Supplementary Material for:
Spuriosity Didn’t Kill the Classifier:
Using Invariant Predictions to Harness Spurious Features

Notes

• For convenience, we include both the main paper and supplement here.

• The main paper is identical to the one uploaded originally.
Spuriosity Didn’t Kill the Classifier: Using Invariant Predictions to Harness Spurious Features

Anonymous Author(s)
Affiliation
Address
email

Abstract
Machine learning models often fail on out-of-distribution data. To avoid this, many works have sought to extract features with a stable or invariant relationship with the label across domains, improving robustness by discarding the “spurious” or unstable features whose relationship with the label may change across domains. However, the discarded unstable features often carry complementary information about the label that could boost performance if used correctly in the test domain. Our main contribution is to show that it is possible to learn how to use these unstable features in the test domain without labels. In particular, we prove that pseudo-labels based on stable features provide sufficient guidance for doing so, provided that stable and unstable features are conditionally independent given the label. Along the way, we present a solution to the so-called “marginal problem” from probability theory, in the special case of conditionally-independent features, which may be of independent interest. Based on this theoretical insight, we propose Stable Feature Boosting (SFB), an algorithm for: (i) learning a predictor that separates stable and conditionally-independent unstable features; and (ii) using the stable-feature predictions to adapt the unstable-feature predictions in the test domain. Theoretically, we prove that SFB can learn an asymptotically-optimal predictor in the test domain without using any test-domain labels, while, empirically, we demonstrate the effectiveness of SFB on real and synthetic datasets.

1 Introduction
Machine learning systems can be sensitive to distribution shift [25]. Often, this sensitivity is due to a reliance on “spurious” features whose relationship with the label changes across domains, ultimately leading to degraded performance in the test domain of interest [20]. To avoid this pitfall, recent works on out-of-distribution (OOD) generalization have sought predictors which do not rely on these spurious or unstable relationships, but instead leverage relationships which are invariant or stable across multiple domains [43, 2, 34, 14]. However, despite their instability, spurious features can often provide additional or complementary information about the target label. Thus, if a predictor could be adjusted to use spurious features optimally in the test domain, it would boost performance substantially. That is, perhaps we don’t need to discard spurious features at all, but rather use them in the right way.

As a very simple but illustrative example, consider the ColorMNIST dataset [2]. This takes the original MNIST dataset and first turns it into a binary classification task (digit in 0–4 or 5–9), and then colorizes it such that digit color (red or green) is a highly-informative but spurious feature. In particular, as depicted in Fig. 1, the two training domains are constructed such that green digits generally belong to class 0, while the test domain is constructed such that they generally belong to class 1. Finally, some label noise is added so that, across all 3 domains, digit shape correctly determines the label with probability 0.75. In previous works, the goal is to learn an invariant predictor which uses only shape and avoids using color—a spurious or unstable feature whose relationship with the label varies across domains. In this work, however, we ask the question: when and how can these such informative but spurious features be safely harnessed without labels? As shown in Fig. 1, this question is motivated by the fact that the invariant predictor is not Bayes-optimal in many test domains, since color information can be used to improve predictions in a domain-specific manner.
Structure and contributions. To answer this question, the remainder of this paper is organised as follows. We first discuss related work in § 2, providing context and high-level motivation for our proposed approach. In § 3, we then formalise the notion of stable and unstable features, showing how unstable features can be harnessed with test labels, and end with a number of challenges in doing so without labels. Next, in the theory of § 4, we provide concrete answers to these questions, before using our theoretical insights to propose a Stable Feature Boosting (SFB) algorithm with guarantees in § 5. Finally, § 6 presents our experimental results. Our main contributions can be summarised as:

- **Algorithmic:** We propose the Stable Feature Boosting (SFB) algorithm for using stable/invariant predictions to reliably harness unstable/spurious features without test-domain labels. To the best of our knowledge, SFB is the first method to do so.
- **Theoretical:** SFB is grounded in a novel theoretical result (Thm 4.4) giving sufficient conditions under which test-domain adaptation is provably possible without labels. Under these conditions, Thm 4.5 shows that, given enough unlabeled data, SFB learns the optimal adapted classifier.
- **Experimental:** Our experiments on synthetic and real-world data demonstrate the effectiveness of SFB, even in practical scenarios where it is unclear if its assumptions are satisfied.

2 Related Work

Domain generalization, robustness and invariant prediction. A fundamental starting point for work in domain generalization and robustness is the observation that certain “stable” features, often direct causes of the label, may have an invariant relationship with the label across domains [43, 2, 58, 49, 39, 65]. However, such stable or causal predictors often discard highly-informative but unstable information about the label. Rothenhäusler et al. [47] show that we may need to trade-off stability and predictiveness, with the causal predictor often too conservative. Eastwood et al. [14] seek such a trade-off via an interpretable probability-of-generalization parameter. The current work is motivated by the idea that one might avoid such a trade-off by changing how spurious features are used at test time, rather than discarding them are training time.

Test-domain adaptation with labels. Fine-tuning part of a model using a small number of labelled test-domain examples is a common way to deal with distribution shift [16, 17, 13]. More recently, it has been shown that simply retraining the last layer of an ERM-trained model outperforms more robust feature-learning methods on spurious correlation benchmarks [46, 31, 64]. In particular, Jiang and Veitch [30] do so when using a conditional-independence assumption not too dissimilar to ours. However, all of these works require labels in the test domain, while we seek to adapt without labels.

Learning with noisy labels. An intermediate goal in our work, namely learning a model to predict Y from X_U using pseudo-labels based on X_S, is an instance of learning with noisy labels, a widely studied problem [50, 42, 8, 51, 37, 55]. Specifically, under the complementarity assumption $(X_S \perp \!\!\!\!\perp X_U | Y)$, the accuracy of the pseudo-labels on each class is independent of X_U, placing us in the so-called class-conditional random noise model [50, 42, 8]. As we discuss in Section 4, our theoretical insights about the special structure of pseudo-labels complement existing results on learning under this model. Our bias-correction (Eq. (4.1)) for $P_{Y|X_S}$ is also closely related to the “method of unbiased estimators” [42]. However, rather than correcting the loss used in ERM, our post-hoc bias correction applies to any calibrated classifier. Moreover, our ultimate goal, learning a predictor of Y jointly using X_S and X_U, is not captured by learning with noisy labels.
Co-training. Our use of stable-feature pseudo-labels to train a classifier based on a disjoint subset of (unstable) features is reminiscent of co-training [10]. Both methods benefit from conditional independence of the two feature subsets given the label to ensure that they provide complementary information. The key difference is that while co-training requires (a small number of) labeled samples from the same distribution as the test data, our method instead uses labeled data from a different distribution (training domains), along with the assumption of a stable feature. Further related work is discussed in Appendix H.

3 Stable and Unstable Features

Setup. We consider the problem of domain generalization (DG) [9, 40, 23] where predictors are trained on data from multiple training domains and with the goal of performing well on data from unseen test domains. For example, in the Camelyon17 dataset, the task is to predict if a given image of cells contains tumor tissue, and domains correspond to the different hospitals in which the images were captured ([5], see Fig. 4 of Appendix E). More formally, we consider datasets $D^f = \{(X_i^e, Y_i^e)\}_{i=1}^{N_t}$ collected from m different training domains or environments $E_\text{tr} := \{E_1, \ldots, E_m\}$, with each dataset D^f containing data pairs (X_i^e, Y_i^e) sampled i.i.d. from $\mathbb{P}(X, Y)$. The goal is then to learn a predictor $f(X)$ that performs well on data from a larger set of all possible domains $E_\text{all} \supset E_\text{tr}$.

Average performance: use all features. The first approaches to DG sought predictors that perform well on average over domains [9, 40] using empirical risk minimization (ERM, Vapnik 57). However, predictors that perform well on average provably lack robustness [41], potentially performing quite poorly on large subsets of E_all. In particular, minimizing the average error leads predictors to make use of any features which are informative about the label (on average), including “spurious” or “shortcut” [20] features whose relationship with the label is subject to change across domains. In test domains where these feature-label relationships change in new or more severe ways than observed during training, this usually leads to significant performance drops or even complete failure [63, 6].

Worst-case or robust performance: use only stable features. To mitigate this lack of robustness, subsequent works have sought predictors that only use stable or invariant features, i.e., those which have a stable or invariant relationship with the label across domains [43, 2]. In particular, Arjovsky et al. [2] learn features which have an invariant functional relationship with the label by enforcing that the classifier on top of these features is optimal for all domains simultaneously. We henceforth use stable features and X_S to refer to these features, and stable predictors to refer to predictors which use only these features. Analogously, we use unstable features X_U to refer to features with an unstable or changing relationship with the label across domains. Finally, note that X_S and X_U form a partition of the components of X which are informative about Y, as depicted in Fig. 1.

3.1 Harnessing unstable features with labels

A stable predictor $f_S(X)$ is unlikely to be the best predictor in any given domain. As depicted by the orange regions of Fig. 1, this is because it excludes unstable features X_U which are informative about Y and can boost performance if used correctly. The main question we will address in the present work is how we can harness X_U to reliably boost the performance of $f_S(X)$ in a new domain e. To explore this question, we assume that we are indeed able to learn a stable predictor using prior methods, e.g., IRM [2], and, for now, that we have access to labelled examples in this new domain which can be used to update or re-learn the domain-specific relation between X_U and Y.

Boosting the stable predictor. To begin, note that we need only update the X_U-Y relation since, by definition, the X_S-Y relation is stable across domains. We will thus seek a feature space which

Table 1: Related work. *QRM [14] includes a continuous hyperparameter $\alpha \in [0, 1]$ trading off between robustness and using more information from X.

<table>
<thead>
<tr>
<th>Method</th>
<th>Stable</th>
<th>Complementary</th>
<th>All</th>
<th>Robust</th>
<th>No test-domain labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERM [56]</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>DARE [46]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IRM [2]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ACTIR [30]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>QRM [14]</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SFB (Ours)</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

See Krogel and Scheffer [33] and Theorem 1 of Blum and Mitchell [10] for discussion of this assumption.

We drop the domain superscript e when referring to random variables from any environment.
separates X_S and X_U, allowing only the unstable X_U-Y relation to be updated. To do so, let us first decompose a predictor f into a feature representation Φ and classifier h, with $f = h \circ \Phi$, and then describe the boosted joint predictor $f^c(X)$ in domain e as:

$$f^c(X) = f_S(X) + f^c(X) = h_S(\Phi_S(X)) + h^c(\Phi_U(X))$$ (3.1)

$$= h_S(X_S) + h^c(X_U).$$ (3.2)

Here, both $f_S(X)$ and $f^c(X)$ produce logits, meaning that the unstable predictor $f^c(X)$ essentially adds a domain-specific adjustment to the stable predictor $f^c(X)$ in logit space. As illustrated by Eqs. (3.1) and (3.2), the role of Φ_S and Φ_U is to extract X_S and X_U, respectively, from the observed features X. Note that the stable predictor f_S and classifier h_S, as well as the feature extractors Φ_S and Φ_U are shared across domains e, whereas the unstable classifier h^c_U is not. In principle, h^c_U could take any form, so long as we have enough labelled examples to learn it. In practice, however, we generally take h^c_U to be a linear classifier for sample efficiency.

Adapting h^c_U with labels. Given a new domain e with labelled examples, we can boost the performance of our stable predictor by adapting h^c_U to minimize the joint-predictor loss. Specifically, letting $\ell : Y \times Y \to \mathbb{R}$ be a loss function (e.g., cross-entropy) and $R_e(f) = E_{(X,Y)}[\ell(Y,f(X)) | E = e]$ the statistical risk of a predictor $f : X \to Y$ in domain e, we can adapt h^c_U to solve:

$$\min_{h^c_U \in H} \sum_{e \in U} R_e(\sigma \circ ((h_S \circ \Phi_S) + (h_U \circ \Phi_U)))$$ (3.3)

Note that Jiang and Veitch [30, Eq. 2.1] proposed a similar joint predictor for using labelled test-domain examples to update a domain-specific component. However, they do not explicitly separate stable and unstable features X_S and X_U, which will later prove crucial for our approach without labels.

3.2 Harnessing unstable features without labels

The previous section made clear how we can safely harness X_U when we have test-domain labels. We now consider the main question of this work—can we safely harness X_U without test-domain labels? More specifically, how can we update the unstable classifier h^c_U to capture the new X_U-Y relation given only unlabelled test-domain examples $\{X_U^i\}_{i=1}^n$? We could, of course, simply select a fixed unstable classifier h^c_U by relying solely on the training domains (e.g., by minimizing average error), and hope that this works for the test-domain X_U-Y relation. However, by definition of X_U being unstable, this is clearly not a robust or reliable approach—the focus of our efforts, as illustrated in Table 1. As in § 3.1, we assume that we are able to learn a stable predictor f_S using prior methods [2].

From stable predictions to robust pseudo-labels. While we do not have labels in the test domain, we do have stable predictions. By definition, such predictions are imperfect (i.e., noisy) but robust, and can be used to form pseudo-labels $\hat{Y}_i = \arg \max_j f_S(X_i)_j$, with $f_S(X_i)_j$ denoting the j^{th} logit of the stable prediction for X_i. Can we somehow use these noisy but robust pseudo-labels to guide our updating of h^c_U and, ultimately, our use of X_U in the test domain?

From joint to unstable-only risk. Unfortunately, if we try to use our robust pseudo-labels as if they were true labels—updating h^c_U to minimize the joint risk as in Eq. (3.3)—we get a trivial solution of $h^c(U)(\cdot) = 0$. If our loss ℓ is accuracy, this trivial solution is clear since $h^c(U)(\cdot) = 0$ achieves 100% accuracy. For cross-entropy, the same trivial solution exists, as we show in Prop. D.1 of Appendix D. Thus, we cannot minimize a joint loss involving f_S’s predictions when using f_S’s pseudo-labels. Instead, we must consider updating h^c_U to minimize the unstable-only risk $R_e(\sigma \circ h_S \circ \Phi_S)$.

More questions than answers. While this new procedure could work, it raises many questions about when it will work, or, more precisely, the conditions under which it can be used to safely harness X_U.

We now summarise these questions before addressing them in the next section (§ 4):

1. **Does it make sense to minimize the unstable-only risk?** In particular, when can we minimize the unstable-predictor risk alone or separately, and then arrive at the optimal joint predictor? This cannot always work; e.g., for independent X_S, $X_U \sim \text{Bernoulli}(1/2)$ and $Y = X_S \text{ XOR } X_U$, Y is independent of each of X_S and X_U and hence cannot be predicted from either alone.

2. **Can we just add the logits as before?** Building on question 1, if we separately optimize the predictions of the unstable classifier h^c_U using the pseudo-labels \hat{Y}, does it make sense to simply add the logits afterwards as in Eq. (3.2)? Intuitively, simply adding the stable and unstable logits as before would require them both to be “of the same scale”, or, more precisely, properly calibrated. Do we have any reason to believe that, after training on h_S’s pseudo-labels, h^c_U will properly calibrated and thus be integrated with h_S as in Eq. (3.2)?
3. **Can the student outperform the teacher?** Stable predictions likely make mistakes—indeed, this is the motivation for trying to improve them. Is it possible to correct these mistakes with unstable features, thus improving performance? In particular, is it possible to learn an unstable “student” predictor that outperforms its own supervision signal or teacher? Perhaps surprisingly, we show that, for certain types of features, the answer is yes; in fact, even a very weak stable predictor, with performance just above chance, can be used to learn an optimal unstable classifier in the test domain given enough unlabeled data.

4. **Theory: When can we safely harness unstable features without labels?**

Suppose we have already identified a stable feature \(X_S\) and a potentially unstable feature \(X_U\) (we will return to the question of how to learn \(X_S\) and \(X_U\) themselves in Section 5, after identifying the additional conditions we would like \(X_S\) and \(X_U\) to satisfy). In this section, we analyze the problem of using \(X_S\) to leverage \(X_U\) without labels in the test domain. We first reduce this to a special case of the so-called “marginal problem” in probability theory, i.e., the problem of identifying a joint distribution based on information about its marginals. In the special case where two variables are conditionally independent given a third, we show this problem can be solved exactly; this solution, which may be of interest beyond the context of domain adaptation, motivates our test-domain adaptation algorithm (Algorithm 1), presented in Section 5, and forms the basis of Theorem 4.5 showing that Algorithm 1 converges to the best possible classifier given enough unlabeled data.

To formalize our assumptions, we first pose a population-level model of our domain generalization setup. Let \(E\) be a random variable denoting the environment. Given an environment \(E\), the stable feature \(X_S\), the unstable feature \(X_U\), and the label \(Y\) are distributed according to \(P_{X_S, X_U, Y|E}\). Given, this we can formalize the three key assumptions underlying our approach.

We first formalize the notion of a stable feature, motivated in the previous section:

Definition 4.1 (Stable and Unstable Predictors). \(X_S\) is a stable predictor of \(Y\) if \(P_{Y|X_S}\) does not depend on \(E\); equivalently, if \(Y\) and \(E\) are conditionally independent given \(X_S\) (\(Y \perp \perp E|X_S\)). Conversely, \(X_U\) is an unstable predictor of \(Y\) if \(P_{Y|X_U}\) depends on \(E\); equivalently, if \(Y\) and \(E\) are conditionally dependent given \(X_U\) (\(Y \nmid \perp E|X_U\)).

Next, we state our complementarity assumption, which we will show is key to justifying the approach of separately learning the relationships \(X_S-Y\) and \(X_U-Y\) and then combining them:

Definition 4.2 (Complementary Features). \(X_S\) and \(X_U\) are complementary predictors of \(Y\) if \(X_S \perp \perp X_U|(Y, E)\); i.e., if \(X_S\) and \(X_U\) contain no redundant information beyond that contained in \(Y\) and \(E\).

Finally, it is fairly intuitive that, to provide a useful signal for test-domain adaptation, the stable feature needs to be predictive of the label in the test domain. Formally, we assume

Definition 4.3 (Informative Stable Predictor). \(X_S\) is said to be informative of \(Y\) in environment \(E\) if \(X \nmid \perp Y|E\) (i.e., \(X_S\) is predictive of \(Y\) within the environment \(E\)).

We will discuss the roles of these assumptions, and how they relate to the motivating questions at the end of Section 3.2, in greater detail after stating the main result (Theorem 4.4) that utilizes them. Note that, to keep our results as general as possible, we avoid assuming a particular causal generative model underlying data. However, the conditional (in)dependence assumptions above can be interpreted as constraints on such a causal model, and, in Appendix D.1, we formally characterize the set of causal generative models that are consistent with our assumptions. Notably, we show that our setting generalizes those of several existing works assuming specific causal generative models or constraints on possible distribution shifts [45, 59, 30].

Reduction to the marginal problem with complementary features. Since we assumed the feature \(X_S\) is stable, \(P_{Y|X_S,E} = P_{Y|X_S}\) in the test domain is the same as in the training domains. Hence, let us suppose we have used the training data to learn this relationship, and hence know \(P_{Y|X_S}\). Suppose also that we have enough unlabeled test-domain data to learn \(P_{X_S, X_U|E}\) in the test environment \(E\).

Recall that our goal in test-domain adaptation is to predict \(Y\) from \((X_S, X_U)\) in the test domain \(E\). The remainder of our discussion will take place entirely conditioned on \(E\) being the test domain, and hence we will omit this dependence from the notation. If we could express \(P_{Y|X_S, X_U}\) in terms of \(P_{Y|X_S}\) and \(P_{X_S, X_U}\), we could then use \(P_{Y|X_S, X_U}\) to optimally predict \(Y\) from \((X_S, X_U)\). Thus, our task...
thus becomes to reconstruct \(P_{Y|X_S, X_U} \) from \(P_{Y|X_S} \) and \(P_{X_S, X_U} \). This is an instance of the classical “marginal problem” from probability theory \([27, 28, 18]\), which asks under which conditions we can recover the joint distribution of a set of random variables given information about its marginals. In general, although one can place bounds on the conditional distribution \(P_{Y|X_U} \), it cannot be completely inferred from \(P_{X_S} \) and \(P_{X_S, X_U} \) \([18]\). However, the following section demonstrates that, under the additional assumptions that \(X_S \) and \(X_U \) are complementary and \(X_S \) is informative, we can exactly recover \(P_{Y|X_S, X_U} \) from \(P_{Y|X_S} \) and \(P_{X_S, X_U} \).

4.1 Solving the marginal problem with complementary features

To simplify notation, suppose the label \(Y \) is binary, taking values in \(\{0, 1\} \); the multiclass extension is detailed in Appendix C. The following result then shows how to reconstruct \(P_{Y|X_S, X_U} \) from \(P_{Y|X_S} \) and \(P_{X_S, X_U} \) when \(X_S \) and \(X_U \) are complementary and \(X_S \) is informative.

Theorem 4.4 (Solution to the marginal problem with binary labels and complementary features).

Consider three random variables \(X_1, X_2, \) and \(Y \), where (i) \(Y \) is binary \(\{0, 1\}-valued \), (ii) \(X_1 \) and \(X_2 \) are complementary features for \(Y \)(i.e., \(X_1 \perp \!\!\!\perp X_2|Y \)), and (iii) \(X_1 \) is informative of \(Y \) \((X_1 \nmid Y)\).

Then, the joint distribution of \((X_1, X_2, Y)\) can be written in terms of the joint distributions of \((X_1, Y)\) and \((X_1, X_2)\). Specifically, suppose \(\hat{Y}|X_S \sim \text{Bernoulli} (\text{Pr}[Y = 1|X_S]) \) is a pseudo-label\(^3\), and \(\epsilon_0 := \text{Pr}[\hat{Y} = 0|Y = 0] \) and \(\epsilon_1 := \text{Pr}[\hat{Y} = 1|Y = 1] \) are the conditional probabilities that \(\hat{Y} \) and \(Y \) agree, given \(Y = 0 \) and \(Y = 1 \), respectively. Then, we have \(\epsilon_0 + \epsilon_1 > 1 \),

\[
\begin{align*}
\text{Pr}[Y = 1|X_2] &= \frac{\text{Pr}[\hat{Y} = 1|X_2]}{\epsilon_0 + \epsilon_1 - 1}, \\
\text{Pr}[Y = 1|X_1, X_2] &= \sigma \left(\logit(\text{Pr}[Y = 1|X_1]) + \logit(\text{Pr}[Y = 1|X_2]) - \logit(\text{Pr}[Y = 1]) \right).
\end{align*}
\]

Intuitively, suppose we train a model to predict a pseudo-label \(\hat{Y} \), generated based on feature \(X_1 \), from a feature \(X_2 \). Assuming \(X_1 \) and \(X_2 \) are complementary, Eq (4.1) shows how to transform this into a prediction of the true label \(Y \), correcting for biases caused by possible disagreement between \(\hat{Y} \) and \(Y \). Meanwhile, Eq. (4.2) shows how to integrate predictors based on \(X_1 \) and \(X_2 \) while accounting for redundancy in the two predictors.

The role of complementarity. The assumption that \(X_1 \) and \(X_2 \) are complementary plays two separate but equally crucial roles in Theorem 4.4. First, if \(X_1 \) and \(X_2 \) only share information about \(Y \), then, when we train a model to predict \(\hat{Y} \)(which depends only on \(X_1 \)) from \(X_2 \), the model will only learn to predict information about \(Y \)(rather than other relationships between \(X_1 \) and \(X_2 \)). This insight is key to justifying the bias-correction formula (Eq. (4.1)). Second, by ensuring that the only interaction between \(X_1 \) and \(X_2 \) is due to \(Y \) itself, complementarity implies that \(P_{Y|X_1, X_2} \) is decomposable into \(P_{Y|X_1} \) and \(P_{Y|X_2} \). Specifically, one can simply add estimates of \(P_{Y|X_1} \) and \(P_{Y|X_2} \) in logit-space while subtracting a correction term based on the marginal distribution of \(Y \) (see Eq. (4.2)).

The role of informativeness. It is intuitive that informativeness \((X_1 \nmid Y)\) is necessary; for the pseudo-labels to be useful, \(X_1 \) must help predict \(Y \). More surprisingly, informativeness is sufficient for Theorem 4.4, i.e., any dependence between \(X_1 \) and \(Y \) allows us to fully learn the relationship between \(X_2 \) and \(Y \). This gives an affirmative answer to our question, *Can the student outperform the teacher?*, from Section 3.2. This is not to say that a strong relationship between \(X_1 \) and \(Y \) is not helpful; while informativeness is equivalent to \(\epsilon_0 + \epsilon_1 > 1 \)(see Lemma A.2 in Appendix A.1), a weak relationship corresponds to \(\epsilon_0 + \epsilon_1 \approx 1 \), making the bias-correction 4.1 unstable. Notably, this only affects the (unlabeled) sample complexity of learning \(P_{Y|X_2} \), not consistency (Theorem 4.5).

Appendix A.2 provides further discussion of Theorem 4.4, including its relationship with existing work on learning from noisy labels and possible applications beyond domain adaptation.

4.2 A provably consistent algorithm for unsupervised test-domain adaptation

To see why Theorem 4.4 is useful for test-domain adaptation, observe that stability of \(X_1 \) implies that the conditional distribution \(P_{Y|X_1} \) is the same in the training and test domains. Hence, \(P_{Y|X_1} \) can be learned using labeled data. Meanwhile, the joint distribution \(P_{X_1, X_2} \) in the test domain can be learned using only unlabeled test-domain data. Theorem 4.4 thus implies that we can learn \(P_{Y|X_1, X_2} \) in the test domain using only labeled data from the training domains and unlabeled data from the test domain.

\(^3\)Though discrete, our stochastic pseudo-labels differ from hard \((\hat{Y} = 1 \{\text{Pr}[Y = 1|X_S] > 1/2]\}) or soft pseudo-labels often used in practice \([19, 35, 48]\). By capturing irreducible error in \(Y \), stochastic pseudo-labels ensure \(\text{Pr}[Y|X_2] \) is well-calibrated, allowing us to combine \(\text{Pr}[Y|X_1] \) and \(\text{Pr}[Y|X_2] \) in Eq. (4.2).
Algorithm 1: Bias-corrected unsupervised domain adaptation procedure.

\[
\begin{align*}
\text{Input:} & \quad \text{Regression function } \eta_S(x_S) = \Pr[Y = 1 | X_S = x_S], \text{ subroutine } \text{regressor}, n \\
\text{Output:} & \quad \text{Estimate } \hat{\eta}_n : X_S \times X_U \rightarrow [0, 1] \text{ of } \Pr[Y = 1 | X_S = x_S, X_U = x_U] \\
1 & \text{for } i \in [n] \text{ do } \quad \text{// generate pseudolabels} \\
2 & \quad \text{Sample } \hat{Y}_i \sim \text{Bernoulli}(\eta_S(X_{S,i})) \\
3 & \quad \hat{\eta}_{U,n} \leftarrow \text{regressor}(\{(X_{U,i}, \hat{Y}_i)\}_{i=1}^n) \\
4 & \quad n_1 \leftarrow \sum_{i=1}^n \hat{Y}_i; \hat{\beta}_{1,n} \leftarrow \log(\frac{n_1}{\eta}) \\
5 & \quad (\hat{e}_{0,n}, \hat{e}_{1,n}) \leftarrow \left(\frac{1}{\eta} \sum_{i=1}^n (1 - \hat{Y}_i) (1 - \eta_S(X_{S,i})), \frac{1}{\eta} \sum_{i=1}^n \hat{Y}_i \eta_S(X_{S,i}) \right) \\
6 & \quad \text{return } (\hat{\eta}_U(x_S, x_U) \mapsto \\
7 & \quad \sigma \left(\log(\eta_S(x_S)) + \log \left(\frac{\min\{\hat{e}_{1,n}, \max\{1 - \hat{e}_{0,n}, \hat{\beta}_{1,n}(x_U)\}\} + \hat{e}_{0,n} - 1}{\hat{e}_{0,n} + \hat{e}_{1,n} - 1} \right) - \hat{\beta}_{1,n} \right)
\end{align*}
\]

Based on this reasoning, Alg. 1 presents our proposed unsupervised test-domain adaptation method. Intuitively, given a stable soft-classifier \(\eta_S \), Algorithm 1 simply implements a finite-sample version of the bias-correction and combination equations (Eqs. (4.1) and (4.2)) in Theorem 4.4. Algorithm 1 also comes with the following guarantee:

Theorem 4.5 (Consistency Guarantee, Informal). Assume (i) \(X_S \) is stable, (ii) \(X_S \) and \(X_U \) are complementary, and (iii) \(X_S \) is informative of \(Y \) in the test domain. If \(\hat{\eta}_{U,n} \rightarrow \Pr[Y = 1 | X_U] \) as \(n \rightarrow \infty \), then \(\hat{\eta}_n \rightarrow \Pr[Y = 1 | X_S, X_U] \).

In words, as the amount of unlabeled data from the test domain increases, if the regressor on Line 3 of Algorithm 1 is able to learn to predict the pseudo-label \(\hat{Y} \), then the test-domain classifier output by Algorithm 1 will learn to predict the true label \(Y \) in the test domain. Convergence in Theorem 4.5 occurs \(P_{X_S,X_U} \)-almost everywhere, both weakly (in prob.) and strongly (a.s.), depending on the mode of convergence of \(\hat{\eta}_{U,n} \). Due to space constraints, formal statements and proofs are in Appendix B.

5 Algorithm: Stable Feature Boosting

We now use our theoretical insights from § 4 to pick up where we left off in § 3.2, ultimately arriving at a practical algorithm for harnessing unstable features without labels. We start by describing the training-domain algorithm, where our goal is to learn stable and complementary features, and then describe the test-domain adaptation algorithm, where our goal is to correctly adapt the unstable classifier \(\hat{h}_U \) using the stable predictions (or pseudo-labels).

Recap and learning goals. In Eq. (3.1) of § 3.1 we described a joint predictor \(f^c(X) = f_S(X) + f_U^c(X) \) which can reliably boost the performance of the unstable predictor \(f_U \)—so long as we have labels in the test domain to update the unstable or domain-specific classifier \(\hat{h}_U \). In § 3.2, we ran into some problems when trying to update \(\hat{h}_U \) without labels, and ended the section with a number of questions about when it’s possible to use the stable predictions of \(f_S \) to update \(\hat{h}_U \). In § 4, we provided concrete answers to these questions, proving that informativeness (\(f_S \) carries some information about \(Y \) and complementarity (the stable and unstable features are conditionally independent given \(Y \)) suffice for learning the optimal \(\hat{h}_U \) from \(f_S \)'s predictions (asymptotically). Moreover, § 4 showed that, if we can indeed learn informative stable features \(X_S \) and complementary features \(X_C \), then we can employ the bias-corrected adaptation algorithm of Alg. 1 (or Alg. 2 for the multi-class case) to update \(\hat{h}_U \). Thus, our training-time goal is now to extract \(X_S \) and \(X_C \) from the observed \(X \), such that we can harness \(X_C \) in the test domain. More specifically, we have the following learning goals:

1. \(f_S(X) \) is a stable, well-calibrated predictor with good performance.\(^4\)
2. In a given domain \(\epsilon \), \(f_U^c(X) \) boosts the performance of \(f_S(X) \) using complementary features.

\(^4\)While Theorem 4.4 only assumes the stable feature is informative, as discussed in Section 4.1, a more accurate stable predictor improves sample efficiency of SFB.
We now evaluate the performance of our algorithm on synthetic and real-world datasets requiring out-of-distribution generalization. Fig. 4 depicts samples from the datasets considered, while Appendix G gives further experimental details. Code will be made available upon acceptance.

Table 2: OOD accuracies. Mean and standard errors are over 100, 5, 5 seeds (Synthetic, Camelyon17, PACS).

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Synthetic</th>
<th>Camelyon17</th>
<th>PACS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERM</td>
<td>9.9 ± 0.1</td>
<td>90.2 ± 1.1</td>
<td>93.0 ± 0.7</td>
</tr>
<tr>
<td>IRM</td>
<td>74.9 ± 0.1</td>
<td>90.2 ± 1.1</td>
<td>93.3 ± 0.3</td>
</tr>
<tr>
<td>ACTIR</td>
<td>74.8 ± 0.4</td>
<td>77.7 ± 1.7</td>
<td>94.8 ± 0.1</td>
</tr>
<tr>
<td>SFB w/o adapt</td>
<td>74.7 ± 1.2</td>
<td>89.8 ± 1.2</td>
<td>93.7 ± 0.6</td>
</tr>
<tr>
<td>SFB w. adapt</td>
<td>89.2 ± 2.9</td>
<td>90.3 ± 0.7</td>
<td>95.8 ± 0.6</td>
</tr>
</tbody>
</table>

Objective function. To achieve the above learning goals, we propose the following objective:

\[
\min_{\Phi, h_S, \bar{h}_U} \sum_{c \in \mathcal{C}} R_{\epsilon}(\sigma \circ h_S \circ \Phi_S) + R_{\epsilon}(\sigma \circ (h_S \circ \Phi_S) + (\bar{h}_U \circ \Phi_U)) \quad (5.1)
\]

Here, \(P_{\text{Stability}}(\Phi_S, h_S)\) is a penalty encouraging stability of \(\Phi_S(X)\) (i.e., \(Y \perp \!\!\!\perp E|\Phi_S(X)\)), while \(P_{\text{Comp}}(\Phi_S(x_i), \Phi_U(x_i))\) is a penalty encouraging complementarity of \(\Phi_S(X)\) and \(\Phi_U(X)\) (i.e., \(\Phi_S(X) \perp \!\!\!\!\perp \Phi_S(X)\)|\(Y\)). Several approaches have been proposed for enforcing stability [43, 2, 15, 47, 58, 39, 65], e.g., IRM [2], while complementarity can be enforced by a generic conditional-independence penalty, e.g., the conditional Hilbert-Schmidt Independence Criterion [21, HSIC] or cheaper proxy methods like that of Jiang and Veitch [30, §3.1].

Adapting without labels. Armed with a stable predictor \(h_S = h_S \circ \Phi_S\) and complementary features \(\Phi_U(X)\), our goal is now to adapt the unstable classifier \(\bar{h}_U\) in the test domain to safely harness (or make optimal use of) \(\Phi_U(x)\). To do so, we'll make use of the bias-corrected adaptation algorithm of Alg. 1 (or Alg. 2 for the multi-class case) which takes as input the stable classifier \(h_S\) and unlabelled test-domain dataset \(\{\Phi_S(x_i), \Phi_U(x_i)\}_{i=1}^{N_t}\). This adaptation procedure returns the adapted joint classifier \(\hat{f}_U\) (the logit of \(\tilde{h}_U\) in Line 6 of Alg 1) finally used for prediction in the test domain.

6 Experiments

We now evaluate the performance of our algorithm on synthetic and real-world datasets requiring out-of-distribution generalization. Fig. 4 depicts samples from the datasets considered, while Appendix G gives further experimental details. Code will be made available upon acceptance.

Synthetic dataset. We first consider an anti-causal synthetic dataset based on that of [30, §6.1] where data is generated according to the following structural equations: \(Y \leftarrow \text{Rad}(0.5), X_S \leftarrow Y \cdot \text{Rad}(0.75),\) and \(X_U \leftarrow Y \cdot \text{Rad}(\beta),\) where the input \(X = (X_S, X_U)\) and \(\text{Rad}(\beta)\) means that a random variable is \(-1\) with probability \(1 - \beta\) and \(+1\) with probability \(\beta\). Following [30, §6.1], we create two training domains with \(\beta_c \in \{0.95, 0.7\},\) one validation domain with \(\beta_c = 0.6\) and one test domain with \(\beta_c = 0.1\) The idea here is that, during training, prediction based on the stable \(X_S\) results in lower accuracy (75%) than prediction based on the unstable \(X_U\) (82.5%). Thus, models optimizing for prediction accuracy only—and not stability—will use \(X_U\) and ultimately end up with only 10% in the test domain. Importantly, while the stable predictor achieves 75% accuracy in the test domain, performance can be improved to 90% if \(X_U\) can be used correctly.

Following [30], we use a simple 3-layer network and choose hyperparameters using the validation-domain performance: see Appendix G for further details. As shown in Table 2, ERM performs poorly as it uses the unstable feature \(X_S\), while IRM [2], ACTIR [30] and our SFB algorithm all do well by using only the stable feature \(X_S\). Critically, only our SFB is capable of harnessing \(X_U\) in the test domain without labels, leading to a near-optimal boost in performance. In Appendix F.1, we also consider a synthetic dataset where our conditional independence assumption \(X_S \perp \!\!\!\perp X_U|Y\) does not hold.

ColorMNIST. We now consider the ColorMNIST dataset of Arjovsky et al. [2], described in §1 and depicted in Fig. 1 (left). Experimentally, we follow the setup of Eastwood et al. [14, §6.1], including a simple 3-layer network: see Appendix G for further implementation details.
Table 3 shows that: (i) SFB learns a stable predictor with performance comparable to other invariant-prediction methods like IRM [2], V-REx [34] and EQRM [14]; and (ii) only SFB is capable of harnessing the spurious color features in the test domain without labels, leading to a near-optimal boost in performance. Note that “Oracle w/o adapt.” refers to an ERM model trained on grayscale images, while “Oracle w. adapt” refers to an ERM model trained on labelled test-domain data. In addition, Fig. 2 shows that: (i) both bias-correction (BC) and post-hoc calibration (CA) improve adaptation performance; and (ii) without labels, our SFB algorithm can harness the spurious color feature near-optimally in test domains of varying color-label correlation—the original goal we set out to achieve, depicted in Fig. 1. Further results and ablations are provided in Appendix F.2.

PACS. We now consider PACS [36]—a 7-class image-classification dataset consisting of 4 domains: photos (P), art (A), cartoons (C) and sketches (S), with examples shown in Fig. 4 of Appendix E. For each domain, we test model performances after training on the other three domains. Following [23, 30], we choose hyperparameters using leave-one-domain-out cross-validation.

Table 2 shows that our SFB algorithm’s stable (i.e., without-adaptation) performance is comparable to that of the other invariance-seeking methods: IRM and ACTIR. One exception is the sketch domain (S), the most severe shift based on performance drop, where our stable predictor performs best. Another exception is that ACTIR’s stable predictor performs better on domains A and C. Most notable, however, is: (i) the consistent boost in performance that SFB gets from unsupervised adaptation; and (ii) the fact that SFB performs best or joint-best on 3 of the 4 domains. Together, these results indicate that SFB can be useful on real-world datasets where it is unclear whether or not our conditional-independence assumption holds.

Camelyon17. Finally, we consider the Camelyon17 [5] dataset from the WILDS benchmark [32], a medical dataset with histopathology images from 5 hospitals which use different staining and imaging techniques (see Fig. 4 of Appendix E). The goal is to determine whether or not a given image contains tumour tissue, making it a binary classification task. We follow the train-validation-test split of WILDS, using 3 domains for training and 1 each for validation and testing. Following Jiang and Veitch [30], we use an ImageNet-pretrained ResNet18. See Appendix G.3 for further implementation details.

Table 2 shows mixed results. On the one hand, adapting gives SFB a small performance boost and reduces the variance across random seeds. On the other hand, the adapted performance is on par with both IRM and the simpler ERM method. In line with [23], we found that a properly-tuned ERM model can be difficult to beat on real-world datasets, particularly when they don’t contain severe distribution shift. While we conducted this proper tuning for ERM, IRM and SFB (see Appendix G.3), doing so for ACTIR was non-trivial. We thus report the result from their paper [30, Tab. 1], which is likely lower due to hyperparameter selection (they report $\approx 70\%$ accuracy for ERM and IRM).

7 Discussion

This work demonstrated, both theoretically and practically, how to adapt spurious but informative features to new test domains using only a stable, complementary training signal. Our proposed Stable Feature Boosting algorithm can provide significant performance gains compared to only using stable features or using unadapted spurious features, without requiring any true labels in the test domain. In theory, the most significant limitation of SFB is its assumption of complementarity (i.e., conditional independence of spurious features and stable features, given the label). Importantly, our experimental results suggest that SFB may be robust to violations of complementarity in practice; on real-world datasets such as PACS or Camelyon17, where there is no reason to believe complementarity holds, SFB performs at least as well or better than unadapted methods such as ERM and IRM.
References

Appendices

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Proof and further discussion of Theorem 4.4</td>
<td>15</td>
</tr>
<tr>
<td>A.1</td>
<td>Proof of Theorem 4.4</td>
<td>15</td>
</tr>
<tr>
<td>A.2</td>
<td>Further discussion of Theorem 4.4</td>
<td>17</td>
</tr>
<tr>
<td>B</td>
<td>Proof of Theorem 4.5</td>
<td>18</td>
</tr>
<tr>
<td>C</td>
<td>Multiclass Case</td>
<td>20</td>
</tr>
<tr>
<td>D</td>
<td>Supplementary Results</td>
<td>22</td>
</tr>
<tr>
<td>D.1</td>
<td>Causal Perspectives</td>
<td>23</td>
</tr>
<tr>
<td>E</td>
<td>Datasets</td>
<td>24</td>
</tr>
<tr>
<td>F</td>
<td>Further Experiments</td>
<td>24</td>
</tr>
<tr>
<td>F.1</td>
<td>Synthetic dataset</td>
<td>24</td>
</tr>
<tr>
<td>F.2</td>
<td>ColorMNIST</td>
<td>26</td>
</tr>
<tr>
<td>G</td>
<td>Implementation Details</td>
<td>27</td>
</tr>
<tr>
<td>G.1</td>
<td>ColorMNIST</td>
<td>27</td>
</tr>
<tr>
<td>G.2</td>
<td>PACS</td>
<td>27</td>
</tr>
<tr>
<td>G.3</td>
<td>Camelyon17</td>
<td>27</td>
</tr>
<tr>
<td>G.4</td>
<td>Synthetic</td>
<td>28</td>
</tr>
<tr>
<td>H</td>
<td>Further Related Work</td>
<td>28</td>
</tr>
<tr>
<td>I</td>
<td>Limitations</td>
<td>28</td>
</tr>
</tbody>
</table>
A. Proof and further discussion of Theorem 4.4

A.1 Proof of Theorem 4.4

In this section, we prove our main results regarding the marginal generalization problem presented in Section 4, namely Theorem 4.4. For the reader’s convenience, we restate Theorem 4.4 here:

Theorem 4.4 (Marginal generalization with for binary labels and complementary features). Consider three random variables \(X_1, X_2, \text{ and } Y\), where

1. \(Y\) is binary (\(\{0, 1\}\)-valued).
2. \(X_1\) and \(X_2\) are complementary features for \(Y\) (i.e., \(X_1 \perp \!\!\!\perp X_2 | Y\)), and
3. \(X_1\) is informative of \(Y\) (\(X_1 \not\perp \!\!\!\perp Y\)).

Then, the joint distribution of \((X_1, X_2, Y)\) can be written in terms of the joint distributions of \((X_1, Y)\) and \((X_1, X_2)\). Specifically, if \(\hat{Y}|X_S \sim \text{Bernoulli}(\text{Pr}[Y = 1|X_S])\) is pseudo-label and

\[
\epsilon_0 := \text{Pr}[\hat{Y} = 0|Y = 0] \quad \text{and} \quad \epsilon_1 := \text{Pr}[\hat{Y} = 1|Y = 1]
\]

(A.1)

are the conditional probabilities that \(\hat{Y}\) and \(Y\) agree, given \(Y = 0\) and \(Y = 1\), respectively, then,

1. \(\epsilon_0 + \epsilon_1 > 1\),
2. \(\text{Pr}[Y = 1|X_2] = \frac{\text{Pr}[\hat{Y} = 1|X_2] + \epsilon_0 - 1}{\epsilon_0 + \epsilon_1 - 1}\), and
3. \(\text{Pr}[Y = 1|X_1, X_2] = \sigma(\logit(\text{Pr}[\hat{Y} = 1|X_1]) + \logit(\text{Pr}[Y = 1|X_2]) - \logit(\text{Pr}[Y = 1]))\).

Before proving Theorem 4.4, we provide some examples demonstrating that the complementarity and informativeness assumptions in Theorem 4.4 cannot be dropped.

Example A.1. Suppose \(X_1\) and \(X_2\) have independent Bernoulli(1/2) distributions. Then, \(X_1\) is informative of both of the binary variables \(Y_1 = X_1X_2\) and \(Y_2 = X_1(1 - X_2)\) and both have identical conditional distributions given \(X_1\), but \(Y_1\) and \(Y_2\) have different conditional distributions given \(X_2\):

\[
\text{Pr}[Y_1 = 1|X_2 = 0] = 0 \neq 1/2 = \text{Pr}[Y_2 = 1|X_2 = 0].
\]

Thus, the complementarity condition cannot be omitted.

On the other hand, \(X_1\) and \(X_2\) are complementary for both \(Y_3 = X_2\) and an independent \(Y_4 \sim \text{Bernoulli}(1/2)\) and both \(Y_3\) and \(Y_4\) both have identical conditional distributions given \(X_1\), but \(Y_1\) and \(Y_2\) have different conditional distributions given \(X_2\):

\[
\text{Pr}[Y_3 = 1|X_2 = 1] = 1/2 \neq 1 = \text{Pr}[Y_4 = 1|X_2 = 1].
\]

Thus, the informativeness condition cannot be omitted.

Before proving Theorem 4.4, we prove Lemma A.2, which allows us to safely divide by the quantity \(\epsilon_0 + \epsilon_1 - 1\) in the formula for \(\text{Pr}[Y = 1|X_2]\), under the condition that \(X_1\) is informative of \(Y\).

Lemma A.2. In the setting of Theorem 4.4, let \(\epsilon_0\) and \(\epsilon_1\) be the class-wise pseudo-label accuracies defined as in Eq. (A.1). Then, \(\epsilon_0 + \epsilon_1 = 1\) if and only if \(X_1\) and \(Y\) are independent.

Note that the entire result also holds, with almost identical proof, in the multi-environment setting of Sections 3 and 5, conditioned on a particular environment \(E\).

Proof. We first prove the forwards implication. Suppose \(\epsilon_0 + \epsilon_1 = 1\). If \(\text{Pr}[Y = 1] \in \{0, 1\}\), then \(X_1\) and \(Y\) are trivially independent, so we may assume \(\text{Pr}[Y = 1] \in (0, 1)\). Then,

\[
\mathbb{E}[\hat{Y}] = \epsilon_1 \text{Pr}[Y = 1] + (1 - \epsilon_0)(1 - \text{Pr}[Y = 1]) \quad \text{(Law of Total Expectation)}
\]

\[
= (\epsilon_0 + \epsilon_1 - 1) \text{Pr}[Y = 1] + 1 - \epsilon_0
\]

\[
= 1 - \epsilon_0 \quad \text{(Definition of } \epsilon_0)\]

\[
= \mathbb{E}[\hat{Y}|Y = 0].
\]
Since Y is binary and $\Pr[Y = 1] \in (0, 1)$, it follows that $\mathbb{E}[\hat{Y}] = \mathbb{E}[\hat{Y}|Y = 0] = \mathbb{E}[\hat{Y}|Y = 1]$; i.e., $\mathbb{E}[\hat{Y}|Y] \perp \perp Y$. Since \hat{Y} is binary, its distribution is specified entirely by its mean, and so $\hat{Y} \perp \perp Y$. It follows that the covariance between \hat{Y} and Y is 0:

$$0 = \mathbb{E}[(Y - \mathbb{E}[Y])(\hat{Y} - \mathbb{E}[\hat{Y}])]$$

$$= \mathbb{E}[\mathbb{E}[(Y - \mathbb{E}[Y])(\hat{Y} - \mathbb{E}[\hat{Y}])|X_1]]$$

(Law of Total Expectation)

$$= \mathbb{E}[(\mathbb{E}[(Y - \mathbb{E}[Y]|X_1)]\mathbb{E}[\hat{Y} - \mathbb{E}[\hat{Y}]|X_1])$$

$$= \mathbb{E}[(\mathbb{E}[Y|X_1] - \mathbb{E}[\hat{Y}|X_1])^2]$$

where the final equality holds because \hat{Y} and Y have identical conditional distributions given X_1.

Since the L_2 norm of a random variable is 0 if and only if the variable is 0 almost surely, it follows that, P_{X_1}-almost surely,

$$0 = \mathbb{E}[Y - \mathbb{E}[Y]|X_1] = \mathbb{E}[Y|X_1] - \mathbb{E}[Y],$$

so that $\mathbb{E}[Y|X_1] \perp \perp X_1$. Since Y is binary, its distribution is specified entirely by its mean, and so $Y \perp \perp X_1$, proving the forwards implication.

To prove the reverse implication, suppose X_1 and Y are independent. Then \hat{Y} and Y are also independent. Hence,

$$\epsilon_1 = \mathbb{E}[\hat{Y}|Y = 1] = \mathbb{E}[\hat{Y}|Y = 0] = 1 - \epsilon_0,$$

so that $\epsilon_0 + \epsilon_1 = 1$. \hfill \square

We now use Lemma A.2 to prove Theorem 4.4:

Proof. To begin, note that \hat{Y} has the same conditional distribution given X_1 as Y (i.e., $P_{Y|X_1} = P_{Y|X_1}$) and that \hat{Y} is conditionally independent of Y given X_1 ($\hat{Y} \perp \perp Y|X_1$). Then, since

$$\Pr[\hat{Y} = 1] = \mathbb{E}[\Pr[Y = 1|X_1]] = \Pr[Y = 1],$$

we have

$$\epsilon_1 = \Pr[\hat{Y} = 1|Y = 1] = \frac{\Pr[Y = 1, \hat{Y} = 1]}{\Pr[Y = 1]}$$

(Definition of ϵ_1)

$$= \frac{\Pr[Y = 1, \hat{Y} = 1]}{\Pr[Y = 1]}$$

(Eq. (A.2))

$$= \mathbb{E}_{X_1}[\Pr[Y = 1, \hat{Y} = 1|X_1]]$$

(Law of Total Expectation)

$$= \mathbb{E}_{X_1}[\Pr[Y = 1|X_1]|\Pr[\hat{Y} = 1|X_1]]$$

$$= \mathbb{E}_{X_1}[\Pr[Y = 1|X_1]|\Pr[\hat{Y} = 1|X_1]]$$

$$= \mathbb{E}_{X_1}[\Pr[Y = 1|X_1]]$$

$$= \mathbb{E}_{X_1}[\Pr[Y = 1|X_1]]$$

$$= (P_{Y|X_1} = P_{Y|X_1})$$

entirely in terms of the conditional distribution $P_{Y|X_1}$ and the marginal distribution P_{X_1}. Similarly, ϵ_0 can be written as $\epsilon_0 = \frac{\mathbb{E}_{X_1}[\Pr[Y = 0|X_1]^2]}{\mathbb{E}_{X_1}[\Pr[Y = 0|X_1]]}$. Meanwhile, by the law of total expectation, and the assumption that X_1 (and hence \hat{Y}) is conditionally independent of X_2 given Y, the conditional distribution $P_{Y|X_2}$ of \hat{Y} given X_2 can be written as

$$\Pr[\hat{Y} = 1|X_2]$$

$$= \Pr[\hat{Y} = 1|Y = 0, X_2] \Pr[Y = 0|X_2] + \Pr[\hat{Y} = 1|Y = 1, X_2] \Pr[Y = 1|X_2]$$

$$= \Pr[\hat{Y} = 1|Y = 0] \Pr[Y = 0|X_2] + \Pr[\hat{Y} = 1|Y = 1] \Pr[Y = 1|X_2]$$

$$= (1 - \epsilon_0)(1 - \Pr[Y = 1|X_2]) + \epsilon_1 \Pr[Y = 1|X_2]$$

$$= (\epsilon_0 + \epsilon_1 - 1) \Pr[Y = 1|X_2] + 1 - \epsilon_0.$$
By Lemma A.2, the assumption $X_1 \not\perp Y$ implies $\epsilon_0 + \epsilon_1 \neq 1$. Hence, re-arranging the above equality gives us the conditional distribution $P_{Y|X_2}$ of Y given X_2 purely in terms of the conditional $P_{Y|X_1}$ and $P_{Y|X_1, X_2}$:

$$\Pr[Y = 1|X_2 = X_2] = \frac{\Pr[\hat{Y} = 1|X_2 = X_2] + \epsilon_0 - 1}{\epsilon_0 + \epsilon_1 - 1}.$$

It remains now to write the conditional distribution $P_{Y|X_1, X_2}$ in terms of the conditional distributions $P_{Y|X_1}$ and $P_{Y|X_2}$ and the marginal P_Y. Note that

$$\frac{\Pr[Y = 1|X_1, X_2]}{\Pr[Y = 0|X_1, X_2]} = \frac{\Pr[X_1, X_2|Y = 1] \Pr[Y = 1]}{\Pr[X_1, X_2|Y = 0] \Pr[Y = 0]}$$

(Bayes’ Rule)

$$= \frac{\Pr[X_1|Y = 1] \Pr[X_2|Y = 1] \Pr[Y = 1]}{\Pr[X_1|Y = 0] \Pr[X_2|Y = 0] \Pr[Y = 0]}$$

(Complementarity)

$$= \frac{\Pr[Y = 1|X_1] \Pr[Y = 1|X_2] \Pr[Y = 0]}{\Pr[Y = 0|X_1] \Pr[Y = 0|X_2] \Pr[Y = 1]}$$

(Bayes’ Rule)

It follows that the logit of $\Pr[Y = 1|X_1, X_2]$ can be written as the sum of a term depending only on X_1, a term depending only on X_2, and a constant term:

$$\logit (\Pr[Y = 1|X_1, X_2]) = \log \frac{\Pr[Y = 1|X_1, X_2]}{1 - \Pr[Y = 1|X_1, X_2]}$$

$$= \log \frac{\Pr[Y = 1|X_1|}{\Pr[Y = 0|X_1]} + \log \frac{\Pr[Y = 1|X_2]}{\Pr[Y = 0|X_2]} - \log \frac{\Pr[Y = 1]}{\Pr[Y = 0]}$$

$$= \logit (\Pr[Y = 1|X_1]) + \logit (\Pr[Y = 1|X_2]) - \logit (\Pr[Y = 1]).$$

Since the sigmoid σ is the inverse of logit,

$$\Pr[Y = 1|X_1, X_2] = \sigma (\logit (\Pr[Y = 1|X_1]) + \logit (\Pr[Y = 1|X_2]) - \logit (\Pr[Y = 1])),$$

which, by Eq. (4.1), can be written in terms of the conditional distribution $P_{Y|X_1}$ and the joint distribution $P_{Y|X_1, X_2}$. \qed

A.2 Further discussion of Theorem 4.4

Connections to learning from noisy labels. Theorem 4.4 leverages two theoretical insights about the special structure of pseudo-labels that complement results in the literature on learning from noisy labels. First, Blanchard et al. [8] showed that learning from noisy labels is possible if and only if the total noise level is below the critical threshold $\epsilon_0 + \epsilon_1 > 1$; in the case of learning from pseudo-labels, we show (see Lemma A.2 in Appendix A.1) that this is satisfied if and only if X_5 is informative of Y (i.e., $Y \not\perp X_5$). Second, methods for learning under label noise commonly assume knowledge of ϵ_0 and ϵ_1 [42], which is unrealistic in many applications; however, for pseudo-labels sampled from a known conditional probability distribution $P_{Y|X_2}$, one can express these noise levels we show (as part of Theorem 4.4) that the class-conditional noise levels can be easily estimated.

Possible applications of Theorem 4.4 beyond domain adaptation. The reason we wrote Theorem 4.4 in the more general setting of the marginal problem rather than in the specific context of domain adaptation is that we envision possible applications to a number of problems besides domain adaptation. For example, suppose that, after learning a calibrated machine learning model M_1 using a feature X_1, we observe an additional feature X_2. In the case that X_1 and X_2 are complementary, Theorem 4.4 justifies using the student-teacher paradigm [11, 3, 26] to train a model for predicting Y from X_2 (or from (X_1, X_2) jointly) based on predictions from M_1. This could be useful if we don’t have access to labeled pairs (X_2, Y), or if retraining a model using X_1 would require substantial computational resources or access to sensitive or private data. Exploring such approaches could be a fruitful direction for future work.
Theorem 4.5 (Consistency of the bias-corrected classifier). Assume

1. X_S is stable,
2. X_S and X_{L1} are complementary, and
3. X_S is informative of Y (i.e., $X_S \notin Y$).

Let $\hat{h}_n: \mathcal{X}_S \times X_{L1} \to [0,1]$ given by

$$\hat{h}_n(x_S, x_{L1}) = \sigma \left(f_S(x_S) + \logit \left(\frac{\hat{\eta}_{U,n}(x_{L1}) + \hat{\epsilon}_{0,n} - 1}{\hat{\epsilon}_{0,n} + \hat{\epsilon}_{1,n} - 1} \right) \right),$$

for all $(x_S, x_{L1}) \in \mathcal{X}_S \times X_{L1}$,

denote the bias-corrected regression function estimate proposed in Alg. 1, and let $\hat{h}_n: \mathcal{X}_S \times X_{L1} \to \{0,1\}$ given by

$$\hat{h}_n(x_S, x_{L1}) = 1\{\hat{h}(x_S, x_{L1}) > 1/2\},$$

for all $(x_S, x_{L1}) \in \mathcal{X}_S \times X_{L1}$,

denote the corresponding hard classifier. Let $\eta_{U,1} : \mathcal{X}_{L1} \to [0,1]$, given by $\eta_{U,1}(x_{L1}) = \Pr[Y = 1|X_{L1} = x_{L1}, E = 1]$ for all $x_{L1} \in X_{L1}$, denote the true regression function over X_{L1}, and let $\hat{\eta}_{U,1}$ denote its estimate as assumed in Line 3 of Alg. 1. Then, as $n \to \infty$,

(a) if, for $P_{X_{L1}}$-almost all $x_{L1} \in X_{L1}$, $\hat{\eta}_{U,n}(x_{L1}) \to \eta_{U,1}(x_{L1})$ in probability, then $\hat{\eta}_n$ and \hat{h}_n are weakly consistent (i.e., $\hat{h}(x_S, x_{L1}) \to \eta(x_S, x_{L1})$ $P_{X_S,X_{L1}}$-almost surely and $R(\hat{h}_n) \to R(h^*)$ in probability),

(b) if, for $P_{X_{L1}}$-almost all $x_{L1} \in X_{L1}$, $\hat{\eta}_{U,n}(x_{L1}) \to \eta_{U,1}(x_{L1})$ almost surely, then $\hat{\eta}_n$ and \hat{h}_n are strongly consistent (i.e., $\hat{h}(x_S, x_{L1}) \to \eta(x_S, x_{L1})$ $P_{X_S,X_{L1}}$-almost surely and $R(\hat{h}_n) \to R(h^*)$ a.s.),

Before proving Theorem 4.5, we provide a few technical lemmas. The first shows that almost-everywhere convergence of regression functions implies convergence of the corresponding classifiers in classification risk:

Lemma B.1. Consider a sequence of regression functions $\eta, \eta_1, \eta_2, \ldots : \mathcal{X} \to [0,1]$. Let $h, h_1, h_2, \ldots : \mathcal{X} \to \{0,1\}$ denote the corresponding classifiers

$$h(x) = 1\{\eta(x) > 1/2\} \quad \text{and} \quad h_i(x) = 1\{\eta_i(x) > 1/2\}, \quad \text{for all } i \in \mathbb{N}, x \in \mathcal{X}.

(a) If $\eta_n(x) \to \eta(x)$ for P_X-almost all $x \in \mathcal{X}$ in probability, then $R(h_n) \to R(h^*)$ in probability.

(b) If $\eta_n(x) \to \eta(x)$ for P_X-almost all $x \in \mathcal{X}$ almost surely as $n \to \infty$, then $R(h_n) \to R(h)$ almost surely.

Proof. Note that, since $h_n(x) \neq h(x)$ implies $|\eta_n(x) - \eta(x)| \geq |\eta(x) - 1/2|,

$$1\{h_n(x) \neq h(x)\} \leq 1\{|\eta_n(x) - \eta(x)| \geq |\eta(x) - 1/2|\}. \quad \text{(B.1)}$$

We utilize this observation to prove both (a) and (b).

Proof of (a) Let $\delta > 0$. By Inequality (B.1) and partitioning \mathcal{X} based on whether $|2\eta(x) - 1| \leq \delta/2$,

$$E_X[|2\eta(X) - 1|1\{h_n(X) \neq h(X)\}] \leq E_X[|2\eta(X) - 1|1\{|\eta_n(X) - \eta(X)| \geq |\eta(x) - 1/2|\}] \leq E_X[|2\eta(X) - 1|1\{|\eta_n(X) - \eta(X)| \geq |\eta(x) - 1/2|\}1\{|2\eta(X) - 1| > \delta/2\}] \leq E_X[1\{|\eta_n(X) - \eta(X)| > \delta/2\}] + \delta/2.$$
Hence,
\[
\lim_{n \to \infty} \Pr_{\eta_n} \left[|2\eta(X) - 1| \{h_n(X) \neq h(X)\} \right] \\
\leq \lim_{n \to \infty} \Pr_{\eta_n} \left[|\eta_n(X) - \eta(X)| > \delta/2 \right] > \delta/2
\]
\[
\leq \frac{2}{\delta} \E_{\eta_n} \left[\Pr_{\eta_n} \left[|\eta_n(X) - \eta(X)| > \delta/2 \right] \right]
\]
\[
= \frac{2}{\delta} \E \left[\lim_{n \to \infty} \Pr_{\eta_n} \left[|\eta_n(X) - \eta(X)| > \delta/2 \right] \right]
\]
\[
= \frac{2}{\delta} \E \left[\lim_{n \to \infty} \Pr \left[|\eta_n(X) - \eta(X)| > \delta/2 \right] \right]
\]
\[
= 0.
\]
\[
\text{(Markov’s Inequality)}
\]
\[
\text{(Fubini’s Theorem)}
\]
\[
\text{(Dominated Convergence Theorem)}
\]
\[
(\eta_n(X) \to \eta(X), P_X\text{-a.s.}, \text{in probability})
\]

Proof of (b) For any \(x \in \mathcal{X} \) with \(\eta(x) \neq 1/2 \), if \(\eta_n(x) \to \eta(x) \) then \(1\{|\eta_n(x) - \eta(x)| \geq |\eta(x) - 1/2|\} \leq 1 \), and the assumption that \(\eta_n(x) \to \eta(x) \) for \(P_X\)-almost all \(x \in \mathcal{X} \) almost surely,
\[
\lim_{n \to \infty} \E \left[|2\eta(X) - 1| \{h_n(X) \neq h(X)\} \right] \\
\leq \lim_{n \to \infty} \E \left[|2\eta(X) - 1| |\eta_n(X) - \eta(X)| \geq |\eta(X) - 1/2| \right] \\
= \E \left[\lim_{n \to \infty} |2\eta(X) - 1| |\eta_n(X) - \eta(X)| \geq |\eta(X) - 1/2| \right] \\
= 0,
\]
almost surely.

Our next lemma concerns an edge case in which the features \(X_S \) and \(X_U \) provide perfect but contradictory information about \(Y \), leading to Equation (4.2) being ill defined. We show that this can happen only with probability 0 over \((X_S, X_U) \sim P_{X_S,X_U} \) can thus be safely ignored:

Lemma B.2. Consider two predictors \(X_S \) and \(X_U \) of a binary label \(Y \). Then,
\[
\Pr_{X_S,X_U} \left[\E[Y|X_S] = 1 \text{ and } \E[Y|X_U] = 0 \right] = \Pr_{X_S,X_U} \left[\E[Y|X_S] = 0 \text{ and } \E[Y|X_U] = 1 \right] = 0.
\]

Proof. Suppose, for sake of contradiction, that the event
\[
A := \{ (x_S, x_U) : \E[Y|X_S = x_S] = 1 \text{ and } \E[Y|X_U = x_U] = 0 \}
\]
has positive probability. Then, the conditional expectation \(E[Y|A] \) is well-defined, giving the contradiction
\[
1 = \E_{X_S}[\E[Y|E, X_S]] = \E[Y|A] = \E_{X_U}[\E[Y|E, X_U]] = 0.
\]
The case \(\E[Y|X_S] = 0 \) and \(\E[Y|X_U] = 1 \) is similar.

We now utilize Lemmas B.1 and B.2 to prove Theorem 4.5.

Proof. By Lemma B.1, it suffices to prove that \(\tilde{\eta}(x_S, x_U) \to \eta(x_S, x_U) \) for \(P_{X_S,X_U}\)-almost all \((x_S, x_U) \in \mathcal{X}_S \times \mathcal{X}_U \), in probability (to prove (a)) and almost surely (to prove (b)).

Finite case We first consider the case when both \(\Pr[Y|X_S = x_S], \Pr[Y|X_U = x_U] \in (0,1) \), so that \(f_S(x_S) \) and \(\logit \left(\frac{\eta(x_U) + \epsilon_0 - 1}{\epsilon_0 + \epsilon_1 - 1} \right) \) are both finite. Since
\[
\tilde{\eta}_{SU}(x_S, x_U) - \eta_{SU}(x_S, x_U) = \sigma \left(f_S(x_S) + \logit \left(\frac{\eta(x_U) + \epsilon_0 - 1}{\epsilon_0 + \epsilon_1 - 1} \right) - \beta_{1,n} \right) - \sigma \left(f_S(x_S) + \logit \left(\frac{\tilde{\eta}(x_U) + \epsilon_0 - 1}{\epsilon_0 + \epsilon_1 - 1} \right) - \beta_1 \right),
\]
where the sigmoid \(\sigma : \mathbb{R} \to [0,1] \) is continuous, by the continuous mapping theorem and the assumption that \(\tilde{\eta}_{SU}(x_U) \to \tilde{\eta}(x_U) \), to prove both of these, it suffices to show:
We now prove each of these in turn.

Proof of (i) Since \(\hat{Y}_i \perp Y_i | X_S \) and \(0 < \Pr[\hat{Y} = 1] \), by the strong law of large numbers and the continuous mapping theorem,

\[
\hat{\epsilon}_1 = \frac{1}{n} \sum_{i=1}^{n} \hat{Y}_i \sigma(f_S(X_i)) = \frac{1}{n} \sum_{i=1}^{n} \hat{Y}_i \sigma(\epsilon_X(X_i)) \rightarrow \mathbb{E}[\sigma(\epsilon_X(X))1{\hat{Y} = 1}] = \mathbb{E}[\sigma(\epsilon_X(X))|\hat{Y} = 1] = \epsilon_1,
\]

almost surely as \(n \to \infty \). Similarly, since \(\Pr[\hat{Y} = 0] = 1 - \Pr[\hat{Y} = 1] > 0 \), \(\hat{\epsilon}_0 \to \epsilon_0 \) almost surely.

Proof of (ii) Recall that

\[
\hat{\beta}_{1,n} = \text{logit} \left(\frac{1}{n} \sum_{i=1}^{n} \hat{Y}_i \right).
\]

By the strong law of large numbers, \(\frac{1}{n} \sum_{i=1}^{n} \hat{Y}_i \to \Pr[\hat{Y} = 1|E = 1] = \Pr[Y = 1|E = 1] \).

Since we assumed \(\Pr[Y = 1|E = 1] \in (0, 1) \), it follows that the mapping \(a \mapsto \text{logit}(a) \) is continuous at \(a = \Pr[Y = 1|E = 1] \). Hence, by the continuous mapping theorem, \(\hat{\beta}_{1,n} \to \text{logit}(\Pr[Y = 1|E = 1]) = \beta_1 \) almost surely.

Proof of (iii) Since the logit function is continuous on the open interval \((0, 1)\) and we assumed \(\epsilon_0 + \epsilon_1 > 1 \), it suffices to show that \(0 < \tilde{\eta}(X_U) + \epsilon_0 - 1 < \epsilon_0 + \epsilon_1 - 1 \). Since, according to Theorem 4.4,

\[
\tilde{\eta}(X_U) = (\epsilon_0 + \epsilon_1 - 1) \eta^*(X_U) + 1 - \epsilon_0,
\]

this holds as long as \(0 < \eta^*(X_U) < 1 \), as we assumed for \(P_{X_U} \) almost all \(x_U \in X_U \).

Infinite case We now address the case where either \(\Pr[Y|X_S = x_S] \in \{0, 1\} \) or \(\Pr[Y|X_U = x_U] \in \{0, 1\} \). By Lemma B.2, only one of these can happen at once, \(P_{X_S,X_U} \) almost surely. Hence, since \(\lim_{n \to \infty} \hat{\beta}_{1,n} \) is also finite almost surely, if \(\Pr[Y|X_S = x_S] \in \{0, 1\} \), then \(\tilde{\eta}(X_S, X_U) = \sigma(\text{logit}(\Pr[Y|X_S = x_S])) = \eta(x_S, x_U) \), while, if \(\Pr[Y|X_U = x_U] \in \{0, 1\} \), then \(\tilde{\eta}(x_S, x_U) = \sigma(\text{logit}(\Pr[Y|X_U = x_U])) = \eta(x_S, x_U) \), in probability or almost surely, as appropriate.

C Multiclass Case

In the main paper, to simplify notation, we presented our unsupervised test-domain adaptation method in the case of binary labels \(Y \). However, in many cases, including several of our experiments in Section 6, the label \(Y \) can take more than 2 distinct values. Hence, in this section, we show how to generalize our method to the multiclass setting and then present the exact procedure (Alg. 2) used in our multiclass experiments in Section 6.

Suppose we have \(K \geq 2 \) classes. We “one-hot encode” these classes, so that \(Y \) takes values in the set \(Y = \{(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)\} \subseteq \{0, 1\}^K \).

Let \(\epsilon \in [0, 1]^{|Y| \times |Y|} \) with

\[
\epsilon_{y,y'} = \Pr[\hat{Y} = y|Y = y']
\]

denote the class-conditional confusion matrix of the pseudo-labels. Then, we have

\[
\mathbb{E}[\hat{Y}|X_2] = \sum_{y \in Y} \mathbb{E}[\hat{Y}|Y = y, X_2] \Pr[Y = y|X_2] \quad \text{(Law of Total Expectation)}
\]

\[
= \sum_{y \in Y} \mathbb{E}[\hat{Y}|Y = y] \Pr[Y = y|X_2] \quad \text{(Complementary)}
\]

\[
= \epsilon \mathbb{E}[Y|X_2]; \quad \text{(Definition of } \epsilon \text{)}
\]
in particular, when \(\epsilon\) is invertible,

\[
\mathbb{E}[Y|X_2] = \epsilon^{-1} \mathbb{E}[\hat{Y}|X_2],
\]

giving a multiclass equivalent of Eq. (4.1) in Theorem 4.4. We also have

\[
\epsilon_{y,y'} = \Pr[\hat{Y} = y|Y = y'] = \frac{\Pr[\hat{Y} = y, Y = y']}{\Pr[Y = y']} = \frac{\mathbb{E}[\Pr[\hat{Y} = y, Y = y'|X_1]]}{\mathbb{E}[\Pr[Y = y'|X_1]]}
\]

\[
= \frac{\mathbb{E}[\Pr[\hat{Y} = y|X_1] \Pr[Y = y'|X_1]]}{\mathbb{E}[\Pr[Y = y'|X_1]]}
\]

\[
= \frac{\mathbb{E}[\eta_{1,y}(X_1) \eta_{1,y'}(X_1)]}{\mathbb{E}[\eta_{1,y}(X_1)]},
\]

suggesting the estimate

\[
\hat{\epsilon}_{y,y'} = \frac{\sum_{i=1}^{n} \eta_{S,y}(X_{S,i}) \eta_{S,y'}(X_{S,i})}{\sum_{i=1}^{n} \eta_{S,y'}(X_{S,i})} = \frac{\sum_{i=1}^{n} \eta_{S,y}(X_{S,i})}{\sum_{i=1}^{n} \eta_{S,y'}(X_{S,i})}
\]

of each \(\epsilon_{y,y'}\), or, in matrix notation,

\[
\hat{\epsilon} = \eta_\Sigma(X) \text{ Normalize}(\eta_S(X)),
\]

where \text{Normalize}(X) scales each column of \(X\) to sum to 1. This gives us an multiclass equivalent of Line 4 in Alg. 1.

The multiclass versions of Eq. (4.2) and Line 6 of Alg. 1 are slightly less straightforward. Specifically, whereas, in the binary case, we used the fact that \(\Pr[X_S, X_U|Y \neq 1] = \Pr[X_S, X_U|Y = 0] = \Pr[X_S|Y = 0] \Pr[X_U|Y = 0] = \Pr[X_S|Y \neq 1] \Pr[X_U|Y \neq 1]\) (by complementarity), in the multiclass case, we do not have \(\Pr[X_S, X_U|Y \neq 1] = \Pr[X_S|Y \neq 1] \Pr[X_U|Y \neq 1]\). However, following similar reasoning as in the proof of Theorem 4.4, we have

\[
\frac{\Pr[Y = y|X_S, X_U, E]}{\Pr[Y \neq y|X_S, X_U, E]} = \frac{\Pr[Y = y|X_S, X_U, E]}{\sum_{y' \neq y} \Pr[Y = y'|X_S, X_U, E]}
\]

\[
= \frac{\Pr[X_S, X_U|Y = y, E] \Pr[Y = y|E]}{\sum_{y' \neq y} \Pr[X_S, X_U|Y = y', E] \Pr[Y = y'|E]}, \quad \text{(Bayes' Rule)}
\]

\[
= \frac{\Pr[X_S|Y = y, E] \Pr[X_U|Y = y, E] \Pr[Y = y|E]}{\Pr[Y = y|X_S, X_U, E] \sum_{y' \neq y} \Pr[X_S|Y = y', E] \Pr[X_U|Y = y', E] \Pr[Y = y'|E]}, \quad \text{(Bayes' Rule)}
\]

Hence,

\[
\logit(\Pr[Y = y|X_S, X_U, E]) = \log \left(\frac{\Pr[Y = y|X_S, E] \Pr[Y = y|X_U, E]}{\sum_{y' \neq y} \Pr[Y = y'|X_S, E] \Pr[Y = y'|X_U, E] \cdot \frac{\Pr[Y = y'|X_S, E]}{\Pr[Y = y'|X_U, E]}} \right)
\]

\[
= \log \left(\frac{C_y}{\sum_{y' \neq y} C_{y'}} \right) = \log \left(\frac{C_y}{\|C\|_1} \right) = \log \left(\frac{C_y}{\|C\|_1} \right),
\]

for \(C \in \mathbb{R}^Y\) defined by

\[
C_y = \frac{\eta_{S,y}(X_S) \eta_{U,y}(X_U)}{\Pr[Y = y]} \quad \text{for each } y \in \mathcal{Y}.
\]

In particular, applying the sigmoid function to each side, we have

\[
\Pr[Y|X_S, X_U] = \frac{C}{\|C\|_1}.
\]
We can estimate \(C_y \) by
\[
\hat{C}_y = \frac{\eta_{S,y}(X_S)\eta_{U,y}(X_U)}{\frac{1}{n} \sum_{i=1}^{n} \eta_{S,y}(X_{S,i})}.
\]
In matrix notation, this is
\[
\hat{C} = \frac{\eta_S(X_S) \circ \eta_U(X_U)}{\frac{1}{n} \sum_{i=1}^{n} \eta_S(X_{S,i})}
\]
where \(\circ \) denotes element-wise multiplication. Putting these derivations together gives us our multiclass version of Alg. 1, presented in Alg. 2, where \(\Delta^Y = \{ z \in [0, 1]^K : \sum_{y \in Y} z_y = 1 \} \) denotes the standard probability simplex over \(Y \).

Algorithm 2: Multiclass bias-corrected unsupervised domain adaptation procedure.

Input: Regression function \(\eta_S : \mathcal{X} \rightarrow \Delta^Y \), subroutine \(\text{regressor} \), \(n \) unlabeled samples \(\{(X_{S,i}, X_{U,i})\}_{i=1}^{n} \) from the test domain

Output: Estimate \(\hat{\eta}_n : \mathcal{X}_S \times \mathcal{X}_U \rightarrow \Delta^Y \) of regression function
\[
\hat{\eta}_y(x_S, x_U) = \Pr[Y = y | X_S = x_S, \mathcal{L}_U = x_U]
\]

1. for \(i \in [n] \) do // generate pseudolabels
 2. Sample \(\hat{Y}_i \sim \text{Categorical}(\eta_S(X_{S,i})) \) \hspace{1cm} // \(\hat{Y} \in \{0, 1\}^{n \times K} \) is one-hot encoded
 3. \(\hat{\eta}_{U,n} \leftarrow \text{regressor}(\{(X_{U,i}, \hat{Y}_i)\}_{i=1}^{n}) \) \hspace{1cm} // regress pseudolabels over \(X_U \)
 4. \(\hat{c} \leftarrow \eta_S(X_S) \text{ Normalize}(\eta_S^T(X_S)) \) \hspace{1cm} // Estimate \(c_{y,y'} = \Pr[\hat{Y} = y | Y = y'] \)
 5. \(\hat{\eta}_{U,n} \leftarrow (x_U \mapsto \max\{0, \min\{1, e^{-1}\hat{\eta}_{U,n}(x_U)\}\}) \) \hspace{1cm} // Unstable predictor
 6. for \(y \in [K] \) do
 7. \(C_y \leftarrow (x_S, x_U) \mapsto \frac{\eta_{S,y}(x_S)\eta_{U,y}(x_U)}{\frac{1}{n} \sum_{i=1}^{n} \eta_{S,y}(X_{S,i})} \)
 8. \(\hat{\eta}_{S,U,n} \leftarrow (x_S, x_U) \mapsto \frac{C(x_S, x_U)}{\|C(x_S, x_U)\|_1} \) \hspace{1cm} // Joint predictor
9. return \((\hat{\eta}_{U,n}, \hat{\eta}_{S,U,n}) \)

D Supplementary Results

Proposition D.1. Suppose \(\hat{Y} | f_S(X) \sim \text{Bernoulli}(\sigma(f_S(X))) \), such that \(\hat{Y} \perp f_U(X) | f_S(X) \). Then,
\[
0 \in \arg \min_{f_U: X \rightarrow \mathbb{R}} \mathbb{E}[\ell(\hat{Y}, \sigma(f_S(X) + f_U(X)))],
\]
where \(\ell(x, y) = -x \log y - (1 - x) \log(1 - y) \) denotes the cross-entropy loss.

Suppose \(\hat{Y} | f_S(X) \sim \text{Bernoulli}(\sigma(f_S(X))) \), such that \(\hat{Y} \perp f_U(X) | f_S(X) \). Then,
\[
-\mathbb{E}[\ell(\hat{Y}, \sigma(f_S(X) + f_U(X)))] = \mathbb{E}[\mathbb{E}[\ell(\hat{Y}, \sigma(f_S(X) + f_U(X)))]
\]
\[
= \mathbb{E}[\mathbb{E}[\hat{Y} \log \sigma(f_S(X) + f_U(X))]
\]
\[
+ (1 - \hat{Y}) \log(1 - \sigma(f_S(X) + f_U(X)))|f_S(X)]
\]
\[
= \mathbb{E}[\mathbb{E}[\hat{Y}|f_S(X)]\mathbb{E}[\log\sigma(f_S(X) + f_U(X))|f_S(X)]]
\]
\[
+ \mathbb{E}[(1 - \hat{Y})|f_S(X)]\mathbb{E}[\log(1 - \sigma(f_S(X) + f_U(X))|f_S(X)]
\]
\[
= \mathbb{E}[\sigma(f_S(X)) \log \sigma(f_S(X) + f_U(X))
\]
\[
+ (1 - \sigma(f_S(X))) \log(1 - \sigma(f_S(X) + f_U(X))]
\]
\[
\hat{Y}|f_S(X) \sim \text{Bernoulli}(\sigma(f_S(X))).
\]
Since the cross-entropy loss is differentiable and convex, any \(f_U(X) \) satisfying \(0 = \frac{d}{df_U(X)} \mathbb{E}[\ell(\hat{Y}, f_S(X) + f_U(X))] \) is a minimizer. Indeed, under the mild assumption that the ex-
pectation and derivative commute, for \(f_{U}(X) = 0 \),
\[
\frac{d}{df_{U}(X)} \mathbb{E}[\ell(\hat{Y}, \sigma(f_{S}(X) + f_{U}(X)))] = -\mathbb{E} \left[\frac{\sigma'(f_{S}(X))}{\sigma'(f_{S}(X) + f_{U}(X))} \frac{1 - \sigma(f_{S}(X))}{1 - \sigma(f_{S}(X) + f_{U}(X))} \right] = 0.
\]

D.1 Causal Perspectives

The stability, complementarity, and informativeness assumptions in Theorem 4.4 can be interpreted as constraints on the causal relationships between the variables \(X_{S}, X_{U}, Y \), and \(E \). We conclude this section with a result with a characterization of causal directed acyclic graphs (DAGs) that are consistent with these assumptions. In particular, this result shows that our assumptions are satisfied in the “anti-causal” and “cause-effect” settings assumed in prior work [45, 59, 30], as well as working assuming only covariate shift (i.e., changes in the distribution of \(X \) without changes in the conditional \(P_{Y|X} \)).

Proposition D.2 (Possible Causal DAGs). Consider an environment variable \(E \), two covariates \(X_{U} \) and \(X_{S} \), and a label \(Y \). Assume there are no other hidden confounders (i.e., causal sufficiency). First, assume:

1. \(E \) is a root (i.e., none of \(X_{U}, X_{S} \), and \(Y \) is an ancestor of \(E \)).
2. \(X_{S} \) is informative of \(Y \) (i.e., \(X_{S} \not\perp \perp Y|E \)).
3. \(X_{S} \) and \(X_{U} \) are complementary predictors of \(Y \); i.e., \(X_{S} \perp \perp X_{U}|(Y,E) \).
4. \(X_{S} \) is stable (i.e., \(E \perp \perp Y|X_{S} \)).

These are the four structural assumptions under which Theorems 4.4 and 4.5 show that the SFB algorithm learns the conditional distribution \(P_{Y|X_{S},X_{U}} \) in the test domain. Additionally, suppose

5. \(X_{U} \) is unstable (i.e., \(E \not\perp \perp Y|X_{U} \)). This is the case in which empirical risk minimization [ERM 56] may suffer bias due to distribution shift, and hence when SFB may outperform ERM.
6. \(X_{U} \) contains some information about \(Y \) that is not included in \(X_{S} \) (i.e., \(X_{U} \not\perp \perp Y|X_{S} \)), and this is information we expect invariant risk minimization [IRM 2] to be unable to learn, and hence when we expect SFB to outperform IRM.

Then, as illustrated in Figure 3, three types of stable features are possible:

1. **Causal ancestors** \(X_{S,C} \) of \(Y \),
2. **Causal descendants** \(X_{S,E} \) of \(Y \) that are not also descendants of \(E \),
3. **Causal spouses** \(X_{S,S} \) of \(Y \) (i.e., causal ancestors of \(X_{S,E} \)), and
4. while the only unstable features possible are descendants of \(Y \).

Notable special cases of the DAG in Figure 3 include:

1. the “cause-effect” settings, studied by Rojas-Carulla et al. [45], von Kügelgen et al. [59], where \(X_{S} \) is a cause of \(Y \), \(X_{U} \) is an effect of \(Y \), and \(E \) affects both \(X_{S} \) and \(X_{U} \) but affects \(Y \) only through \(X_{S} \). Note that this generalizes the commonly used “covariate shift” assumption, as not only the covariate distribution \(P_{X_{S},X_{U}} \) but also the conditional distribution \(P_{Y|X_{U}} \) can change between environments.
2. the “anti-causal” setting, studied by Jiang and Veitch [30], where \(X_{S} \) and \(X_{U} \) are both effects of \(Y \), but \(X_{S} \) is unaffected by \(E \).
3. the widely studied “covariate shift” setting [53, 22, 7, 52], which corresponds (see Sections 3 and 5 of Schölkopf [49]) to a causal factorization \(P(X,Y) = P(X)P(Y|X) \) (i.e., in which the only
stable components X_S are causes $X_{S,C}$ of Y or unconditionally independent (e.g., causal spouses $X_{S,S}$) of Y.

However, this model is more general than these special cases. Also, for sake of simplicity, we assumed causal sufficiency here; however, in the presence of unobserved confounders, other types of stable features are also possible; for example, if we consider the possibility of unobserved confounders U influencing Y that are independent of E (i.e., invariant across domains), then our method can also utilize stable features that are descendants of U (i.e., “siblings” of Y).

E Datasets

In our experiments, we consider four datasets: Synthetic, ColorMNIST, PACS and Camelyon17. While the first two offer controlled settings with a severe spurious-correlation shift, the latter two offer real-world distribution shifts. Below, Fig. 4 depicts samples from the three image datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>ColorMNIST</td>
<td>+90%, +80%, -90%</td>
</tr>
<tr>
<td>PACS</td>
<td>Art, Cartoon, Photo, Sketch</td>
</tr>
<tr>
<td>Camelyon17</td>
<td>d = Hospital 1, 2, 3, 4, 5</td>
</tr>
</tbody>
</table>

Figure 4: Examples from ColorMNIST [2], PACS [36] and Camelyon17 [5]. Figure and examples based on Gulrajani and Lopez-Paz [23, Table 3] and Koh et al. [32, Figure 4]. For ColorMNIST, we follow the standard approach [2] and use the first two domains for training and the final one for testing. For PACS [36], we follow the standard approach [23] and use each domain in turn for testing, using the remaining three domains for training. For Camelyon17 [5], we follow WILDS [32] and use the first three domains for training, the fourth for validation, and the fifth for testing.

F Further Experiments

This appendix provides further experiments which supplement those in the main text. In particular, it provides: (i) experiments on a synthetic dataset where our assumption of complementarity (i.e., conditionally-independent unstable features) does not hold (Appendix F.1); and (ii) ablations on the ColorMNIST dataset showing the effects of bias correction and post-hoc calibration (Appendix F.2).

F.1 Synthetic dataset

As depicted in Fig. 1 (right), our SFB approach assumes that the harnessed unstable features $X_C \subseteq X_U$ are conditionally independent of the stable features X_S. If this assumption is violated, then adaptation can fail as SFB is not guaranteed to learn an asymptotically-optimal predictor in the test domain.
To investigate the adaptation performance of SFB when this assumption is violated, we conduct
experiments on a synthetic cause-effect dataset in which there is a direct dependence between X_S and
X_U. In particular, similar to Jiang and Veitch [30, Appendix B], we generate synthetic data according
to the following structural equations (illustrated graphically in Fig. 5):

$$
X_S \leftarrow N_S, \text{with } N_S \leftarrow \text{Bern}(0.5);
Y \leftarrow \text{XOR}(X_S, N_Y), \text{with } N_Y \leftarrow \text{Bern}(0.75);
X_U \leftarrow \text{XOR}(\text{XOR}(Y, N_U), X_S), \text{with } N_U \leftarrow \text{Bern}(\beta_e).
$$

Here, the input $X = (X_S, X_U)$ and Bern(β) means that a random variable is 1 with probability β
and 0 with probability $1 - \beta$. Following Jiang and Veitch [30, Appendix B], we create two training
domains with $\beta_e \in \{0.95, 0.8\}$, one validation domain with $\beta_e = 0.2$, and one test domain with
$\beta_e = 0.1$. Like the anti-causal synthetic dataset of § 6, the idea is that prediction based on the
stable X_S results in lower accuracy (75%) than prediction based on the unstable X_U. Thus, models
optimizing for prediction accuracy only—and not stability—will use X_U and ultimately end up with
only 10% accuracy in the test domain. In addition, while the stable predictor achieves 75% accuracy
in the test domain, performance can be improved to 90% if X_U can be used correctly. However, unlike
the anti-causal synthetic dataset of § 6, the stable X_S and unstable X_U features are not conditionally
independent, i.e., $X_U \not\perp\!\!\!\!\perp X_S | Y$, since X_S directly influences X_U. We use the same experimental
setup as for the anti-causal synthetic dataset in § 6: see Appendix G.4 for further details.

Looking at Table 4 we see that: (i) ACTIR has poor stable/invariant performance as its notion
of stability relies on the now-violated conditional-independence assumption; (ii) IRM has good
stable/invariant performance as its notion of stability does not rely on conditional independence; (iii)
SFB has good stable/invariant performance as its notion of stability does not rely on conditional
independence (IRM’s stability penalty is used); and (iv) surprisingly, SFB has near-optimal adapted
performance despite the conditional-independence assumption being violated. One explanation for
(iv) is that the conditional-independence assumption is only weakly violated in the test domain.
Another is that conditional independence isn’t necessary for SFB and some weaker, yet-to-be-
determined condition suffices.

Table 4: Test-domain accuracies on a synthetic cause-effect dataset with a direct dependence between X_S and X_U, meaning $X_U \not\perp\!\!\!\!\perp X_S | Y$. Means and standard errors are over 100 seeds.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERM</td>
<td>11.57 ± 0.71</td>
</tr>
<tr>
<td>IRM</td>
<td>69.61 ± 1.26</td>
</tr>
<tr>
<td>ACTIR</td>
<td>43.51 ± 2.63</td>
</tr>
<tr>
<td>SFB w/o adapt</td>
<td>74.89 ± 3.64</td>
</tr>
<tr>
<td>SFB w. adapt</td>
<td>88.56 ± 1.38</td>
</tr>
</tbody>
</table>
We now provide ablations on the ColorMNIST dataset to illustrate the effectiveness of the different components of SFB. In particular, we focus on bias correction and calibration, while also showing how multiple rounds of pseudo-labelling can improve performance in practice.

Bias correction. To adapt the unstable classifier in the test domain, SFB employs the bias-corrected adaptation algorithm of Alg. 1 (or Alg. 2 for the multi-class case) which corrects for biases caused by possible disagreements between the stable-predictor pseudo-labels \hat{Y} and the true label Y. In this subsection, we investigate the performance of SFB with and without bias correction (BC).

Calibration. As discussed in § 4.2, correctly combining the stable and unstable predictions post-adaptation requires them to be properly calibrated. In particular, it requires the stable predictor f_S to be calibrated with respect to the true labels Y and the unstable predictor f_U to be calibrated with respect to the pseudo-labels \hat{Y}. In this subsection, we investigate the performance of SFB with and without post-hoc calibration (in particular, simple temperature scaling [24]). More specifically, we investigate the effect of calibrating the stable predictor (CS) and calibrating the unstable predictor (CU).

Multiple rounds of pseudo-labelling. While SFB learns the optimal unstable classifier h_U^* in the test domain given enough unlabelled data, § 4.1 discussed how more accurate pseudo-labels \hat{Y} improve the sample efficiency of SFB. In particular, in a restricted-sample setting, more accurate pseudo-labels result in an unstable classifier h_U^* which better harnesses X_U in the test domain. With this in mind, note that, after adapting, we expect the joint predictions of SFB to be more accurate than its stable-only predictions. This raises the question: can we use these improved predictions to form more accurate pseudo-labels, and, in turn, an unstable classifier h_U^* that leads to even better performance? Furthermore, can we repeat this process, using multiple rounds of pseudo-labelling to refine our pseudo-labels and ultimately h_U^*? While this multi-round approach loses the asymptotic guarantees of § 4.2, we found it to work quite well in practice. In this subsection, we thus investigate the performance of SFB with and without multiple rounds of pseudo-labelling (PL rounds).

Table 5: SFB ablations on ColorMNIST. Means and standard errors are over 3 random seeds. BC: bias correction. CS: post-hoc calibration of the stable classifier. CU: post-hoc calibration of the unstable classifier. PL Rounds: Number of pseudo-labelling rounds used. GT adapt: adapting using true labels in the test domain.

<table>
<thead>
<tr>
<th>Model</th>
<th>Bias Correction</th>
<th>Calibration Stable</th>
<th>Calibration Unstable</th>
<th>PL Rounds</th>
<th>Test Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFB w/o adapt</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>70.6 ± 1.8</td>
</tr>
<tr>
<td>SFB with adapt</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>78.0 ± 2.9</td>
</tr>
<tr>
<td>+BC</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>83.4 ± 2.8</td>
</tr>
<tr>
<td>+CS</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>1</td>
<td>80.6 ± 3.4</td>
</tr>
<tr>
<td>+CU</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>1</td>
<td>76.6 ± 2.4</td>
</tr>
<tr>
<td>+BC+CS+CU</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>1</td>
<td>84.4 ± 2.2</td>
</tr>
<tr>
<td>+BC+CS</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>1</td>
<td>84.9 ± 2.6</td>
</tr>
<tr>
<td>+BC+CS</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>2</td>
<td>87.4 ± 1.9</td>
</tr>
<tr>
<td>+BC+CS</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>3</td>
<td>88.1 ± 1.8</td>
</tr>
<tr>
<td>+BC+CS</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>4</td>
<td>88.6 ± 1.3</td>
</tr>
<tr>
<td>+BC+CS</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>5</td>
<td>88.7 ± 1.3</td>
</tr>
<tr>
<td>SFB with GT adapt</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>1</td>
<td>89.0 ± 0.3</td>
</tr>
</tbody>
</table>

Results. Table 5 reports the ablations of SFB on ColorMNIST. Here we see that: (i) bias correction significantly boosts performance (+BC); (ii) calibrating the stable predictor also boosts performance without (+CS) and with (+BC+CS) bias correction, with the latter leading to the best performance; (iii) calibrating the unstable predictor (with respect to the pseudo-labels) slightly hurts performance without (+CU) and with (+BC+CS+CU) bias correction and stable-predictor calibration; (iv) multiple rounds of pseudo-labelling boosts performance, while also reducing the performance variation across random seeds; (v) using bias correction, stable-predictor calibration and 5 rounds of pseudo-labelling
results in near-optimal adaptation performance, as indicated by the similar performance of SFB when using true labels Y to adapt h^*_Y (denoted “SFB with GT adapt” in Table 5).

G Implementation Details

Below we provide further implementation details for each of the experiments/datasets considered in this work. Code for reproducing all experimental results will be made available upon acceptance.

G.1 ColorMNIST

Training details. We follow the setup of Eastwood et al. [14, §6.1] and build on their open-source code\footnote{https://github.com/cianeastwood/qrm/tree/main/CMNIST}. In particular, we use the original MNIST training set to create training and validation sets for each domain, and the original MNIST test set for the test sets of each domain. For all methods, we use a 2-hidden-layer MLP with 390 hidden units, the Adam optimizer, a learning rate of 0.0001 with cosine scheduling, and dropout with $p = 0.2$. In addition, we use full batches (size 25000), 400 steps for ERM pertaining (which directly corresponds to the delicate penalty “annealing” or warm-up periods used by penalty-based methods on ColorMNIST [2, 34, 14]), and 600 total steps. We sweep over stability-penalty weights in $\{50, 100, 500, 1000, 5000\}$ for IRM, VREx and SFB and α’s in $[1, e^{-100}, e^{-250}, e^{-500}, e^{-750}, e^{-1000}]$ for EQRM. As the stable (shape) and unstable (color) features are conditionally independent given the label, we fix SFB’s conditional-independence penalty weight $\lambda_C = 0$. As is the standard for ColorMNIST, we use a test-domain validation set to select the best settings (after the total number of steps), and then report the mean and standard error over 10 random seeds on a test-domain test set. As in previous works, the hyperparameter ranges of all methods are selected by peeking at test-domain performance. While far from ideal, this is quite difficult to avoid with ColorMNIST and highlights a core problem with hyperparameter selection in DG—as discussed by many previous works [2, 34, 23, 64, 14].

Adaptation details. For SFB’s unsupervised adaptation in the test domain, we use a batch size of 2048 and employ the bias correction of Alg. 1. In addition, we calibrate the stable predictor using post-hoc temperature scaling, choosing the temperature to minimize the expected calibration error (ECE, [24]) across the two training domains. Again using the two training domains for hyperparameter selection, we sweep over adaptation learning rates in $\{0.1, 0.01\}$, choose the best adaptation step in $[5, 20]$ (via early stopping), and sweep over the number of pseudo-labelling rounds in $[1, 5]$. Finally, we report the mean and standard error over 3 random seeds for adaptation.

G.2 PACS

We follow the experimental setup of Jiang and Veitch [30, Section 6.4] and build on their open-source implementation\footnote{https://github.com/ybjiaang/ACTIR}. This means using an ImageNet-pretrained ResNet-18, the Adam optimizer with a learning rate of 10^{-4}, and, following [23], choosing hyperparameters using leave-one-domain-out cross-validation. This is akin to K-fold cross-validation except with domains, meaning that we train 3 models—each time leaving out 1 of the 3 training domains for validation—and then select hyperparameters based on the best average performance across the held-out validation domains. Finally, we use the selected hyperparameters to retrain the model using all 3 training domains.

For SFB, we sweep over λ_S in $\{0.01, 0.1, 1, 5, 10, 20\}$, λ_C in $\{0.01, 0.1, 1\}$, and learning rates in $\{10^{-4}, 50^{-4}\}$. For SFB’s unsupervised adaptation, we employ the multi-class bias correction of Alg. 2 and calibrate the stable predictor using post-hoc temperature scaling, choosing the temperature to minimize the expected calibration error (ECE, [24]) across the three training domains. In addition, we use the Adam optimizer with an adaptation learning rate of 0.01, choosing the number of adaptation steps in $[1, 20]$ (via early stopping) using the training domains. Finally, we report the mean and standard error over 3 random seeds.

G.3 Camelyon17

We follow the experimental setup of Jiang and Veitch [30, Section 6.3] and build on their open-source implementation\footnote{See Footnote 6}. This means using an ImageNet-pretrained ResNet-18, the Adam optimizer, and, following [32], choosing hyperparameters using the validation domain (hospital 4). In contrast to
we use a learning rate of 10^{-5} for all methods, rather than 10^{-4}, and employ early stopping using the validation domain. We found this to significantly improve all methods. E.g., the baselines of ERM and IRM improve by approximately 20 percentage points, jumping from $\approx 70\%$ to $\approx 90\%$.

For SFB, we sweep over λ_S in $\{0.01, 0.1, 1, 5, 10, 20\}$ and λ_C in $\{0.01, 0.1, 1\}$. For SFB’s unsupervised adaptation, we employ the bias correction of Alg. 1 and calibrate the stable predictor using post-hoc temperature scaling, choosing the temperature to minimize the expected calibration error (ECE, [24]) on the validation domain. In addition, we use the Adam optimizer with an adaptation learning rate of 0.01, choosing the number of adaptation steps in $[1, 20]$ (via early stopping) using the validation domain. Finally, we report the mean and standard error over 3 random seeds.

G.4 Synthetic

Following Jiang and Veitch [30], we use a simple three-layer network with 8 units in each hidden layer and the Adam optimizer, choosing hyperparameters using the validation domain.

For SFB, we sweep over λ_S in $\{0.01, 0.1, 1, 5, 10, 20\}$ and λ_C in $\{0.01, 0.1, 1\}$. For SFB’s unsupervised adaptation, we employ the bias correction of Alg. 1 and calibrate the stable predictor using post-hoc temperature scaling, choosing the temperature to minimize the expected calibration error (ECE, [24]) on the validation domain. In addition, we use the Adam optimizer with an adaptation learning rate of 0.01, choosing the number of adaptation steps in $[1, 20]$ (via early stopping) using the validation domain. Finally, we report the mean and standard error over 100 random seeds.

H Further Related Work

Using spurious or unstable features without labels. Bui et al. [12] exploit-domain specific or unstable features with a meta-learning approach. However, they use the unstable features in the same way in the test domain, which, by their very definition, can lead to degraded performance. In contrast, we seek a robust approach to safely harness the unstable features in the test domain, as summarised in Table 1. Sun et al. [54] share the goal of exploiting spurious or unstable features to go “beyond invariance”. However, their approach requires labels for the spurious features at training time and only applies to label shifts. In contrast, we do not require labels for the spurious features and are not restricted to label shifts.

Self-learning via pseudo-labelling. In the source-free and test-time domain adaptation literature, adapting to the test domain using a model’s own pseudo-labels is a common approach [35, 38, 61, 29]—see Rusak et al. [48] for a recent review. In contrast to these approaches, we use one model to provide the pseudo-labels (the stable model) and the other to use/adapt to the pseudo-labels (the unstable model). In addition, while the majority of this pseudo-labelling work is purely empirical, we provide theoretical justification and guarantees for our SFB approach.

I Limitations

In our view, the most significant limitation of this work is the assumption of complementarity (i.e., that the spurious features are conditionally independent of the stable features, given the label). Complementarity is implicit in the causal generative models assumed by existing related work [45, 60, 30], and, as Example A.1 in Appendix A.1 demonstrates, is cannot simply be dropped from our theoretical motivation. In the related context of co-training, this condition was initially assumed and then weakened in subsequent work [10, 4, 1, 62]; similarly, we hope future work will identify weaker conditions that are sufficient for SFB to succeed. On the other hand, our experimental results on the synthetic dataset of Appendix F.1, as well as the real datasets of PACS and Camelyon17, suggest that SFB may be robust to violations of complementarity—perhaps mirroring the surprisingly good practical performance of methods such as naive Bayes classification which are justified under similar assumptions [44].