
Appendix A A Simple Working Example

Let Θ := Rd and let L : Rd → R defined by L(θ) :=
∑d
i=1(θi)

2 be a twice-differentiable function
on Θ. Suppose ϕ : Θ → Ψ defined by ϕ(θ) = 3θ =: ψ be the reparametrization of choice. In
this example, we shall see how this often-used reparametrization leads to pathologies in the values
derived from the Hessian of L computed by an autodiff system.

Notice that the Jacobian of ϕ is given by J(θ) = diag(3, . . . , 3) ∈ Rd×d and its inverse is J−1(ψ) =
diag(1/3, . . . , 1/3). The autodiff Hessian matrix is given byH(θ) ≡ 2I ∈ Rd×d. When we transform
θ → ψ, the function L(θ) becomes L̂(ψ) :=

∑d
i=1(1/3ψi)

2. The autodiff will take into account this
change and thus will compute the Hessian Ĥ of L̂ as

Ĥij(ψ) = diag(1/3, . . . , 1/3) (2I) diag(1/3, . . . , 1/3) = diag(2/9, . . . , 2/9).

Notice that, detH(θ) ≡ 2d, meanwhile, we have det Ĥ(ψ) ≡ (2/9)d. Therefore, the Hessian
determinant computed by an autodiff system is not invariant under reparametrization.

But if instead we explicitly take into account the metric into the Hessian, which by default is
(implicitly) chosen to be G(θ) ≡ I , resulting in the seemingly redundant expression E(θ) =
G(θ)−1H(θ) = I−1(2I), and perform the correct transformation on both identity matrices, we
obtain

Ê(ψ) = (diag(1/3, . . . , 1/3) I diag(1/3, . . . , 1/3))−1diag(1/3, . . . , 1/3) (2I) diag(1/3, . . . , 1/3)

= diag(3, . . . , 3)((((
(((diag(3, . . . , 3)((((

((((diag(1/3, . . . , 1/3) (2I) diag(1/3, . . . , 1/3)

= diag(3, . . . , 3) (2I) diag(1/3, . . . , 1/3).

Thus, the determinant of the transformed “metric-conditioned Hessian” equals

det Ê(ψ) = (det diag(3, . . . , 3)) (det 2I)(det diag(1/3, . . . , 1/3)) = 3d2d(1/3)d = 2d,

which coincides with the determinant of the original E.

Appendix B Derivations

Note. Throughout this section, we use the Einstein summation convention: If the same index
appears twice, once as an upper index and once as a lower index, we sum them over. For example:
z = xiyi means z =

∑
i x

iyi and Bkj = Akijx
i means Bkj =

∑
k A

k
ijx

i, etc. Specifically for partial
derivatives, the index of the denominator is always treated as a lower index. �

B.1 The Riemannian Hessian Under Reparametrization

Let L : M → R be a function on a Riemannian manifold M with metric G. The Riemannian Hessian
HessL of L is defined in coordinates θ by

Hij =
∂2L

∂θi∂θj
− Γkij

∂L
∂θk

, (6)

where Γkij is the connection coefficient.

Under a change of coordinates ϕ : θ 7→ ψ, we have L̃ = L ◦ ϕ−1 and

Γ̃kij = Γomn
∂ψk

∂θo
∂θm

∂ψi
∂θn

∂ψj
+

∂2θo

∂ψi∂ψj
∂ψk

∂θo
, (7)

where m, n, o are just dummy indices—present to express summations. Note that the transformation
rule for Γkij implies that it is not a tensor—to be a tensor, there must not be the second term in the
previous formula.

14

Using (7) and the standard chain & product rules to transform the partial derivatives in (6), we obtain
the coordinate representation of the transformed Hessian Hess L̃:

H̃ij =
∂2(L ◦ ϕ−1)

∂ψi∂ψj
− Γ̃kij

∂(L ◦ ϕ−1)

∂ψk

=
∂2L

∂θm∂θn
∂θm

∂ψi
∂θn

∂ψj
+
∂L
∂θo

∂2θo

∂ψi∂ψj
−
(

Γomn
∂ψk

∂θo
∂θm

∂ψi
∂θn

∂ψj
+

∂2θo

∂ψi∂ψj
∂ψk

∂θo

)
∂L
∂θo

∂θo

∂ψk

=
∂2L

∂θm∂θn
∂θm

∂ψi
∂θn

∂ψj
+
∂L
∂θo

∂2θo

∂ψi∂ψj
− Γomn

�
��∂ψk

∂θo
∂θm

∂ψi
∂θn

∂ψj
∂L
∂θo�

��
∂θo

∂ψk
− ∂2θo

∂ψi∂ψj�
��∂ψk

∂θo
∂L
∂θo�

��
∂θo

∂ψk

=
∂2L

∂θm∂θn
∂θm

∂ψi
∂θn

∂ψj��
���

��
+
∂L
∂θo

∂2θo

∂ψi∂ψj
− Γomn

∂θm

∂ψi
∂θn

∂ψj
∂L
∂θo��

���
��

− ∂2θo

∂ψi∂ψj
∂L
∂θo

=
∂θm

∂ψi
∂θn

∂ψj

(
∂2L

∂θm∂θn
− Γomn

∂L
∂θo

)
=
∂θm

∂ψi
∂θn

∂ψj
Hmn.

(8)
In the matrix form, we can write the above as H̃ = J−>HJ−1, where J is the Jacobian of ϕ. Thus,
the Riemannian Hessian at any θ (not just at critical points) transforms just like the metric and thus
invariant as discussed in Example 3. Note: this only holds when the term containing the connection
coefficients Γkij is explicitly considered. In particular, the Euclidean Hessian does not follow this
tensorial transformation under autodiff due to the fact that (i) Γkij = 0 for any i, j, k and thus dropped
from the equation, and (ii) autodiff is not designed to handle advanced geometric objects like Γkij .

B.2 Hessian-Trace Under Reparametrization

Let L : Rd → R be a function of Rd under the Cartesian coordinates and G a Riemannian metric.
The Riemannian trace of the Hessian matrixH of L is defined by [47]:

(trGH)(θ) = tr(G(θ)
−1
H(θ)). (9)

That is, it is defined as the standard trace of the Hessian operator E.

Let ϕ : θ 7→ ψ be a reparametrization on Rd. Then, using (2) and the property tr(AB) = tr(BA)
twice, the Riemannian trace of the Hessian transforms into

(trG̃ H̃)(ψ) = tr(Ẽ(ψ))

= tr((J−1(ψ))−1G(ϕ−1(ψ))H(ϕ−1(ψ))J−1(ψ))

= tr(G(ϕ−1(ψ))H(ϕ−1(ψ)))

= (trGH)(ϕ−1(ψ)).

(10)

Since ψ = ϕ(θ), we have that (trG̃ H̃)(ψ) = (trGH)(θ) for any given θ. Therefore, the trace of
the Hessian operator (or the Riemannian trace of the Hessian) is invariant.

B.3 Hessian-Eigenvalues Under Reparametrization

We use the setting from the preceding section. Recall that λ is an eigenvalue of the linear map
E(θ) = G(θ)−1H(θ) on the tangent space at z ∈ Rd that is represented θ if E(θ)v = λv for
an eigenvector v ∈ TzRd. We shall show that λ̃, the eigenvalue under under the reparametrization
ϕ : θ 7→ ψ, equals the original eigenvalue λ.

Using the transformation rule of E(θ) in (2) and the transformation rule of tangent vectors in (3),
along with the relation (J−1(ψ))−1 = J(ϕ−1(ψ)), we get

Ẽ(ψ)ṽ = λ̃ṽ

(J−1(ψ))−1G(ϕ−1(ψ))H(ϕ−1(ψ))���
�J−1(ψ)��

���
�

J(ϕ−1(ψ))v = λ̃J(ϕ−1(ψ))v

J(ϕ−1(ψ))G(ϕ−1(ψ))H(ϕ−1(ψ))v = λ̃J(ϕ−1(ψ))v

((((
((((J(ϕ−1(ψ)))−1

���
���J(ϕ−1(ψ))G(ϕ−1(ψ))H(ϕ−1(ψ))v = λ̃v

E(ϕ−1(ψ))v = λ̃v.

(11)

15

Since ϕ−1(ψ) = θ, we arrive back at the original equation before the reparametrization and thus we
conclude that λ̃ = λ.

Appendix C The Invariance of the Fisher Metric

We have seen that any metric on the parameter space yields inv(equi)variance when all transformation
rules of geometric objects are followed. However, in practical settings, one uses autodiff libraries
[1, 66], whose job is to compute only the elementary rules of derivatives such as the chain and product
rules. Notice that derivatives and Hessians (at least at critical points) are transformed correctly under
autodiff, while the metric is not in general. It is thus practically interesting to find a family of metrics
that transform correctly and automatically under reparametrization, given only an autodiff library.
Under those metrics, the aforementioned inv(equi)variances can thus be obtained effortlessly.

Martens [55, Sec. 12] mentions the following family of curvature matrices satisfying this transforma-
tion behavior

B(θ) ∝ E
x,y∼D

[
J(θ;x)>A(θ,x,y)J(θ;x)

]
, (12)

where J(θ; ·) is the network’s Jacobian ∂f(· ;θ)/∂θ, with an arbitrary data distribution D and an
invertible matrix A that transforms likeA(ϕ−1(ψ)) under ϕ : θ 7→ ψ. Under a reparametrization ϕ,
an autodiff library will compute

B̂(ψ) = J−1(ψ)>B(ϕ−1(ψ))J−1(ψ) , (13)

given L ◦ ϕ−1, due to the elementary transformation rule of J(θ; ·), just like Example 3(c). This
family includes the Fisher and the generalized Gauss-Newton matrices, as well as the empirical Fisher
matrix [44, 55].

However, note that any B as above is sufficient. Thus, this family is much larger than the Fisher
metric, indicating that automatic invariance is not unique to that metric and its denominations.
Moreover, in practice, these metrics are often substituted by structural approximations, such as their
diagonal and Kronecker factorization [56]. This restricts the kinds of reparametrizations under which
these approximate metrics transform automatically: Take the diagonal of (12) as an example. Its
ψ-representation computed by the autodiff library will only match the correct transformation for
element-wise reparametrizations, whose Jacobian J(θ) is diagonal. On top of that, in practical
algorithms, such approximations are usually combined with additional techniques such as damping
or momentum, which further break their automaticness.

Due to the above and because any metric is theoretically in(equi)variant if manual intervention is
performed, the inv(equi)variance property of the Fisher metric should not be the determining factor of
using the Fisher metric. Instead, one should look into its more unique properties such as its statistical
efficiency [3] and guarantees in optimization [34, 78]. Automatic transformation is but a cherry on
top.

It is interesting for future work to extend autodiff libraries to take into account the invariant transfor-
mation rules of geometric objects. By doing so, any metric—not just the Fisher metric—will yield
invariance automatically.

Appendix D General Manifold: Local Coordinate Charts

In the main text, we have exclusively used global coordinate charts (Rd, θ) and (Rd, ψ)—these charts
cover the entire Rd and θ, ψ are homeomorphisms on Rd. However, there exist other coordinate
systems that are not global, i.e. they are constructed using multiple charts {(Ui ⊆ Rd, θi : Ui →
Θi ⊆ Rd)}i s.t. Rd = ∪iUi and each θi is a diffeomorphism on Ui.

If {(Ui, θi)}i and {(Vj , ψj)}j be two local coordinate systems of Rd. Let (Ui, θi) and (Vj , ψj)
be an arbitrary pair of charts from the above collections where Ui ∩ Vj 6= ∅. In this setting,
reparametrization between these two charts amounts to the condition that the transition map ϕ
between θ(Ui ∩ Vj) and ψ(Ui ∩ Vj) is a diffeomorphism, see Fig. 6. Reparametrization on the whole
manifold can then be defined if for all pairs of two charts from two coordinate systems, their transition
maps are all diffeomorphism whenever they overlap with each other.

16

Rd

U V

θ
ψ

ϕ

Figure 6: The diffeomorphism ϕ is defined from
θ(U ∩ V) to ψ(U ∩ V).

Note that this definition is a generalization of
global coordinate charts. In this case, there is
only a single chart for each coordinate system,
i.e. (U, θ) and V, ψ, and they trivially overlap
since U = Rd and V = Rd. Moreover, there
is only a single diffeomorphism of concern, as
shown in Fig. 3.

Our results in the main text hold in this general
case by simply replacing the domain for the
discussion to be the overlapping regions of a
pair of two charts, instead of the whole Rd.

Appendix E Details on Applications

E.1 Infinite-Width Neural Networks

Note We use a 2-layer NN without bias for clarity. The extension to deep networks follows directly
by induction—see e.g. [6, 45]. We also use the same prior variance σ2 without loss of generalization
for simplicity. See also Kristiadi et al. [41, Appendix A] for further intuition. Recall the property of
Gaussians under linear transformation: z ∼ N (µ,Σ) =⇒ Az ∼ N (Aµ,AΣA>).

Neural-network Gaussian process (NNGP)

Let f(x) : Rd → R defined by f(x) := w>φ(Wx) be a real-valued, 2-layer NN with parameter
θ := {W ∈ Rh×n,w ∈ Rh} and component-wise nonlinearity φ. Note that we assume x is i.i.d.
Let vec(W) ∼ N (0, σ2I) and w ∼ N (0, σ

2

h I) be priors over the weights. This parametrization of
the weights and the priors is called the standard parametrization (SP) [45, 60].

Step (a) Given a particular preactivation value z, we have a linear model f(x) = w>φ(z). We
can view this as a Gaussian process with mean and covariance

E[f(x)] = 0>φ(z) = 0,

Cov[f(x), f(x′)] =
σ2

h
φ(z)>φ(z′) =

σ2

h

h∑
i=1

φ(zi)φ(z′i).

Taking the limit as h→∞, the mean stays trivially zero and we have by the law of large numbers:

K(x,x′) := lim
h→∞

Cov[f(x), f(x′)] = lim
h→∞

σ2

h

h∑
i=1

φ(zi)φ(z′i) = σ2 E
zi,z′i

[φ(zi)φ(z′i)].

In particular, both the mean and covariance over the output does not depend on the particular
realization of the hidden units φ(z). That is, they only depend on the distribution of z induced by the
prior, which we will obtain now.

Step (b) Notice that each zi = W>
i x whereWi is the i-th row ofW . This is a linear model and

thus, z is distributed as a GP with mean and covariance
E[zi] = 0>x = 0,

Cov[zi, z
′
i] = σ2x>x′ =: Kz(zi, z

′
i).

So, zi ∼ GP(0,Kz) Since the prior overW is i.i.d., this holds for all i = 1, . . . , h. We can thus now
compute the expectation in K(x,x′): it is done w.r.t. this GP over zi.

To obtain the GP over the function output of a deep network, simply apply steps (a) and (b) above
recursively. The crucial message from this derivation is that as the width of each layer of a deep net
goes to infinity, the network loses representation power—the output of each layer only depends on
the prior, and not on particular values (e.g. learned) of the previous hidden units. In this sense, an
infinite-width L-layer NN is simply a linear model with a constant feature extractor induced by the
network’s first L− 1 layers that are fixed at initialization. Note that the kernel K over the function
output is called the NNGP kernel [45].

17

Neural tangent kernel (NTK)

Let us transformw into v := σ√
h
w andW into V := σ√

h
W and define the prior to bew ∼ N (0, I)

and vec(W) ∼ N (0, I). Then, we define the transformed network as f̂(x) := v>φ(V x) =
σ√
h
w>φ

(
σ√
h
Wx

)
with parameter ψ := {V ∈ Rh×n,v ∈ Rh}. This is called the NTK

parametrization (NTP) [29]. We will see below that even though v, V have the same prior distribu-
tions as w,W in the SP, they have different behavior in terms of the NTK.

As before, let us assume a particular preactivation value z. The empirical NTK (i.e. finite-width
NTK) on the last layer is defined by:

K̂(x,x′) := 〈∇wf̂(x),∇wf̂(x′)〉 =
σ2

h

h∑
i=1

φ(zi)φ(z′i).

The (asymptotic) NTK is obtained by taking the limit of h→∞:

K(x,x′) := lim
h→∞

K̂(x,x′) =
σ2

h

h∑
i=1

φ(zi)φ(z′i) = E
zi,z′i

[φ(zi)φ(z′i)] , (14)

which coincides the NNGP kernel K. Crucially, this is obtained via a backward propagation from the
output of the network and thus the linear-Gaussian property we have used to derive the NNGP via
forward propagation does not apply.3 This is why the scaling of σh is required in the NTP. That is,
using the SP, the empirical NTK is not scaled by σ2

h and thus when taking the limit to obtain K, the
sum diverges and the limit does not exist.

Is the NTP a reparametrization of the SP?

It is tempting to treat the NTP as a reparametrization of the SP—in fact, it is standard in the
literature to treat them as two different parametrizations of the same network. However, we show
that geometrically, this is inaccurate. Indeed from the geometric perspective, if two functions are
reparametrization of each other, they should be invariant, as we have discussed in the main text.
Instead, we show that the different limiting behaviors are present because the NTP and SP assume
two different functions and two different priors—they are not connected by a reparametrization.
This clears up confusion and provides a foundation for future work in this field: To obtain a desired
limiting behavior, study the network architecture and its prior, instead of the parametrization.

Suppose ψ in the NTP is a reparametrization of θ in the SP. Then the function ϕ : θ 7→ ψ defined
by θ 7→ σ√

h
θ is obviously the smooth reparametrization with an invertible (diagonal) Jacobian

J(θ) = σ√
h
I . In this case, the network in the NTP must be defined by f̃ = f ◦ ϕ−1, where f is the

SP-network, by Example 3. That is, with some abuse of notation,

f̃(x) = ϕ−1(v)>φ(ϕ−1(V)x) = w>φ(Wx) = f(x).

This is different from the definition of the NTP-network f̂(x) = v>φ(V x). So, obviously, the NTP
is not the reparametrization of the SP. Therefore, a clearer way of thinking about the NTP and SP is
to treat them as two separate network functions (i.e. two separate architectures)—the scaling factor
σ√
h

should be thought of as part of the layer’s functional form instead of as part of the parameter. In
particular, they are not two representations of a single abstract function.

To verify this, let us compute the NTK of f̃(x) (i.e. treating the scaling as a reparametrization) at its
last layer. The derivation is based on Section 3.2. First, notice that the differential∇wf(x) transforms
into J−1(v)>∇f̃(x)|ϕ−1(v) for any x ∈ Rn. Next, notice that the Euclidean metric transforms into
G̃(v) := J−1(v)>J−1(v). So the gradient transforms into J(ϕ−1(v))∇f(x)|ϕ−1(v).4 Therefore,

3It still applies for obtaining the distribution of zi. The NTK can thus be thought of as a kernel that arises
from performing forward and backward propagations once at initialization [6, 75]. This can be seen in the
expression of the NTKs on lower layers which decompose into the NNGP and an expression similar to (14), but
involving the derivative of φ [29].

4We use the gradient to get the NTK since otherwise it does not make sense to take the inner product of
differentials w.r.t. the metric.

18

Table 2: Test accuracies, averaged over 5 random seeds.

Methods MNIST FMNIST CIFAR10 CIFAR100

SGD 99.3 92.9 94.9 76.8
ADAM 99.2 92.6 92.4 71.9

the empirical NTK kernel K̂Ψ for f̃ is given by

K̂Ψ(x,x′) = 〈J(ϕ−1(v))∇f(x)|ϕ−1(v),J(ϕ−1(v))∇f(x′)|ϕ−1(v)〉G̃(v)

= (J(ϕ−1(v))∇f(x)|ϕ−1(v))
>G̃(v)J(ϕ−1(v))∇f(x′)|ϕ−1(v)

= (∇f(x)|ϕ−1(v))
>
��

���
�

J(ϕ−1(v))>���
��

J−1(v)>���
�J−1(v)���

��J(ϕ−1(v))∇f(x′)|ϕ−1(v)

= 〈∇f(x)|ϕ−1(v),∇f(x′)|ϕ−1(v)〉.

Thus, the empirical NTK is invariant and the asymptotic NTK also is. Therefore, we still have a
problem with the NTK blow-up in this parametrization. This reinforces the fact that the difference
between the SP and NTP is not because of parametrization.

Additionally, let us now inspect the priors in the SP and NTP. In the SP, the prior is N (θ | 0, σ2
/hI).

Therefore, so that we have the same prior in both Θ and Ψ, the prior of ψ = ϕ(θ) must be
N (ψ | 0, I). This is obviously not the case since we have N (ψ | 0, σ

2
/hI) because the NTP

explicitly defines N (θ | 0, I) as the prior of θ. Thus, not only that the SP and NTP assume two
different architectures, but they also assume two different prior altogether. It is thus not surprising
that the distribution over their network outputs f(x), f̂(x) are different, both in the finite- and
infinite-width regimes.

Implication In his seminal work, Neal [60] concluded that the fact that infinite-width NNs are
Gaussian processes disappointing. However, as we have seen in the discussion above, different
functional forms, architectures, and priors of NNs yield different limiting behaviors. Therefore,
this gives us hope that meaningful, non-GP infinite-width NNs can be obtained. Indeed, Yang and
Hu [75], Yang et al. [76] have recently shown us a way to do so. However, they argue that their
feature-learning limiting behavior is due to a different parametrization, contrary to the present work.
Our work thus complements theirs and opens up the avenue for constructing non-trivial infinite-width
NNs in a “Bayesian” way, in the sense that we achieve the desired limiting behaviors by varying the
model and the prior.

E.2 Biases of Preconditioned Optimizers

For MNIST and FMNIST, the network is LeNet. Meanwhile, we use the WiderResNet-16-4 model
for CIFAR-10 and -100. For ADAM, we use the default setting suggested by Kingma and Ba [39].
For SGD, we use the commonly-used learning rate of 0.1 with Nesterov momentum 0.9 [26]. The
cosine annealing method is used to schedule the learning rate for 100 epochs. The test accuracies
are in Table 2. Additionally, in Table 3, we discuss the effect of reparametrization to sharpness on
ADAM and SGD.

E.3 Laplace Marginal Likelihood

Let θMAP be a MAP estimate in an arbitrary θ-coordinates of Rd, obtained by minimizing the MAP
loss LMAP. Let log h = −LMAP—note that LMAP itself is a log-density function. The Laplace
marginal likelihood [18, 28, 54] is obtained by performing a second-order Taylor’s expansion:

log h(θ) ≈ log h(θMAP)− 1

2
(θ − θMAP)>H(θMAP)(θ − θMAP),

where H(θMAP) is the Hessian matrix of LMAP at θMAP. Then, by exponentiating and taking the
integral over θ, we have

Z(θMAP) ≈ h(θMAP)

∫
Rd

exp

(
−1

2
(θ − θMAP)>H(θMAP)(θ − θMAP)

)
dθ. (15)

19

Table 3: Hessian-based sharpness measures can change under reparametrization without affecting the
model’s generalization (results on CIFAR-10). The generalization gap is the test accuracy, subtracted
from the train accuracy—lower is better. Under the default parametrization, SGD achieves lower
sharpness and generalizes better than ADAM which achieves higher sharpness. However, one can
reparametrize SGD’s minimum s.t. it achieves much higher (or lower) sharpness than ADAM while
retaining the same generalization performance. Hence, it is hard to study the correlation between
sharpness and generalization. This highlights the need for invariance.

Optimizer Reparametrization ψMAP = ϕ(θMAP) Generalization gap [%] Sharpness tr(Ĥ(ψMAP))

ADAM ψMAP = θMAP 7.2± 0.2 1929.8± 61.2

SGD
ψMAP = θMAP

5.2± 0.2
1531.8± 14.2

ψMAP = 1
2
θMAP 6143.7± 60.8

ψMAP = 2θMAP 383.6± 3.3

Since the integral is the normalization constant of the Gaussian N (θ | θMAP,H(θMAP)), we obtain
the Laplace log-marginal likelihood (LML):

logZ(θMAP) = −LMAP(θMAP)− d

2
log(2π) + log detH(θMAP).

Notice thatH(θ) is a bilinear form, acting on the tangent vector d(θMAP) := (θ − θMAP). Under a
reparametrization ϕ : θ 7→ ψ withψMAP = ϕ(θMAP), the term inside the exponent in (15) transforms
into

−1

2
(J(ϕ−1(ψMAP))d(ϕ−1(ψMAP)))>(J−1(ψMAP)>H(ϕ−1(ψMAP))J−1(ψMAP))

J(ϕ−1(ψMAP))d(ϕ−1(ψMAP)),

due to the transformations of the tangent vector and the bilinear-Hessian. This simplifies into

exp

(
−1

2
d(ϕ−1(ψMAP))>H(ϕ−1(ψMAP))d(ϕ−1(ψMAP))

)
which always equals the original integrand in (15). Thus, the integral evaluates to the same value.
Hence, the last two terms of logZ(θMAP) transform into −d2 log(2π) + log detH(ϕ−1(ψMAP)) in
ψ-coordinates. This quantity is thus invariant under reparametrization since it behaves like standard
functions.

E.3.1 Experiment Setup

We use the toy regression dataset of size 150. Training inputs are sampled uniformly from [0, 8],
while training targets are obtained via y = sinx + ε, where ε ∼ N (0, 0.32). The network is a
1-hidden layer TanH network trained for 1000 epochs.

20

	A Simple Working Example
	Derivations
	The Riemannian Hessian Under Reparametrization
	Hessian-Trace Under Reparametrization
	Hessian-Eigenvalues Under Reparametrization

	The Invariance of the Fisher Metric
	General Manifold: Local Coordinate Charts
	Details on Applications
	Infinite-Width Neural Networks
	Biases of Preconditioned Optimizers
	Laplace Marginal Likelihood
	Experiment Setup

