204

of separately learning the relationships XS-Y and XU-Y and then combining them:205

Definition 4.2 (Complementary Features). XS and XU are complementary predictors of Y if XS ⊥⊥206

XU |(Y, E); i.e., if XS and XU contain no redundant information beyond that contained in Y and E.207

Finally, it is fairly intuitive that, to provide a useful signal for test-domain adaptation, the stable208

feature needs to be predictive of the label in the test domain. Formally, we assume209

Definition 4.3 (Informative Stable Predictor). XS is said to be informative of Y in environment E if210

X ⊥̸⊥ Y|E (i.e., XS is predictive of Y within the environment E).211

We will discuss the roles of these assumptions, and how they relate to the motivating questions212

at the end of Section 3.2, in greater detail after stating the main result (Theorem 4.4) that utilizes213

them. Note that, to keep our results as general as possible, we avoid assuming a particular causal214

generative model underlying data. However, the conditional (in)dependence assumptions above can215

be interpreted as constraints on such a causal model, and, in Appendix D.1, we formally characterize216

the set of causal generative models that are consistent with our assumptions. Notably, we show that217

our setting generalizes those of several existing works assuming specific causal generative models or218

constraints on possible distribution shifts [45, 59, 30].219

Reduction to the marginal problem with complementary features. Since we assumed the feature220

XS is stable, PY|XS ,E = PY|XS
in the test domain is the same as in the training domains. Hence, let us221

suppose we have used the training data to learn this relationship, and hence know PY|XS
. Suppose222

also that we have enough unlabeled test-domain data to learn PXS ,XU |E in the test environment E.223

Recall that our goal in test-domain adaptation is to predict Y from (XS, XU) in the test domain E.224

The remainder of our discussion will take place entirely conditioned on E being the test domain, and225

hence we will omit this dependence from the notation. If we could express PY|XS ,XU
in terms of226

PY|XS
and PXS ,XU , we could then use PY|XS ,XU

to optimally predict Y from (XS, XU). Thus, our task227

5



thus becomes to reconstruct PY|XS ,XU
from PY|XS

and PXS ,XU . This is an instance of the classical228

“marginal problem” from probability theory [27, 28, 18], which asks under which conditions we can229

recover the joint distribution of a set of random variables given information about its marginals. In230

general, although one can place bounds on the conditional distribution PY|XU
, it cannot be completely231

inferred from PY|XS
and PXS ,XU [18]. However, the following section demonstrates that, under the232

additional assumptions that XS and XU are complementary and XS is informative, we can exactly233

recover PY|XS ,XU
from PY|XS

and PXS ,XU .234

4.1 Solving the marginal problem with complementary features235

To simplify notation, suppose the label Y is binary, taking values in {0, 1}; the multiclass extension236

is detailed in Appendix C. The following result then shows how to reconstruct PY|XS ,XU
from PY|XS

237

and PXS ,XU when XS and XU are complementary and XS is informative.238

Theorem 4.4 (Solution to the marginal problem with binary labels and complementary features).239

Consider three random variables X1, X2, and Y, where (i) Y is binary ({0, 1}-valued), (ii) X1 and240

X2 are complementary features for Y (i.e., X1 ⊥⊥ X2|Y), and (iii) X1 is informative of Y (X1 ⊥̸⊥ Y).241

Then, the joint distribution of (X1, X2, Y) can be written in terms of the joint distributions of (X1, Y)242

and (X1, X2). Specifically, suppose Ŷ|XS ∼ Bernoulli(Pr[Y = 1|XS]) is a pseudo-label3, and243

ϵ0 := Pr[Ŷ = 0|Y = 0] and are the conditional probabilities that Ŷ and Y agree, given Y = 0 and244

Y = 1, respectively. Then, we have ϵ0 + ϵ1 > 1,245

Pr[Y = 1|X2] =
Pr[Ŷ = 1|X2] + ϵ0 − 1

ϵ0 + ϵ1 − 1
, and (4.1)

246 Pr[Y = 1|X1, X2]=σ (logit(Pr[Y=1|X1]) + logit(Pr[Y=1|X2])− logit(Pr[Y=1])) . (4.2)
247 Intuitively, suppose we train a model to predict a pseudo-label Ŷ, generated based on feature X1,248

from a feature X2. Assuming X1 and X2 are complementary, Eq (4.1) shows how to transform this249

into a prediction of the true label Y, correcting for biases caused by possible disagreement between Ŷ250

and Y. Meanwhile, Eq. (4.2) shows how to integrate predictors based on X1 and X2 while accounting251

for redundancy in the two predictors.252

The role of complementarity. The assumption that X1 and X2 are complementary plays two separate253

but equally crucial roles in Theorem 4.4. First, if X1 and X2 only share information about Y, then,254

when we train a model to predict Ŷ (which depends only on X1) from X2, the model will only learn255

to predict information about Y (rather than other relationships between X1 and X2). This insight is256

key to justifying the bias-correction formula (Eq. (4.1)). Second, by ensuring that the only interaction257

between X1 and X2 is due to Y itself, complementarity implies that PY|X1,X2
is decomposable into258

PY|X1
and PY|X2

. Specifically, one can simply add estimates of PY|X1
and PY|X2

in logit-space while259

subtracting a correction term based on the marginal distribution of Y (see Eq. (4.2)).260

The role of informativeness. It is intuitive that informativeness (X1 ⊥̸⊥ Y) is necessary; for the261

pseudo-labels to be useful, X1 must help predict Y. More surprisingly, informativeness is sufficient262

for Theorem 4.4, i.e., any dependence between X1 and Y allows us to fully learn the relationship263

between X2 and Y. This gives an affirmative answer to our question, Can the student outperform264

the teacher?, from Section 3.2. This is not to say that a strong relationship between X1 and Y is not265

helpful; while informativeness is equivalent to ϵ0 + ϵ1 > 1 (see Lemma A.2 in Appendix A.1), a266

weak relationship corresponds to ϵ0 + ϵ1 ≈ 1, making the bias-correction 4.1 unstable. Notably, this267

only affects the (unlabeled) sample complexity of learning PY|X2
, not consistency (Theorem 4.5).268

Appendix A.2 provides further discussion of Theorem 4.4, including its relationship with existing269

work on learning from noisy labels and possible applications beyond domain adaptation.270

4.2 A provably consistent algorithm for unsupervised test-domain adaptation271

To see why Theorem 4.4 is useful for test-domain adaptation, observe that stability of X1 implies that272

the conditional distribution PY|X1
is the same in the training and test domains. Hence, PY|X1

can be273

learned using labeled data. Meanwhile, the joint distribution PX1,X2 in the test domain can be learned274

using only unlabeled test-domain data. Theorem 4.4 thus implies that we can learn PY|X1,X2
in the test275

domain using only labeled data from the training domains and unlabeled data from the test domain.276

3Though discrete, our stochastic pseudo-labels differ from hard (Ŷ = 1{Pr[Y = 1|XS] > 1/2}) or soft
pseudo-labels often used in practice [19, 35, 48]. By capturing irreducible error in Y, stochastic pseudo-labels
ensure Pr[Y|X2] is well-calibrated, allowing us to combine Pr[Y|X1] and Pr[Y|X2] in Eq. (4.2).
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Algorithm 1: Bias-corrected unsupervised domain adaptation procedure.
Input: Regression function ηS(xS) = Pr[Y = 1|XS = xS], subroutine regressor, n

unlabeled samples {(XS,i, XU,i)}n
i=1 from the test domain

Output: Estimate η̂n : XS ×XU → [0, 1] of Pr[Y = 1|XS = xS, XU = xU ]
1 for i ∈ [n] do // generate pseudolabels
2 Sample Ŷi ∼ Bernoulli(ηS(XS,i))

3 η̂U,n ← regressor
(
{(XU,i, Ŷi)}n

i=1
)

4 n1 ← ∑n
i=1 Ŷi; β̂1,n ← logit

( n1
n
)

5 (ϵ̂0,n, ϵ̂1,n)←
(

1
n−n1

∑n
i=1(1− Ŷi)(1− ηS(XS,i)), 1

n1
∑n

i=1 ŶiηS(XS,i)
)

6 return (η̂n(xS, xU) 7→
σ
(

logit(ηS(xS)) + logit
(

min{ϵ̂1,n ,max{1−ϵ̂0,n ,η̂U,n(xU)}}+ϵ̂0,n−1
ϵ̂0,n+ϵ̂1,n−1

)
− β̂1,n

)

Based on this reasoning, Alg. 1 presents our proposed unsupervised test-domain adaptation method.277

Intuitively, given a stable soft-classifier ηS, Algorithm 1 simply implements a finite-sample version278

of the bias-correction and combination equations (Eqs. (4.1) and 4.2) in Theorem 4.4. Algorithm 1279

also comes with the following guarantee:280

Theorem 4.5 (Consistency Guarantee, Informal). Assume (i) XS is stable, (ii) XS and XU are281

complementary, and (iii) XS is informative of Y in the test domain. If η̂U,n → Pr[Ŷ = 1|XU ] as282

n→ ∞, then η̂n → Pr[Y = 1|XS, XU ].283

In words, as the amount of unlabeled data from the test domain increases, if the regressor on Line 3284

of Algorithm 1 is able to learn to predict the pseudo-label Ŷ, then the test-domain classifier output by285

Algorithm 1 will learn to predict the true label Y in the test domain. Convergence in Theorem 4.5286

occurs PXS ,XU -almost everywhere, both weakly (in prob.) and strongly (a.s.), depending on the mode287

of convergence of η̂U,n. Due to space constraints, formal statements and proofs are in Appendix B.288

5 Algorithm: Stable Feature Boosting289

We now use our theoretical insights from § 4 to pick up where we left off in § 3.2, ultimately arriving290

at a practical algorithm for harnessing unstable features without labels. We start by describing the291

training-domain algorithm, where our goal is to learn stable and complementary features, and then292

describe the test-domain adaptation algorithm, where our goal is to correctly adapt the unstable293

classifier he
U using the stable predictions (or pseudo-labels).294

Recap and learning goals. In Eq. (3.1) of § 3.1 we described a joint predictor f e(X) = fS(X) +295

f e
U(X) which can reliably boost the performance of the unstable predictor fS—so long as we have296

labels in the test domain to update the unstable or domain-specific classifier he
U . In § 3.2, we ran into297

some problems when trying to update he
U without labels, and ended the section with a number of298

questions about when it’s possible to use the stable predictions of fS to update he
U . In § 4, we provided299

concrete answers to these questions, proving that informativeness ( fS carries some information about300

Y) and complementarity (the stable and unstable features are conditionally independent given Y)301

suffice for learning the optimal he
U from fS’s predictions (asymptotically). Moreover, § 4 showed302

that, if we can indeed learn informative stable features XS and complementary features XC, then we303

can employ the bias-corrected adaptation algorithm of Alg. 1 (or Alg. 2 for the multi-class case) to304

update he
U . Thus, our training-time goal is now to extract XS and XC from the observed X, such that305

we can harness XC in the test domain. More specifically, we have the following learning goals:306

1. fS(X) is a stable, well-calibrated predictor with good performance.4307

2. In a given domain e, f e
U(X) boosts the performance of fS(X) using complementary features.308

4While Theorem 4.4 only assumes the stable feature is informative, as discussed in Section 4.1, a more
accurate stable predictor improves sample efficiency of SFB.
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Table 2: OOD accuracies. Mean and standard errors are over 100, 5, 5 seeds (Synthetic, Camelyon17, PACS).
Synthetic Camelyon17 PACS

Algorithm - - P A C S

ERM 9.9± 0.1 90.2± 1.1 93.0± 0.7 79.3± 0.5 74.3± 0.7 65.4± 1.5
IRM 74.9± 0.1 90.2± 1.1 93.3± 0.3 78.7± 0.7 75.4± 1.5 65.6± 2.5
ACTIR 74.8± 0.4 77.7± 1.7† 94.8± 0.1 82.5± 0.4 76.6± 0.6 62.1± 1.3
SFB w/o adapt 74.7± 1.2 89.8± 1.2 93.7± 0.6 78.1± 1.1 73.7± 0.6 69.7± 2.3
SFB w. adapt 89.2± 2.9 90.3± 0.7 95.8± 0.6 80.4± 1.3 76.6± 0.6 71.8± 2.0

Objective function. To achieve the above learning goals, we propose the following objective:309

minΦ,hS ,he
U ∑

e∈Etr

Re(σ ◦ hS ◦ΦS) + Re(σ ◦ ((hS ◦ΦS) + (he
U ◦ΦU))) (5.1)

+ λS · PStab(ΦS, hS) + λc · PComp(ΦS(X), ΦU(X)) (5.2)

Here, PStability(ΦS, hS) is a penalty encouraging stability of ΦS(X) (i.e., Y ⊥⊥ E|ΦS(X)), while310

PComp(ΦS(xi), ΦU(xi)) is a penalty encouraging complementarity of ΦS(X) and ΦU(X) (i.e.,311

ΦS(X) ⊥⊥ ΦS(X)|Y). Several approaches have been proposed for enforcing stability [43, 2, 15,312

47, 58, 39, 65], e.g., IRM [2], while complementarity can be enforced by a generic conditional-313

dependence penalty, e.g., the conditional Hilbert-Schmidt Independence Criterion [21, HSIC] or314

cheaper proxy methods like that of Jiang and Veitch [30, §3.1]. λS ∈ [0, ∞) and λC ∈ [0, ∞) are315

regularization hyperparameters. In principle, an additional hyperparameter γ ∈ [0, 1] could control316

the relative weighting of stable and joint risks, i.e., γRe(hS ◦ΦS) and (1− γ)Re((hS ◦ΦS) + (hU ◦317

ΦU)). However, in practice, we found this to be unnecessary.318

Post-hoc calibration. Finally, as discussed in Section 4.2, correctly combining the stable and unstable319

predictions at adaptation time requires them to be properly calibrated. Thus, after optimizing the320

objective (5.2), we also suggest applying a standard post-processing step that improves the calibration321

of the stable classifier hS ◦ΦS, e.g., simple temperature scaling [24].322

Adapting without labels. Armed with a stable predictor fS = hS ◦ΦS and complementary features323

ΦU(X), our goal is now to adapt the unstable classifier he
U in the test domain to safely harness (or324

make optimal use of) ΦU(X). To do so, we’ll make use of the bias-corrected adaptation algorithm325

of Alg. 1 (or Alg. 2 for the multi-class case) which takes as input the stable classifier hS and326

unlabelled test-domain dataset {ΦS(xi), ΦU(xi)}
nT

e
i=1. This adaptation procedure returns the adapted327

joint classifier f̂ eT (the logit of η̂n in Line 6 of Alg 1) finally used for prediction in the test domain.328

6 Experiments329

We now evaluate the performance of our algorithm on synthetic and real-world datasets requiring out-330

of-distribution generalization. Fig. 4 depicts samples from the datasets considered, while Appendix G331

gives further experimental details. Code will be made available upon acceptance.332

Synthetic dataset. We first consider an anti-causal synthetic dataset based on that of [30, §6.1]333

where data is generated according to the following structural equations: Y ← Rad(0.5), XS ←334

Y · Rad(0.75), and XU ← Y · Rad(βe), where the input X = (XS, XU) and Rad(β) means that a335

random variable is −1 with probability 1− β and +1 with probability β. Following [30, §6.1], we336

create two training domains with βe ∈ {0.95, 0.7}, one validation domain with βe = 0.6 and one337

test domain with βe = 0.1 The idea here is that, during training, prediction based on the stable XS338

results in lower accuracy (75%) than prediction based on the unstable XU (82.5%). Thus, models339

optimizing for prediction accuracy only—and not stability—will use XU and ultimately end up with340

only 10% in the test domain. Importantly, while the stable predictor achieves 75% accuracy in the341

test domain, performance can be improved to 90% if XU can be used correctly.342

Following [30], we use a simple 3-layer network and choose hyperparameters using the validation-343

domain performance: see Appendix G for further details. As shown in Table 2, ERM performs poorly344

as it uses the unstable feature XS, while IRM [2], ACTIR [30] and our SFB algorithm all do well by us-345

ing only the stable feature XS. Critically, only our SFB is capable of harnessing XU in the test domain346

without labels, leading to a near-optimal boost in performance. In Appendix F.1, we also consider347

a synthetic dataset where our conditional independence assumption XS ⊥⊥ XU |Y does not hold.348

ColorMNIST. We now consider the ColorMNIST dataset of Arjovsky et al. [2], described in § 1 and349

depicted in Fig. 1 (left). Experimentally, we follow the setup of Eastwood et al. [14, §6.1], including350

a simple 3-layer network: see Appendix G for further implementation details.351
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Table 3: CMNIST test accuracies.

Algorithm Test Acc.
ERM 27.9± 1.5
IRM 69.7± 0.9
V-REx 71.6± 0.5
EQRM 71.4± 0.4
SFB (Ours) w/o adapt. 70.6± 1.8
SFB (Ours) w. adapt. 88.1± 1.8

Oracle w/o adapt. 72.1± 0.7
Oracle w. adapt. 89.9± 0.1

1.0 0.8 0.6 0.5 -0.6 -0.8 -1.0
Color-Label Correlation

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy
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Adapt + BC

Adapt+BC+CA
Oracle
Stable

Figure 2: CMNIST results. Oracle: ERM trained on labelled test-
domain data. All other curves (but ERM) refer to our algorithm.
‘Stable’: unadapted, ‘BC’: bias-corrected, and ‘CA’: calibrated.

Table 3 shows that: (i) SFB learns a stable predictor with performance comparable to other invariant-352

prediction methods like IRM [2], V-REx [34] and EQRM [14]; and (ii) only SFB is capable of353

harnessing the spurious color features in the test domain without labels, leading to a near-optimal354

boost in performance. Note that “Oracle w/o adapt.” refers to an ERM model trained on grayscale355

images, while “Oracle w. adapt” refers to an ERM model trained on labelled test-domain data. In356

addition, Fig. 2 shows that: (i) both bias-correction (BC) and post-hoc calibration (CA) improve357

adaptation performance; and (ii) without labels, our SFB algorithm can harness the spurious color358

feature near-optimally in test domains of varying color-label correlation—the original goal we set out359

to achieve, depicted in Fig. 1. Further results and ablations are provided in Appendix F.2.360

PACS. We now consider PACS [36]—a 7-class image-classification dataset consisting of 4 domains:361

photos (P), art (A), cartoons (C) and sketches (S), with examples shown in Fig. 4 of Appendix E.362

For each domain, we test model performances after training on the other three domains. Following363

[23, 30], we choose hyperparameters using leave-one-domain-out cross-validation.364

Table 2 shows that our SFB algorithm’s stable (i.e., without-adaptation) performance is comparable365

to that of the other invariance-seeking methods: IRM and ACTIR. One exception is the sketch366

domain (S), the most severe shift based on performance drop, where our stable predictor performs367

best. Another exception is that ACTIR’s stable predictor performs better on domains A and C.368

Most notable, however, is: (i) the consistent boost in performance that SFB gets from unsupervised369

adaptation; and (ii) the fact that SFB performs best or joint-best on 3 of the 4 domains. Together,370

these results indicate that SFB can be useful on real-world datasets where it is unclear whether or not371

our conditional-independence assumption holds.372

Camelyon17. Finally, we consider the Camelyon17 [5] dataset from the WILDS benchmark [32], a373

medical dataset with histopathology images from 5 hospitals which use different staining and imaging374

techniques (see Fig. 4 of Appendix E). The goal is to determine whether or not a given image contains375

tumour tissue, making it a binary classification task. We follow the train-validation-test split of376

WILDS, using 3 domains for training and 1 each for validation and testing. Following Jiang and Veitch377

[30], we use an ImageNet-pretrained ResNet18. See Appendix G.3 for further implementation details.378

Table 2 shows mixed results. On the one hand, adapting gives SFB a small performance boost and379

reduces the variance across random seeds. On the other hand, the adapted performance is on par380

with both IRM and the simpler ERM method. In line with [23], we found that a properly-tuned ERM381

model can be difficult to beat on real-world datasets, particularly when they don’t contain severe382

distribution shift. While we conducted this proper tuning for ERM, IRM and SFB (see Appendix G.3),383

doing so for ACTIR was non-trivial. We thus report the result from their paper [30, Tab. 1], which is384

likely lower due to hyperparameter selection (they report ≈70% accuracy for ERM and IRM).385

7 Discussion386

This work demonstrated, both theoretically and practically, how to adapt spurious but informative387

features to new test domains using only a stable, complementary training signal. Our proposed Stable388

Feature Boosting algorithm can provide significant performance gains compared to only using stable389

features or using unadapted spurious features, without requiring any true labels in the test domain. In390

theory, the most significant limitation of SFB is its assumption of complementarity (i.e., conditional391

independence of spurious features and stable features, given the label). Importantly, our experimental392

results suggest that SFB may be robust to violations of complementarity in practice; on real-world393

datasets such as PACS or Camelyon17, where there is no reason to believe complementarity holds,394

SFB performs at least as well or better than unadapted methods such as ERM and IRM.395
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A Proof and further discussion of Theorem 4.4600

A.1 Proof of Theorem 4.4601

In this section, we prove our main results regarding the marginal generalization problem presented in602

Section 4, namely Theorem 4.4. For the reader’s convenience, we restate Theorem 4.4 here:603

Theorem 4.4 (Marginal generalization with for binary labels and complementary features). Consider604

three random variables X1, X2, and Y, where605

1. Y is binary ({0, 1}-valued),606

2. X1 and X2 are complementary features for Y (i.e., X1 ⊥⊥ X2|Y), and607

3. X1 is informative of Y (X1 ⊥̸⊥ Y).608

Then, the joint distribution of (X1, X2, Y) can be written in terms of the joint distributions of (X1, Y)609

and (X1, X2). Specifically, if Ŷ|XS ∼ Bernoulli(Pr[Y = 1|XS]) is pseudo-label and610

ϵ0 := Pr[Ŷ = 0|Y = 0] and ϵ1 := Pr[Ŷ = 1|Y = 1] (A.1)

are the conditional probabilities that Ŷ and Y agree, given Y = 0 and Y = 1, respectively, then,611

1. ϵ0 + ϵ1 > 1,612

2. Pr[Y = 1|X2] =
Pr[Ŷ = 1|X2] + ϵ0 − 1

ϵ0 + ϵ1 − 1
, and613

3. Pr[Y = 1|X1, X2] = σ (logit(Pr[Y = 1|X1]) + logit(Pr[Y = 1|X2])− logit(Pr[Y = 1])).614

Before proving Theorem 4.4, we provide some examples demonstrating that the complementarity615

and informativeness assumptions in Theorem 4.4 cannot be dropped.616

Example A.1. Suppose X1 and X2 have independent Bernoulli(1/2) distributions. Then, X1 is617

informative of both of the binary variables Y1 = X1X2 and Y2 = X1(1−X2) and both have identical618

conditional distributions given X1, but Y1 and Y2 have different conditional distributions given X2:619

Pr[Y1 = 1|X2 = 0] = 0 ̸= 1/2 = Pr[Y2 = 1|X2 = 0].

Thus, the complementarity condition cannot be omitted.620

On the other hand, X1 and X2 are complementary for both Y3 = X2 and an independent Y4 ∼621

Bernoulli(1/2) and both Y3 and Y4 both have identical conditional distributions given X1, but Y1622

and Y2 have different conditional distributions given X2:623

Pr[Y3 = 1|X2 = 1] = 1/2 ̸= 1 = Pr[Y4 = 1|X2 = 1].

Thus, the informativeness condition cannot be omitted.624

Before proving Theorem 4.4, we prove Lemma A.2, which allows us to safely divide by the quantity625

ϵ0 + ϵ1 − 1 in the formula for Pr[Y = 1|X2], under the condition that X1 is informative of Y.626

Lemma A.2. In the setting of Theorem 4.4, let ϵ0 and ϵ1 be the class-wise pseudo-label accuracies627

defined in as in Eq. (A.1). Then, ϵ0 + ϵ1 = 1 if and only if X1 and Y are independent.628

Note that the entire result also holds, with almost identical proof, in the multi-environment setting of629

Sections 3 and 5, conditioned on a particular environment E.630

Proof. We first prove the forwards implication. Suppose ϵ0 + ϵ1 = 1. If Pr[Y = 1] ∈ {0, 1}, then631

X1 and Y are trivially independent, so we may assume Pr[Y = 1] ∈ (0, 1). Then,632

E[Ŷ] = ϵ1 Pr[Y = 1] + (1− ϵ0)(1− Pr[Y = 1]) (Law of Total Expectation)
= (ϵ0 + ϵ1 − 1)Pr[Y = 1] + 1− ϵ0

= 1− ϵ0 (ϵ0 + ϵ1 = 1)

= E[Ŷ|Y = 0]. (Definition of ϵ0)
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Since Y is binary and Pr[Y = 1] ∈ (0, 1), it follows that E[Ŷ] = E[Ŷ|Y = 0] = E[Ŷ|Y = 1]; i.e.,633

E[Ŷ|Y] ⊥⊥ Y. Since Ŷ is binary, its distribution is specified entirely by its mean, and so Ŷ ⊥⊥ Y. It634

follows that the covariance between Ŷ and Y is 0:635

0 = E[(Y−E[Y])(Ŷ−E[Ŷ])]

= E[E[(Y−E[Y])(Ŷ−E[Ŷ])|X1]] (Law of Total Expectation)

= E[E[Y−E[Y]|X1]E[Ŷ−E[Ŷ]|X1]] (Y ⊥⊥ Ŷ|X1)

= E[(E[Y−E[Y]|X1])
2],

where the final equality holds because Ŷ and Y have identical conditional distributions given X1.636

Since the L2 norm of a random variable is 0 if and only if the variable is 0 almost surely, it follows637

that, PX1 -almost surely,638

0 = E[Y−E[Y]|X1] = E[Y|X1]−E[Y],

so that E[Y|X1] ⊥⊥ X1. Since Y is binary, its distribution is specified entirely by its mean, and so639

Y ⊥⊥ X1, proving the forwards implication.640

To prove the reverse implication, suppose X1 and Y are independent. Then Ŷ and Y are also641

independent. Hence,642

ϵ1 = E[Ŷ|Y = 1] = E[Ŷ|Y = 0] = 1− ϵ0,
so that ϵ0 + ϵ1 = 1.643

We now use Lemma A.2 to prove Theorem 4.4:644

Proof. To begin, note that Ŷ has the same conditional distribution given X1 as Y (i.e., PŶ|X1
= PY|X1

645

and that Ŷ is conditionally independent of Y given X1 (Ŷ ⊥⊥ Y|X1). Then, since646

Pr[Ŷ = 1] = E[Pr[Y = 1|X1]] = Pr[Y = 1], (A.2)

we have647

ϵ1 = Pr[Ŷ = 1|Y = 1] =
Pr
[
Y = 1, Ŷ = 1

]
Pr[Y = 1]

(Definition of ϵ1)

=
Pr
[
Y = 1, Ŷ = 1

]
Pr[Ŷ = 1]

(Eq. (A.2))

=
EX1 [Pr

[
Y = 1, Ŷ = 1|X1

]
]

EX1 [Pr[Ŷ = 1|X1]]
(Law of Total Expectation)

=
EX1 [Pr[Y = 1|X1]Pr[Ŷ = 1|X1]]

EX1 [Pr[Ŷ = 1|X1]]
(Ŷ ⊥⊥ Y|X1)

=
EX1

[
(Pr[Y = 1|X1])

2
]

EX1 [Pr[Y = 1|X1]]
(PŶ|X1

= PY|X1
)

entirely in terms of the conditional distribution PY|X1
and the marginal distribution PX1 . Similarly,648

ϵ0 can be written as ϵ0 =
EX1

[
(Pr[Y=0|X1])

2
]

EX1 [Pr[Y=0|X1]]
. Meanwhile, by the law of total expectation, and649

the assumption that X1 (and hence Ŷ) is conditionally independent of X2 given Y, the conditional650

distribution PŶ|X2
of Ŷ given X2 can be written as651

Pr[Ŷ = 1|X2]

= Pr[Ŷ = 1|Y = 0, X2]Pr[Y = 0|X2] + Pr[Ŷ = 1|Y = 1, X2]Pr[Y = 1|X2]

= Pr[Ŷ = 1|Y = 0]Pr[Y = 0|X2] + Pr[Ŷ = 1|Y = 1]Pr[Y = 1|X2]

= (1− ϵ0)(1− Pr[Y = 1|X2]) + ϵ1]Pr[Y = 1|X2 = X2]

= (ϵ0 + ϵ1 − 1)Pr[Y = 1|X2] + 1− ϵ0.
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By Lemma A.2, the assumption X1 ⊥̸⊥ Y implies ϵ0 + ϵ1 ̸= 1. Hence, re-arranging the above652

equality gives us the conditional distribution PY|X2
of Y given X2 purely in terms of the conditional653

PY|X1
and PX1,X2 :654

Pr[Y = 1|X2 = X2] =
Pr[Ŷ = 1|X2 = X2] + ϵ0 − 1

ϵ0 + ϵ1 − 1
.

It remains now to write the conditional distribution PY|X1,X2
in terms of the conditional distributions655

PY|X1
and PY|X2

and the marginal PY. Note that656

Pr[Y = 1|X1, X2]

Pr[Y = 0|X1, X2]
=

Pr[X1, X2|Y = 1]Pr[Y = 1]
Pr[X1, X2|Y = 0]Pr[Y = 0]

(Bayes’ Rule)

=
Pr[X1|Y = 1]Pr[X2|Y = 1]Pr[Y = 1]
Pr[X1|Y = 0]Pr[X2|Y = 0]Pr[Y = 0]

(Complementarity)

=
Pr[Y = 1|X1]Pr[Y = 1|X2]Pr[Y = 0]
Pr[Y = 0|X1]Pr[Y = 0|X2]Pr[Y = 1]

. (Bayes’ Rule)

It follows that the logit of Pr[Y = 1|X1, X2] can be written as the sum of a term depending only on657

X1, a term depending only on X2, and a constant term:658

logit (Pr[Y = 1|X1, X2]) = log
Pr[Y = 1|X1, X2]

1− Pr[Y = 1|X1, X2]

= log
Pr[Y = 1|X1, X2]

Pr[Y = 0|X1, X2]

= log
Pr[Y = 1|X1]

Pr[Y = 0|X1]
+ log

Pr[Y = 1|X2]

Pr[Y = 0|X2]
− log

Pr[Y = 1]
Pr[Y = 0]

= logit (Pr[Y = 1|X1]) + logit (Pr[Y = 1|X2])− logit (Pr[Y = 1]) .

Since the sigmoid σ is the inverse of logit,659

Pr[Y = 1|X1, X2] = σ (logit (Pr[Y = 1|X1]) + logit (Pr[Y = 1|X2])− logit (Pr[Y = 1])) ,

which, by Eq. (4.1), can be written in terms of the conditional distribution PY|X1
and the joint660

distribution PX1,X2 .661

A.2 Further discussion of Theorem 4.4662

Connections to learning from noisy labels. Theorem 4.4 leverages two theoretical insights about663

the special structure of pseudo-labels that complement results in the literature on learning from noisy664

labels. First, Blanchard et al. [8] showed that learning from noisy labels is possible if and only if the665

total noise level is below the critical threshold ϵ0 + ϵ1 > 1; in the case of learning from pseudo-labels,666

we show (see Lemma A.2 in Appendix A.1) that this is satisfied if and only if XS is informative of Y667

(i.e., Y ⊥̸⊥ XS). Second, methods for learning under label noise commonly assume knowledge of ϵ0668

and ϵ1 [42], which is unrealistic in many applications; however, for pseudo-labels sampled from a669

known conditional probability distribution PY|XS
, one can express these noise levels we show (as part670

of Theorem 4.4) that the class-conditional noise levels can be easily estimated.671

Possible applications of Theorem 4.4 beyond domain adaptation The reason we wrote Theo-672

rem 4.4 in the more general setting of the marginal problem rather than in the specific context of673

domain adaptation is that we envision possible applications to a number of problems besides domain674

adaptation. For example, suppose that, after learning a calibrated machine learning model M1 using675

a feature X1, we observe an additional feature X2. In the case that X1 and X2 are complementary,676

Theorem 4.4 justifies using the student-teacher paradigm [11, 3, 26] to train a model for predicting Y677

from X2 (or from (X1, X2) jointly) based on predictions from M1. This could be useful if we don’t678

have access to labeled pairs (X2, Y), or if retraining a model using X1 would require substantial679

computational resources or access to sensitive or private data. Exploring such approaches could be a680

fruitful direction for future work681
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B Proof of Theorem 4.5682

This appendix provides a proof of Theorem 4.5, which provides conditions under which our proposed683

domain adaptation procedure (Alg. 1) is consistent.684

We state provide a formal version of Theorem 4.5:685

Theorem 4.5 (Consistency of the bias-corrected classifier). Assume686

1. XS is stable,687

2. XS and XU are complementary, and688

3. XS is informative of Y (i.e., XS ⊥̸⊥ Y).689

Let η̂n : XS × XU → [0, 1] given by690

η̂n(xS, xU) = σ

(
fS(xS) + logit

(
η̂U,n(xU) + ϵ̂0,n − 1

ϵ̂0,n + ϵ̂1,n − 1

)
− β1

)
, for all (xS, xU) ∈ XS×XU ,

denote the bias-corrected regression function estimate proposed in Alg. 1, and let ĥn : XS ×XU →691

{0, 1} given by692

ĥn(xS, xU) = 1{η̂(xS, xU) > 1/2}, for all (xS, xU) ∈ XS ×XU ,
denote the corresponding hard classifier. Let ηU : XU → [0, 1], given by ηU(xU) = Pr[Y =693

1|XU = xU , E = 1] for all xU ∈ XU , denote the true regression function over XU , and let η̂U,n694

denote its estimate as assumed in Line 3 of Alg. 1. Then, as n→ ∞,695

(a) if, for PXU -almost all xU ∈ XU , η̂U,n(xU)) → ηU(xU) in probability, then η̂n and ĥn are696

weakly consistent (i.e., η̂n(xS, xU)→ η(xS, xU) PXS ,XU -almost surely and R(ĥn)→ R(h∗) in697

probability).698

(b) if, for PXU -almost all xU ∈ XU , η̂U,n(xU)) → ηU(xU) almost surely, then η̂n and ĥn are699

strongly consistent (i.e., η̂n(xS, xU)→ η(xS, xU) PXS ,XU -almost surely and R(ĥn)→ R(h∗)700

a.s.).701

Before proving Theorem 4.5, we provide a few technical lemmas. The first shows that almost-702

everywhere convergence of regression functions implies convergence of the corresponding classifiers703

in classification risk:704

Lemma B.1. Consider a sequence of regression functions η, η1, η2, ... : X → [0, 1]. Let h, h1, h2, ... :705

X → {0, 1} denote the corresponding classifiers706

h(x) = 1{η(x) > 1/2} and hi(x) = 1{ηi(x) > 1/2}, for all i ∈N, x ∈ X .

(a) If ηn(x)→ η(x) for PX-almost all x ∈ X in probability, then R(hn)→ R(h∗) in probability.707

(b) If ηn(x) → η(x) for PX-almost all x ∈ X almost surely as n → ∞, then R(hn) → R(h)708

almost surely.709

Proof. Note that, since hn(x) ̸= h(x) implies |ηn(x)− η(x)| ≥ |η(x)− 1/2|,710

1{hn(x) ̸= h(x)} ≤ 1{|ηn(x)− η(x)| ≥ |η(x)− 1/2|}. (B.1)

We utilize this observation to prove both (a) and (b).711

Proof of (a) Let δ > 0. By Inequality (B.1) and partitioning X based on whether |2η(X)− 1| ≤712

δ/2,713

EX [|2η(X)− 1|1{hn(X) ̸= h(X)}]
≤ EX [|2η(X)− 1|1{|ηn(X)− η(X)| ≥ |η(X)− 1/2|}]
= EX [|2η(X)− 1|1{|ηn(X)− η(X)| ≥ |η(X)− 1/2|}1{|2η(X)− 1| > δ/2}]

+ EX [|2η(X)− 1|1{|ηn(X)− η(X)| ≥ |η(X)− 1/2|}1{|2η(X)− 1| ≤ δ/2}]
≤ EX [1{|ηn(X)− η(X)| > δ/2}] + δ/2.

18



Hence,714

lim
n→∞

Pr
ηn

[EX [|2η(X)− 1|1{hn(X) ̸= h(X)}] > δ]

≤ lim
n→∞

Pr
ηn

[EX [1{|ηn(X)− η(X)| > δ/2}] > δ/2]

≤ lim
n→∞

2
δ

Eηn [EX [1{|ηn(X)− η(X)| > δ/2}]] (Markov’s Inequality)

= lim
n→∞

2
δ

EX
[
Eηn [1{|ηn(X)− η(X)| > δ/2}]

]
(Fubini’s Theorem)

=
2
δ

EX

[
lim

n→∞
Pr
ηn

[|ηn(X)− η(X)| > δ/2]
]

(Dominated Convergence Theorem)

= 0. (ηn(X)→ η(X), PX-a.s., in probability)

Proof of (b) For any x ∈ X with η(x) ̸= 1/2, if ηn(x) → η(x) then 1{|ηn(x) − η(x)| ≥715

|η(x)− 1/2|} → 0. Hence, by Inequality (B.1), the dominated convergence theorem (with |2η(x)−716

1|1{|ηn(x)− η(x)| ≥ |η(x)− 1/2|} ≤ 1), and the assumption that ηn(x)→ η(x) for PX-almost717

all x ∈ X almost surely,718

lim
n→∞

EX [|2η(X)− 1|1{hn(X) ̸= h(X)}]

≤ lim
n→∞

EX [|2η(X)− 1|1{|ηn(X)− η(X)| ≥ |η(X)− 1/2|}]

= EX

[
lim

n→∞
|2η(X)− 1|1{|ηn(x)− η(x)| ≥ |η(x)− 1/2|}

]
= 0, almost surely.

719

Our next lemma concerns an edge case in which the features XS and XU provide perfect but720

contradictory information about Y, leading to Equation (4.2) being ill defined. We show that this can721

happen only with probability 0 over (XS, XU) ∼ PXS ,XU can thus be safely ignored:722

Lemma B.2. Consider two predictors XS and XY of a binary label Y. Then,723

Pr
XS ,XU

[E[Y|XS] = 1 and E[Y|XU ] = 0] = Pr
XS ,XU

[E[Y|XS] = 0 and E[Y|XU ] = 1] = 0.

724

Proof. Suppose, for sake of contradiction, that the event725

A := {(xS, xU) : E[Y|XS = xS] = 1 and E[Y|XU = xU ] = 0}
has positive probability. Then, the conditional expectation E[Y|A] is well-defined, giving the726

contradiction727

1 = EXS [E[Y|E, XS]] = E[Y|A] = EXU [E[Y|E, XU ]] = 0.

The case E[Y|XS] = 0 and E[Y|XU ] = 1 is similar.728

We now utilize Lemmas B.1 and B.2 to prove Theorem 4.5.729

Proof. By Lemma B.1, it suffices to prove that η̂(xS, xU) → η(xS, xU), for PXS ,XU -almost all730

(xS, xU) ∈ XS ×XU , in probability (to prove (a)) and almost surely (to prove (b)).731

Finite case We first consider the case when both Pr[Y|XS = xS], Pr[Y|XU = xU ] ∈ (0, 1), so732

that fS(xS) and logit
(

η̃(xU)+ϵ0−1
ϵ0+ϵ1−1

)
are both finite. Since733

η̂S,U(xS, xU)− ηS,U(xS, xU)

= σ

(
fS(xS) + logit

(
η̂U,1(xU) + ϵ̂0 − 1

ϵ̂0 + ϵ̂1 − 1

)
− β̂1,n

)
− σ

(
fS(xS) + logit

(
η̃(xU) + ϵ0 − 1

ϵ0 + ϵ1 − 1

)
− β1

)
,

where the sigmoid σ : R → [0, 1] is continuous, by the continuous mapping theorem and the734

assumption that η̂U,1(xU)→ η̃(xU), to prove both of these, it suffices to show:735
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(i) ϵ̂0 → ϵ0 and ϵ̂1 → ϵ1 almost surely as n→ ∞.736

(ii) β̂1,n → β1 ∈ (−∞, ∞) almost surely as n→ ∞.737

(iii) The mapping (a, b, c) 7→ logit
(

a+b−1
b+c−1

)
is continuous at (η̃(xU), ϵ0, ϵ1).738

We now prove each of these in turn.739

Proof of (i) Since Ŷi ⊥⊥ Yi|XS and 0 < Pr[Ŷ = 1], by the strong law of large numbers and the740

continuous mapping theorem,741

ϵ̂1 =
1
n1

n

∑
i=1

Ŷiσ( fS(Xi)) =
1
n ∑n

i=1 Ŷiσ( fS(Xi))
1
n ∑n

i=1 Ŷi
→ E[σ( fS(X))1{Ŷ = 1}]

Pr[Ŷ = 1]
= E[σ( fS(X))|Ŷ = 1] = ϵ1,

almost surely as n→ ∞. Similarly, since Pr[Ŷ = 0] = 1− Pr[Ŷ = 1] > 0, ϵ̂0 → ϵ0 almost surely.742

Proof of (ii) Recall that743

β̂1,n = logit

(
1
n

n

∑
i=1

Ŷi

)
.

By the strong law of large numbers, 1
n ∑n

i=1 Ŷi → Pr[Ŷ = 1|E = 1] = Pr[Y = 1|E = 1].744

Since we assumed Pr[Y = 1|E = 1] ∈ (0, 1), it follows that the mapping a 7→ logit(a) is745

continuous at a = Pr[Y = 1|E = 1]. Hence, by the continuous mapping theorem, β̂1,n →746

logit (Pr[Y = 1|E = 1]) = β1 almost surely.747

Proof of (iii) Since the logit function is continuous on the open interval (0, 1) and we assumed748

ϵ0 + ϵ1 > 1, it suffices to show that 0 < η̃(xU) + ϵ0 − 1 < ϵ0 + ϵ1 − 1. Since, according to749

Theorem 4.4,750

η̃(xU) = (ϵ0 + ϵ1 − 1)η∗(xU)) + 1− ϵ0,
this holds as long as 0 < η∗(xU) < 1, as we assumed for PXU -almost all xU ∈ XU .751

Infinite case We now address the case where either Pr[Y|XS = xS] ∈ {0, 1} or Pr[Y|XU =752

xU ] ∈ {0, 1}. By Lemma B.2, only one of these can happen at once, PXS ,XU -almost surely. Hence,753

since limn→∞ β̂1,n is also finite almost surely, if Pr[Y|XS = xS] ∈ {0, 1}, then η̂(xS, xU) =754

σ(logit(Pr[Y|XS = xS])) = η(xS, xU), while, if Pr[Y|XU = xU ] ∈ {0, 1}, then η̂(xS, xU) →755

σ (logit(Pr[Y|XU = xU ])) = η(xS, xU), in probability or almost surely, as appropriate.756

C Multiclass Case757

In the main paper, to simplify notation, we presented our unsupervised test-domain adaptation method758

in the case of binary labels Y. However, in many cases, including several of our experiments in759

Section 6, the label Y can take more than 2 distinct values. Hence, in this section, we show how to760

generalize our method to the multiclass setting and then present the exact procedure (Alg. 2) used in761

our multiclass experiments in Section 6.762

Suppose we have K ≥ 2 classes. We “one-hot encode” these classes, so that Y takes values in the set763

Y = {(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)} ⊆ {0, 1}K.

Let ϵ ∈ [0, 1]Y×Y with764

ϵy,y′ = Pr[Ŷ = y|Y = y′]
denote the class-conditional confusion matrix of the pseudo-labels. Then, we have765

E[Ŷ|X2] = ∑
y∈Y

E[Ŷ|Y = y, X2]Pr[Y = y|X2] (Law of Total Expectation)

= ∑
y∈Y

E[Ŷ|Y = y]Pr[Y = y|X2] (Complementary)

= ϵ E[Y|X2]; (Definition of ϵ)
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in particular, when ϵ is invertible,766

E[Y|X2] = ϵ−1 E[Ŷ|X2],

giving a multiclass equivalent of Eq. (4.1) in Theorem 4.4. We also have767

ϵy,y′ = Pr[Ŷ = y|Y = y′] =
Pr[Ŷ = y, Y = y′]

Pr[Y = y′]
=

E
[
Pr[Ŷ = y, Y = y′|X1]

]
E [Pr[Y = y′|X1]]

=
E
[
Pr[Ŷ = y|X1]Pr[Y = y′|X1]

]
E [Pr[Y = y′|X1]]

=
E
[
η1,y(X1)η1,y′(X1)

]
E
[
η1,y′(X1)

] ,

suggesting the estimate768

ϵ̂y,y′ =
∑n

i=1 η̂S,y(XS,i)η̂S,y′(XS,i)

∑n
i=1 η̂S,y′(XS,i)

=
n

∑
i=1

η̂S,y(XS,i)
η̂S,y′(XS,i)

∑n
i=1 η̂S,y′(XS,i)

of each ϵy,y′ , or, in matrix notation,769

ϵ̂ = η⊺
S(XS)Normalize(ηS(XS)),

where Normalize(X) scales each column of X to sum to 1. This gives us an multiclass equivalent770

of Line 4 in Alg. 1.771

The multiclass versions of Eq. (4.2) and Line 6 of Alg. 1 are slightly less straightforward. Specifically,772

whereas, in the binary case, we used the fact that Pr[XS, XU |Y ̸= 1] = Pr[XS, XU |Y = 0] =773

Pr[XS|Y = 0]Pr[XU |Y = 0] = Pr[XS|Y ̸= 1]Pr[XU |Y ̸= 1] (by complementarity), in the774

multiclass case, we do not have Pr[XS, XU |Y ̸= 1] = Pr[XS|Y ̸= 1]Pr[XU |Y ̸= 1]. However,775

following similar reasoning as in the proof of Theorem 4.4, we have776

Pr[Y = y|XS, XU , E]
Pr[Y ̸= y|XS, XU , E]

=
Pr[Y = y|XS, XU , E]

∑y′ ̸=y Pr[Y = y′|XS, XU , E]

=
Pr[XS, XU |Y = y, E]Pr[Y = y|E]

∑y′ ̸=y Pr[Y ̸= y|XS, XU , E]Pr[Y = y′|E] (Bayes’ Rule)

=
Pr[XS|Y = y, E]Pr[XU |Y = y, E]Pr[Y = y|E]

∑y′ ̸=y Pr[XS|Y = y′, E]Pr[XU |Y = y′, E]Pr[Y = y′|E] (XS ⊥⊥ XU |Y)

=
Pr[Y = y|XS, E]Pr[Y = y|XU , E]

∑y′ ̸=y Pr[Y = y′|XS, E]Pr[Y = y′|XU , E] · Pr[Y=y|E]
Pr[Y=y′ |E]

. (Bayes’ Rule)

Hence,777

logit(Pr[Y = y|XS, XU , E]) = log

 Pr[Y = y|XS, E]Pr[Y = y|XU , E]

∑y′ ̸=y Pr[Y = y′|XS, E]Pr[Y = y′|XU , E] · Pr[Y=y|E]
Pr[Y=y′ |E]


= log

(
Cy

∑y′ ̸=y Cy′

)
= log

 Cy
∥C∥1

∑y′ ̸=y
Cy′
∥C∥1

 = logit
(

Cy

∥C∥1

)
,

for C ∈ RY defined by778

Cy =
ηS,y(XS)ηU,y(XU)

Pr[Y = y]
for each y ∈ Y .

In particular, applying the sigmoid function to each side, we have779

Pr[Y|XS, XU ] =
C
∥C∥1

.
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We can estimate Cy by780

Ĉy =
ηS,y(XS)ηU,y(XU)

1
n ∑n

i=1 ηS,y(XS,i)
.

In matrix notation, this is781

Ĉ =
ηS(XS) ◦ ηU(XU)

1
n ∑n

i=1 ηS(XS,i)
,

where ◦ denotes element-wise multiplication. Putting these derivations together gives us our multi-782

class version of Alg. 1, presented in Alg. 2, where ∆Y = {z ∈ [0, 1]K : ∑y∈Y zy = 1} denotes the783

standard probability simplex over Y .784

Algorithm 2: Multiclass bias-corrected unsupervised domain adaptation procedure.

Input: Regression function ηS : X → ∆Y , subroutine regressor, n unlabeled samples
{(XS,i, XU,i)}n

i=1 from the test domain
Output: Estimate η̂n : XS ×XU → ∆Y of regression function

ηy(xS, xU) = Pr[Y = y|XS = xS, XU = xU ]
1 for i ∈ [n] do // generate pseudolabels
2 Sample Ŷi ∼ Categorical(ηS(XS,i)) // Ŷ ∈ {0, 1}n×K is one-hot encoded
3 η̃U,n ← regressor

(
{(XU,i, Ŷi)}n

i=1
)

// regress pseudolabels over XU

4 ϵ̂← η⊺
S(XS)Normalize(η⊺

S(XS)) // Estimate ϵy,y′ = Pr[Ŷ = y|Y = y]
5 η̂U,n ←

(
xU 7→ max{0, min{1, ϵ−1η̃U,n(xU)}, }

)
// Unstable predictor

6 for y ∈ [K] do

7 Cy ←
(
(xS, xU) 7→

ηS,y(xS)◦η̂U,n,y(xU)
1
n ∑n

i=1 ηS,y(XS,i)

)
8 η̂S,U,n ←

(
(xS, xU) 7→ C(xS ,xU)

∥C(xS ,xU)∥1

)
) // Joint predictor

9 return (η̂U,n, η̂S,U,n)

D Supplementary Results785

Proposition D.1. Suppose Ŷ| fS(X) ∼ Bernoulli(σ( fS(X))), such that Ŷ ⊥⊥ fU(X)| fS(X). Then,786

0 ∈ arg min
fU :X→R

E[ℓ(Ŷ, σ( fS(X) + fU(X)))],

where ℓ(x, y) = −x log y− (1− x) log(1− y) denotes the cross-entropy loss.787

Suppose Ŷ| fS(X) ∼ Bernoulli(σ( fS(X))), such that Ŷ ⊥⊥ fU(X)| fS(X). Then,788

−E[ℓ(Ŷ, σ( fS(X) + fU(X)))]

= E[E[ℓ(Ŷ, σ( fS(X) + fU(X))]] (Law of Total Expectation)

= E[E[Ŷ log σ( fS(X) + fU(X))

+ (1−Y) log(1− σ( fS(X) + fU(X)))| fS(X)]]

= E[E[Ŷ| fS(XS)]E[log σ( fS(X) + fU(X))| fS(XS)]

+ E[(1− Ŷ)| fS(XS)]E[log(1− σ( fS(X) + fU(X)))| fS(X)]] (Ŷ ⊥⊥ fU(X)| fS(X))
= E[σ( fS(X)) log σ( fS(X) + fU(X))

+ (1− σ( fS(X))) log(1− σ( fS(X) + fU(X)))]. (Ŷ| fS(X) ∼ Bernoulli(σ( fS(X)))).

Since the cross-entropy loss is differentiable and convex, any fU(X) satisfying 0 =789

d
d fU(X)

E[ℓ(Ŷ, fS(X) + fU(X))] is a minimizer. Indeed, under the mild assumption that the ex-790
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pectation and derivative commute, for fU(X) = 0,791

d
d fU(X)

E[ℓ(Ŷ, σ( fS(X) + fU(X)))] = −E

[
σ( fS(X))

σ( fS(X) + fU(X))
+

1− σ( fS(X))

1− σ( fS(X) + fU(X))

]
= −E

[
σ( fS(X))

σ( fS(X))
+

1− σ( fS(X))

1− σ( fS(X))

]
= 0.

D.1 Causal Perspectives792

The stability, complementarity, and informativeness assumptions in Theorem 4.4 can be interpreted793

as constraints on the causal relationships between the variables XS, XU , Y, and E. We conclude this794

section with a result with a characterization of causal directed acyclic graphs (DAGs) that are consis-795

tent with these assumptions. In particular, this result shows that our assumptions are satisfied in the796

“anti-causal” and “cause-effect” settings assumed in prior work [45, 59, 30], as well as work assuming797

only covariate shift (i.e., changes in the distribution of X without changes in the conditional PY|X).798

E

XS,C XS,E

XU

Y

XS,S

Figure 3: Causal DAGs over the
environment E, three types of sta-
ble features (causes XS,C, effects
XS,E, and spouses XS,S), unstable
features XU , and label Y, under
conditions 1)-6). At least one, and
possibly both, of the dashed edges
E→ XS,C and E→ XU must be
included. The dotted edge E →
XS,S may or may not be included.

799

Proposition D.2 (Possible Causal DAGs). Consider an environment800

variable E, two covariates XU and XS, and a label Y. Assume there801

are no other hidden confounders (i.e., causal sufficiency). First,802

assume:803

1) E is a root (i.e., none of XU , XS, and Y is an ancestor of E).804

2) XS is informative of Y (i.e., XS ⊥̸⊥ Y|E).805

3) XS and XU are complementary predictors of Y; i.e., XS ⊥⊥806

XU |(Y, E).807

4) XS is stable (i.e., E ⊥⊥ Y|XS).808

These are the four structural assumptions under which Theorems 4.4809

and 4.5 show that the SFB algorithm learns the conditional distri-810

bution PY|X1,X2
in the test domain. Additionally, suppose811

5) XU is unstable (i.e., E ⊥̸⊥ Y|XU), This is the case in which812

empirical risk minimization [ERM 56] may suffer bias due to813

distribution shift, and hence when SFB may outperform ERM.814

6) XU contains some information about Y that is not included in XS815

(i.e., XU ⊥̸⊥ Y|XS), and This is information we expect invariant816

risk minimization [IRM 2] to be unable to learn, and hence when817

we expect SFB to outperform IRM.818

Then, as illustrated in Figure 3, three types of stable features are819

possible:820

1. Causal ancestors XS,C of Y,821

2. Causal descendants XS,E of Y that are not also descendants of E,822

3. Causal spouses XS,S of Y (i.e., causal ancestors of XS,E), and823

while the only unstable features possible are descendants of Y.824

Notable special cases of the DAG in Figure 3 include:825

1. the “cause-effect” settings, studied by Rojas-Carulla et al. [45], von Kügelgen et al. [59], where826

XS is a cause of Y, XU is an effect of Y, and E affects both XS and XU but affects Y only through827

XS. Note that this generalizes the commonly used “covariate shift” assumption, as not only the828

covariate distribution PXS ,XU but also the conditional distribution PY|XU
can change between829

environments.830

2. the “anti-causal” setting, studied by Jiang and Veitch [30], where XS and XU are both effects of831

Y, but XS is unaffected by E.832

3. the widely studied “covariate shift” setting [53, 22, 7, 52], which corresponds (see Sections 3 and833

5 of Schölkopf [49]) to a causal factorization P(X, Y) = P(X)P(Y|X) (i.e., in which the only834
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stable components XS are causes XS,C) of Y or unconditionally independent (e.g., causal spouses835

XS,S)) of Y.836

However, this model is more general than these special cases. Also, for sake of simplicity, we assumed837

causal sufficiency here; however, in the presence of unobserved confounders, other types of stable838

features are also possible; for example, if we consider the possibility of unobserved confounders U839

influencing Y that are independent of E (i.e., invariant across domains), then our method can also840

utilize stable features that are descendants of U (i.e., “siblings” of Y).841

E Datasets842

In our experiments, we consider four datasets: Synthetic, ColorMNIST, PACS and Camelyon17.843

While the first two offer controlled settings with a severe spurious-correlation shift, the latter two844

offer real-world distribution shifts. Below, Fig. 4 depicts samples from the three image datasets.845

Camelyon17

PACS

ColorMNIST

Dataset Domains

Figure 4: Examples from ColorMNIST [2], PACS [36] and Camelyon17 [5]. Figure and examples
based on Gulrajani and Lopez-Paz [23, Table 3] and Koh et al. [32, Figure 4]. For ColorMNIST,
we follow the standard approach [2] and use the first two domains for training and the final one for
testing. For PACS [36], we follow the standard approach [23] and use each domain in turn for testing,
using the remaining three domains for training. For Camelyon17 [5], we follow WILDS [32] and
use the first three domains for training, the fourth for validation, and the fifth for testing.

F Further Experiments846

This appendix provides further experiments which supplement those in the main text. In particular,847

it provides: (i) experiments on a synthetic dataset where our assumption of complementarity (i.e.,848

conditionally-independent unstable features) does not hold (Appendix F.1); and (ii) ablations on the849

ColorMNIST dataset showing the effects of bias correction and post-hoc calibration (Appendix F.2).850

F.1 Synthetic dataset851

As depicted in Fig. 1 (right), our SFB approach assumes that the harnessed unstable features XC ⊆ XU852

are conditionally independent of the stable features XS. If this assumption is violated, then adaptation853

can fail as SFB is not guaranteed to learn an asymptotically-optimal predictor in the test domain.854
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NS

NY

NU

βe

XS

Y

XU

Figure 5: Causal DAG behind the synthetic dataset of Appendix F.1. Dashed circles indicate
latent/unobserved variables, while solid circles indicate observed variables.

To investigate the adaptation performance of SFB when this assumption is violated, we conduct855

experiments on a synthetic cause-effect dataset in which there is a direct dependence between XS and856

XU . In particular, similar to Jiang and Veitch [30, Appendix B], we generate synthetic data according857

to the following structural equations (illustrated graphically in Fig. 5):858

XS ← NS, with NS ← Bern(0.5);
Y ← XOR(XS, NY), with NY ← Bern(0.75);

XU ← XOR(XOR(Y, NU), XS), with NU ← Bern(βe).

Here, the input X = (XS, XU) and Bern(β) means that a random variable is 1 with probability β859

and 0 with probability 1− β. Following Jiang and Veitch [30, Appendix B], we create two training860

domains with βe ∈ {0.95, 0.8}, one validation domain with βe = 0.2, and one test domain with861

βe = 0.1. Like the anti-causal synthetic dataset of § 6, the idea is that prediction based on the862

stable XS results in lower accuracy (75%) than prediction based on the unstable XU . Thus, models863

optimizing for prediction accuracy only—and not stability—will use XU and ultimately end up with864

only 10% accuracy in the test domain. In addition, while the stable predictor achieves 75% accuracy865

in the test domain, performance can be improved to 90% if XU can be used correctly. However, unlike866

the anti-causal synthetic dataset of § 6, the stable XS and unstable XU features are not conditionally867

independent, i.e., XU ⊥̸⊥ XS|Y, since XS directly influences XU . We use the same experimental868

setup as for the anti-causal synthetic dataset in § 6: see Appendix G.4 for further details.869

Looking at Table 4 we see that: (i) ACTIR has poor stable/invariant performance as its notion870

of stability relies on the now-violated conditional-independence assumption; (ii) IRM has good871

stable/invariant performance as its notion of stability does not rely on conditional independence; (iii)872

SFB has good stable/invariant performance as its notion of stability does not rely on conditional873

independence (IRM’s stability penalty is used); and (iv) surprisingly, SFB has near-optimal adapted874

performance despite the conditional-independence assumption being violated. One explanation for875

(iv) is that the conditional-independence assumption is only weakly violated in the test domain.876

Another is that conditional independence isn’t necessary for SFB and some weaker, yet-to-be-877

determined condition suffices.878

Table 4: Test-domain accuracies on a synthetic cause-effect dataset with a direct dependence between
XS and XU , meaning XU ⊥̸⊥ XS|Y. Means and standard errors are over 100 seeds.

Algorithm Accuracy
ERM 11.57± 0.71
IRM 69.61± 1.26
ACTIR 43.51± 2.63
SFB w/o adapt 74.89± 3.64
SFB w. adapt 88.56± 1.38
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F.2 ColorMNIST879

We now provide ablations on the ColorMNIST dataset to illustrate the effectiveness of the different880

components of SFB. In particular, we focus on bias correction and calibration, while also showing881

how multiple rounds of pseudo-labelling can improve performance in practice.882

Bias correction. To adapt the unstable classifier in the test domain, SFB employs the bias-corrected883

adaptation algorithm of Alg. 1 (or Alg. 2 for the multi-class case) which corrects for biases caused by884

possible disagreements between the stable-predictor pseudo-labels Ŷ and the true label Y. In this885

(sub)section, we investigate the performance of SFB with and without bias correction (BC).886

Calibration. As discussed in § 4.2, correctly combining the stable and unstable predictions post-887

adaptation requires them to be properly calibrated. In particular, it requires the stable predictor fS to be888

calibrated with respect to the true labels Y and the unstable predictor fU to be calibrated with respect889

to the pseudo-labels Ŷ. In this (sub)section, we investigate the performance of SFB with and without890

post-hoc calibration (in particular, simple temperature scaling [24]). More specifically, we investigate891

the effect of calibrating the stable predictor (CS) and calibrating the unstable predictor (CU).892

Multiple rounds of pseudo-labelling. While SFB learns the optimal unstable classifier he
U in893

the test domain given enough unlabelled data, § 4.1 discussed how more accurate pseudo-labels Ŷ894

improve the sample efficiency of SFB. In particular, in a restricted-sample setting, more accurate895

pseudo-labels result in an unstable classifier he
U which better harnesses XU in the test domain. With896

this in mind, note that, after adapting, we expect the joint predictions of SFB to be more accurate897

than its stable-only predictions. This raises the question: can we use these improved predictions to898

form more accurate pseudo-labels, and, in turn, an unstable classifier he
U that leads to even better899

performance? Furthermore, can we repeat this process, using multiple rounds of pseudo-labelling to900

refine our pseudo-labels and ultimately he
U? While this multi-round approach loses the asymptotic901

guarantees of § 4.2, we found it to work quite well in practice. In this (sub)section, we thus investigate902

the performance of SFB with and without multiple rounds of pseudo-labelling (PL rounds).903

Table 5: SFB ablations on ColorMNIST. Means and standard errors are over 3 random seeds. BC:
bias correction. CS: post-hoc calibration of the stable classifier. CU: post-hoc calibration of the
unstable classifier. PL Rounds: Number of pseudo-labelling rounds used. GT adapt: adapting using
true labels in the test domain.

Model Bias Calibration PL Rounds Test Acc.
Correction Stable Unstable

SFB w/o adapt 1 70.6± 1.8

SFB with adapt 1 78.0± 2.9
+BC 1 83.4± 2.8
+CS 1 80.6± 3.4
+CU 1 76.6± 2.4
+BC+CS+CU 1 84.4± 2.2
+BC+CS 1 84.9± 2.6
+BC+CS 2 87.4± 1.9
+BC+CS 3 88.1± 1.8
+BC+CS 4 88.6± 1.3
+BC+CS 5 88.7± 1.3

SFB with GT adapt 1 89.0± 0.3

Results. Table 5 reports the ablations of SFB on ColorMNIST. Here we see that: (i) bias correction904

significantly boosts performance (+BC); (ii) calibrating the stable predictor also boosts performance905

without (+CS) and with (+BC+CS) bias correction, with the latter leading to the best performance;906

(iii) calibrating the unstable predictor (with respect to the pseudo-labels) slightly hurts performance907

without (+CU) and with (+BC+CS+CU) bias correction and stable-predictor calibration; (iv) multiple908

rounds of pseudo-labelling boosts performance, while also reducing the performance variation across909

random seeds; (v) using bias correction, stable-predictor calibration and 5 rounds of pseudo-labelling910
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results in near-optimal adaptation performance, as indicated by the similar performance of SFB when911

using true labels Y to adapt he
U (denoted “SFB with GT adapt” in Table 5).912

G Implementation Details913

Below we provide further implementation details for each of the experiments/datasets considered in914

this work. Code for reproducing all experimental results will be made available upon acceptance.915

G.1 ColorMNIST916

Training details. We follow the setup of Eastwood et al. [14, §6.1] and build on their open-source917

code5. In particular, we use the original MNIST training set to create training and validation sets918

for each domain, and the original MNIST test set for the test sets of each domain. For all methods,919

we use a 2-hidden-layer MLP with 390 hidden units, the Adam optimizer, a learning rate of 0.0001920

with cosine scheduling, and dropout with p = 0.2. In addition, we use full batches (size 25000),921

400 steps for ERM pertaining (which directly corresponds to the delicate penalty “annealing” or922

warm-up periods used by penalty-based methods on ColorMNIST [2, 34, 14]), and 600 total steps.923

We sweep over stability-penalty weights in {50, 100, 500, 1000, 5000} for IRM, VREx and SFB924

and α’s in 1− {e−100, e−250, e−500, e−750, e−1000} for EQRM. As the stable (shape) and unstable925

(color) features are conditionally independent given the label, we fix SFB’s conditional-independence926

penalty weight λC = 0. As is the standard for ColorMNIST, we use a test-domain validation set to927

select the best settings (after the total number of steps), and then report the mean and standard error928

over 10 random seeds on a test-domain test set. As in previous works, the hyperparameter ranges of929

all methods are selected by peeking at test-domain performance. While far from ideal, this is quite930

difficult to avoid with ColorMNIST and highlights a core problem with hyperparameter selection in931

DG—as discussed by many previous works [2, 34, 23, 64, 14].932

Adaptation details. For SFB’s unsupervised adaptation in the test domain, we use a batch size of933

2048 and employ the bias correction of Alg. 1. In addition, we calibrate the stable predictor using post-934

hoc temperature scaling, choosing the temperature to minimize the expected calibration error (ECE,935

[24]) across the two training domains. Again using the two training domains for hyperparameter936

selection, we sweep over adaptation learning rates in {0.1, 0.01}, choose the best adaptation step in937

[5, 20] (via early stopping), and sweep over the number of pseudo-labelling rounds in [1, 5]. Finally,938

we report the mean and standard error over 3 random seeds for adaptation.939

G.2 PACS940

We follow the experimental setup of Jiang and Veitch [30, Section 6.4] and build on their open-source941

implementation6. This means using an ImageNet-pretrained ResNet-18, the Adam optimizer with a942

learning rate of 10−4, and, following [23], choosing hyperparameters using leave-one-domain-out943

cross-validation. This is akin to K-fold cross-validation except with domains, meaning that we944

train 3 models—each time leaving out 1 of the 3 training domains for validation—and then select945

hyperparameters based on the best average performance across the held-out validation domains.946

Finally, we use the selected hyperparameters to retrain the model using all 3 training domains.947

For SFB, we sweep over λS in {0.01, 0.1, 1, 5, 10, 20}, λC in {0.01, 0.1, 1}, and learning rates in948

{10−4, 50−4}. For SFB’s unsupervised adaptation, we employ the multi-class bias correction of949

Alg. 2 and calibrate the stable predictor using post-hoc temperature scaling, choosing the temperature950

to minimize the expected calibration error (ECE, [24]) across the three training domains. In addition,951

we use the Adam optimizer with an adaptation learning rate of 0.01, choosing the number of adaptation952

steps in [1, 20] (via early stopping) using the training domains. Finally, we report the mean and953

standard error over 3 random seeds.954

G.3 Camelyon17955

We follow the experimental setup of Jiang and Veitch [30, Section 6.3] and build on their open-source956

implementation7. This means using an ImageNet-pretrained ResNet-18, the Adam optimizer, and,957

following [32], choosing hyperparameters using the validation domain (hospital 4). In contrast to958

5https://github.com/cianeastwood/qrm/tree/main/CMNIST
6https://github.com/ybjiaang/ACTIR.
7See Footenote 6.
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[30], we use a learning rate of 10−5 for all methods, rather than 10−4, and employ early stopping959

using the validation domain. We found this to significantly improve all methods. E.g., the baselines960

of ERM and IRM improve by approximately 20 percentage points, jumping from ≈ 70% to ≈ 90%.961

For SFB, we sweep over λS in {0.01, 0.1, 1, 5, 10, 20} and λC in {0.01, 0.1, 1}. For SFB’s unsuper-962

vised adaptation, we employ the bias correction of Alg. 1 and calibrate the stable predictor using963

post-hoc temperature scaling, choosing the temperature to minimize the expected calibration er-964

ror (ECE, [24]) on the validation domain. In addition, we use the Adam optimizer with an adaptation965

learning rate of 0.01, choosing the number of adaptation steps in [1, 20] (via early stopping) using the966

validation domain. Finally, we report the mean and standard error over 3 random seeds.967

G.4 Synthetic968

Following Jiang and Veitch [30], we use a simple three-layer network with 8 units in each hidden969

layer and the Adam optimizer, choosing hyperparameters using the validation domain.970

For SFB, we sweep over λS in {0.01, 0.1, 1, 5, 10, 20} and λC in {0.01, 0.1, 1}. For SFB’s unsuper-971

vised adaptation, we employ the bias correction of Alg. 1 and calibrate the stable predictor using972

post-hoc temperature scaling, choosing the temperature to minimize the expected calibration er-973

ror (ECE, [24]) on the validation domain. In addition, we use the Adam optimizer with an adaptation974

learning rate of 0.01, choosing the number of adaptation steps in [1, 20] (via early stopping) using the975

validation domain. Finally, we report the mean and standard error over 100 random seeds.976

H Further Related Work977

Using spurious or unstable features without labels. Bui et al. [12] exploit-domain specific or978

unstable features with a meta-learning approach. However, they use the unstable features in the same979

way in the test domain, which, by their very definition, can lead to degraded performance. In contrast,980

we seek a robust approach to safely harness the unstable features in the test domain, as summarised981

in Table 1. Sun et al. [54] share the goal of exploiting spurious or unstable features to go “beyond982

invariance”. However, their approach requires labels for the spurious features at training time and983

only applies to label shifts. In contrast, we do not require labels for the spurious features and are not984

restricted to label shifts.985

Self-learning via pseudo-labelling. In the source-free and test-time domain adaptation literature,986

adapting to the test domain using a model’s own pseudo-labels is a common approach [35, 38, 61, 29]—987

see Rusak et al. [48] for a recent review. In contrast to these approaches, we use one model to provide988

the pseudo-labels (the stable model) and the other to use/adapt to the pseudo-labels (the unstable989

model). In addition, while the majority of this pseudo-labelling work is purely empirical, we provide990

theoretical justification and guarantees for our SFB approach.991

I Limitations992

In our view, the most significant limitation of this work is the assumption of complementarity (i.e.,993

that the spurious features are conditionally independent of the stable features, given the label).994

Complementarity is implicit in the causal generative models assumed by existing related work [45,995

60, 30], and, as Example A.1 in Appendix A.1 demonstrates, is cannot simply be dropped from our996

theoretical motivation. In the related context of co-training, this condition was initially assumed and997

then weakened in subsequent work [10, 4, 1, 62]; similarly, we hope future work will identify weaker998

conditions that are sufficient for SFB to succeed. On the other hand, our experimental results on the999

synthetic dataset of Appendix F.1, as well as the real datasets of PACS and Camelyon17, suggest1000

that SFB may be robust to violations of complementarity—perhaps mirroring the surprisingly good1001

practical performance of methods such as naive Bayes classification which are justified under similar1002

assumptions [44].1003

1004
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