
The Geometry of Neural Nets’ Parameter Spaces
Under Reparametrization

Agustinus Kristiadi Felix Dangel
Vector Institute, University of Tübingen

akristiadi,fdangel@vectorinstitute.ai

Philipp Hennig
University of Tübingen, Tübingen AI Center
philipp.hennig@uni-tuebingen.de

Abstract

Model reparametrization, which follows the change-of-variable rule of calculus, is
a popular way to improve the training of neural nets. But it can also be problem-
atic since it can induce inconsistencies in, e.g., Hessian-based flatness measures,
optimization trajectories, and modes of probability densities. This complicates
downstream analyses: e.g. one cannot definitively relate flatness with generaliza-
tion since arbitrary reparametrization changes their relationship. In this work, we
study the invariance of neural nets under reparametrization from the perspective of
Riemannian geometry. From this point of view, invariance is an inherent property of
any neural net if one explicitly represents the metric and uses the correct associated
transformation rules. This is important since although the metric is always present,
it is often implicitly assumed as identity, and thus dropped from the notation, then
lost under reparametrization. We discuss implications for measuring the flatness
of minima, optimization, and for probability-density maximization. Finally, we
explore some interesting directions where invariance is useful.

1 Introduction

L(θ) L(T (θ, g))

Θ

L(θ)

Θ

L̃(ψ)

Ψϕ

Figure 1: The difference between the
symmetry (top) and reparametrization
problems (bottom). Θ and Ψ are two
different parameter spaces.

Neural networks (NNs) are parametrized functions. Since
it is often desirable to assign meaning or interpretability
to the parameters (weights) of a network, it is interesting
to ask whether certain transformations of the parameters
leave the network invariant—equivalent in some sense.
Various notions of invariance have been studied in NNs, in
particular under weight-space symmetry [5, 14, 20, 42, 53]
and reparametrization [20, 21, 30, 32, 71]. The former
studies the behavior of a function L(θ) under some invert-
ible T : Θ × G → Θ where G is a group; for any θ, the
function L is invariant under the symmetry T if and only
if L(θ) = L(T (θ, g)) for all g ∈ G. For example, normal-
ized NNs are symmetric under scaling of the weights, i.e.
L(θ) = L(cθ) for all c > 0 [7]—similar scale-symmetry
also presents in ReLU NNs [61]. Meanwhile, invariance
under reparametrization studies the behavior of the NN
when it is transformed under the change-of-variable rule
of calculus: Given a transformed parameter ψ = φ(θ) under a bijective differentiable φ : Θ → Ψ
that maps the original parameter space onto another parameter space, the function L(θ) becomes
L̂(ψ) := L(φ−1(ψ)). Note their difference (see Fig. 1): In the former, one works on a single
parameter space Θ and a single function L—the map T acts as a symmetry of elements of Θ under
the group G. In contrast, the latter assumes two parameter spaces Θ and Ψ which are connected by φ
and hence two functions L and L̂.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

D
e
fa

u
lt

(a) Optimization

θ(t)

ϕ−1(ψ(t))

(b) Maximum Density

p(θ)

p̂(ψ)

θ∗ 6= ϕ−1(ψ∗)
M

e
tr

ic
-A

w
a
re

θ∗ = ϕ−1(ψ∗)

(c) Flatness Measure

L(θ)

L̂(ψ)

det Ĥ(ψ∗) 6= detH(θ∗)

det Ê(ψ∗) = detE(θ∗)

Figure 2: Invariance is retained (bottom) if the Riemannian metric is explicitly tracked and one
transforms geometric objects such as vectors, covectors, and the metric itself properly under a
reparametrization φ : θ 7→ ψ. (a) Gradient descent’s trajectories are therefore invariant under a
change of parametrization. (b) Invariance of the modes of a probability density function is an inherent
property under a natural base measure induced by the metric. (c) When the HessianH at a critical
point is seen as a linear map E with the help of the metric, its determinant is invariant.

We focus on the latter. While in this scenario, we have L̂(ψ) = L(θ) whenever ψ = φ(θ), it is well-
known that downstream quantities such as optimization trajectories [55, 71], the Hessian [20, Sec. 5],
and probability densities over θ [59, Sec. 5.2.1.4] are not invariant under model reparametrization.
These non-invariances are detrimental since an arbitrary reparametrization can affect the studied
quantities and thus consistency cannot be guaranteed—parametrization muddles the analysis.

For instance, because of this, (i) one cannot relate Hessian-based sharpness measures with gener-
alization and the correlation analyses between them [27, 33, 73] become meaningless, (ii) a good
preconditioner cannot be guaranteed to be good anymore for optimizing the reparametrized model—
this is one reason why invariant methods like natural gradient are desirable [37, 50, 58, 62], and (iii)
under a reparametrization, a prior density might put low probability in a region that corresponds to
the high-probability region in the original space, making posterior inference pathological [25].

To analyze this issue, in this work we adopt the framework of Riemannian geometry, which is a
generalization of calculus studying the intrinsic properties of manifolds. “Intrinsic” in this context
means that objects such as functions, vectors, and tensors defined on the manifold must be independent
of how the manifold is represented via a coordinate system, and conserved under a change of
coordinates [47]. The parameter space of a neural network, which is by default assumed to be
Θ = Rd with the Euclidean metric and the Cartesian coordinates, is a Riemannian manifold—model
reparametrization is such a change in the coordinate system.

Why, then, can reparametrizations bring up the aforementioned inconsistencies? In this work, we
discuss this discrepancy. We observe that this issue often arises because the Riemannian metric is
left implicit, and dropped when computing downstream quantities such as gradients, Hessians, and
volumes on the parameter space. This directly suggests the solution: Invariance under reparametriza-
tion is guaranteed if the Riemannian metric is not just implicitly assumed, but made explicit, and it is
made sure that the associated transformation rules of objects such as vectors, covectors, and tensors
are performed throughout. We show how these insights apply to common cases (Fig. 2).

Limitation Our work focuses on the reparametrization consistency of prior and future methods that
leverage geometric objects such as gradients and the Hessian. Thus, we leave the geometric analysis
for invariance under symmetry as future work. In any case, our work is complimentary to other works
that analyze invariance under symmetry [17, 22, 43, 67, etc]. Moreover, this work’s focus is not to
propose “better” methods e.g. for better preconditioners or better generalization metrics. Rather, we
provide a guardrail for existing and future methods to avoid pathologies due to reparametrization.

2 Preliminaries

This section provides background and notation on relevant concepts of neural networks and Rieman-
nian geometry. For the latter, we frame the discussion in terms of linear algebra as close as possible to
the notation of the ML community: We use regular faces to denote abstract objects and bold faces for

2

their concrete representations in a particular parametrization. E.g., a linear map A is represented by a
matrixA, a point z is represented by a tuple of numbers θ, an inner product G(z) at z is represented
by a matrixG(θ). The same goes for the differential ∇, ∇; and the gradient grad, grad.

2.1 Some notation for neural networks

The following concepts are standard, introduced mostly to clarify notation. Let f : Rn × Rd → Rk
with (x,θ) 7→ f(x;θ) be a model with input, output, and parameter spaces Rn, Rk, Rd. Let
D := {(xi,yi)}mi=1 be a dataset and write X := {xi}mi=1 and Y := {yi}mi=1. We moreover write
f(X;θ) := vec({f(xi;θ)}mi=1) ∈ Rmk. The standard way of training f is by finding a point
θ∗ ∈ Rd s.t. θ∗ = argminθ∈Rd

∑m
i=1ℓ(yi, f(xi;θ)) =: argminθ∈Rd L(θ), for some loss function

ℓ. If we add a weight decay γ/2∥θ∥22 term to L(θ), the minimization problem has a probabilistic
interpretation as maximum a posteriori (MAP) estimation of the posterior density p(θ | D) under
the likelihood function p(Y | f(X;θ)) ∝ exp(−

∑m
i=1 ℓ(yi, f(xi;θ))) and an isotropic Gaussian

prior p(θ) = N (θ | 0, γ−1I). We denote the MAP loss by LMAP. In our present context, this
interpretation is relevant because this probabilistic interpretation implies a probability density, and it
is widely known that a probability density transforms nontrivially under reparametrization.

A textbook way of obtaining θ∗ is gradient descent (GD): At each time step t, obtain the next estimate
θ(t+1) = θ(t) − α∇L|θ(t) , for some α > 0. This can be considered as the discretization of the
gradient flow ODE θ̇ = −∇L|θ. Among the many variants of GD is preconditioned GD which
considers a positive-definite matrix fieldR on Rd, yielding θ̇ = −R(θ)−1 ∇L|θ.

2.2 The geometry of the parameter space

Remark 1. We restrict our discussion to global coordinate charts since they are the default assumption
in neural networks, and in a bid to make our discussion clear for people outside of the differential
geometry community. We refer the curious reader to Appendix D for a discussion on local coordinate
charts. Note that, our results hold in the general local-chart formulation. ■

θ ψ

Rd

z

θ = θ(z)
ψ = ψ(z)

TzRd
v

w

⟨v, w⟩ = v⊤Gw

Θ ∼= Rd

φ

Ψ ∼= Rd

Figure 3: The implicit geometric assumption on
the parameter space Rd. θ, ψ are two different
(global) coordinates on Rd.

The parameter space Rd is the canonical ex-
ample of a smooth manifold. We can impose
upon this manifold a (global) coordinate chart:
a homeomorphism that represents a point with
an element of Rd. The standard choice is the
Cartesian coordinate system θ : Rd → Θ ∼= Rd,
which we have used in the previous section. That
is, the image of θ uniquely represents elements
of Rd—given a point z ∈ Rd, we write θ = θ(z)
for its coordinate representation under θ.

The choice of a coordinate system is not unique.
Any homeomorphism ψ : Rd → Ψ ∼= Rd can
be used as an alternative coordinate chart. For
instance, the polar coordinates can be used to
represent points in Rd instead. Crucially, the
images of any pair of coordinates must be con-
nected through a diffeomorphism (a smooth function with a smooth inverse) φ : Θ → Ψ. Such a
map is called a change of coordinates or reparametrization since it acts on the parameter space.
Example 2 (Reparametrization). Reparametrization is ubiquitous in machine learning:

(a) Mean-Field Variational Inference. Let q(x;θ) be a variational approximation, which is
often chosen to be N (x | µ,diag(σ2)), i.e. θ = {µ ∈ Rd,σ2 ∈ Rd>0}. Common choices
of reparametrization of σ2 include the log-space [52] or softplus [12] parametrization.

(b) Weight normalization. Given a NN fθ, WeightNorm [69] applies the reparametrization
ψ = rη where r ∈ R>0 and η := θ/∥θ∥ ∈ Sd−1. This is akin to the polar coordinates.
(Note that we assume θ ∈ Rd \ {0} since otherwise φ is not a global diffeomorphism.) ■

At each point z ∈ Rd, there exists a vector space TzRd called the tangent space at z, consisting of the
so-called tangent vectors. An important example of a tangent vector is the gradient vector gradL|z

3

of L : Rd → R at z. The dual space T ∗
zRd of TzRd is referred to as the cotangent space and consists

of linear functionals of TzRd, called tangent covectors. An example of a tangent covector is the
differential ∇L|z of L at z. Under a coordinate system, one can think of both tangent vectors and
covectors as vectors in the sense of linear algebra, i.e., tuples of numbers.

One can take an inner product of tangent vectors by equipping the manifold with a Riemannian
metric G, which, at each point in Rd is represented by a positive-definite d × d matrix G whose
coefficients depend on the choice of coordinates. With the help of the metric, there is an isomorphism
between TzRd and T ∗

zRd. In coordinates, it is given by the map TzRd → T ∗
zRd : v 7→ Gv and its

inverse T ∗
zRd → TzRd : ω 7→ G−1ω. One important instance of this isomorphism is the fact that

gradL|z is represented byG−1∇L in coordinates. The natural gradient is a direct consequence of
this fact. In practice, it is standard to assume the Cartesian coordinates on Rd, implyingG ≡ I . We
have thus gradL ≡ ∇L, which only seems trivial at first sight, but reveals the relationship between
the tangent vector on the l.h.s. and the cotangent vector on the r.h.s.
Remark 3. Another common way to define a NN’s parameter space is to define a manifold of
probabilistic models M := {p(Y | f(X;θ)) : θ ∈ Rd} and assume that p(Y | f(X;θ)) 7→ θ is
the coordinate chart [19, 55, etc.]. The problem with this construction is that there is no bijection
Rd →M in general. Indeed, the Jacobian of the map f(X; ·) : Rd →M is in practice surjective
everywhere due to overparametrization [34, 78]. Therefore, one cannot define a proper metric
on the parameter space Rd that corresponds to a metric on the distribution space M [46, Prop.
13.9]. For instance, using this construction, the Fisher metric is singular for overparametrized NNs
[10, 34, 74, 78] and thus not a valid Riemannian metric. The pseudoinverse has been used to handle
this but is mostly limited to theoretical analyses [10, 74]: As far as we know, in practice, damping—
which breaks the interpretation of the Fisher on Rd as the pullback metric from M—is de facto for
handling this due to its numerical stability [4].

By detaching from the distribution space, the definition used in this work does not have this issue.
It enables more general constructions of metrics in the parameter space since any positive-definite
matrix is admissible. E.g. one is free to add damping or use any approximation to the Fisher—our
results still apply to this case. Thus, our construction is closer to practice. ■

2.2.1 Transformation rules

Differential geometry is the study of coordinate-independent objects: Geometric objects must
be invariant under change-of-coordinates in the sense that any pair of representations must refer
to the same (abstract) object. Suppose φ : Θ → Ψ is a reparametrization, with ψ = φ(θ).
Coordinate independence is encoded in the following transformation rules, which involve the Jacobian
J(θ) = (∂ψi/∂θj) of φ, and its inverse J−1(ψ) = (J(θ))−1 = (∂θi/∂ψj)—the Jacobian of φ−1.
(Color codes are used for clarity when different objects are present in a single expression later on.)

(a) A function h : Θ → R in θ-coordinates transforms into ĥ = h ◦ φ−1 in ψ-coordinates.
(b) A tangent vector v in θ-coordinates transforms into J(θ)v. In particular, a gradient vector

gradL|θ transforms into J(θ)gradL|θ.
(c) A tangent covector ω in θ-coordinates transforms into J−1(ψ)⊤ω. In particular, given a

transformed function L ◦ φ−1 : Ψ → R, we have ∇(L ◦ φ−1)|ψ = J−1(ψ)⊤∇L|φ−1(ψ),
which we recognize as the standard chain rule.

(d) A metricG(θ) becomes J(θ)−⊤G(θ)J(θ)−1 = J−1(ψ)⊤G(ψ)J−1(ψ). In general, this
rule applies to any tensor that takes tangent vectors as its arguments, e.g. a bilinear map.

The following examples show how these rules ensure the invariance of geometric objects.
Example 4. Let h, v, ω,G respectively be a function, vector, covector, and metric in θ-coordinates
at a point θ = θ(z), and let φ : Θ → Ψ be a reparametrization.

(a) Let ψ := φ(θ) and ĥ := h ◦ φ−1 be θ ∈ Θ and h expressed in ψ-coordinates, respectively.
Then, ĥ(ψ) = h(φ−1(ψ)) = h(θ). That is, the actions of h and ĥ agree in both coordinates
and thus they represent the same abstract function on Rd.

(b) The action of ω on v in θ-coordinates is given by the product ω⊤v. Let v̂ := J(θ)v and
ω̂ := J(θ)−⊤ω be the transformed vector and covectors. Then,

ω̂⊤v̂ = (����J(θ)−⊤ω)⊤(���J(θ)v) = ω⊤v. (1)

4

That is, both ω and ω̂ are the representations of the same linear functional; v and v̂ are the
representations of the same tangent vector.

(c) Let Ĝ := J−⊤GJ−1 be the transformed metric in the ψ-coordinates. Then,

v̂⊤Ĝv̂ = (�Jv)
⊤
�

��J−⊤G���J−1(�Jv) = v
⊤Gv,

and thus the transformation rules ensure that inner products are also invariant. ■

Finally, we say that an ODE’s dynamics is invariant if the trajectory in parametrization corresponds to
the trajectory in another parametrization. Concretely, a trajectory (θt)t in Θ is invariant if under the
reparametrization φ : Θ → Ψ, the transformed trajectory (ψt)t is related to (θt)t by θt = φ−1(ψt)
for each t. See Fig. 2a for an illustration.

3 Neural Networks and Reparametrization

We discuss three aspects of the parameter space under reparametrization, as illustrated in Fig. 2.
First, we address the non-invariance of Hessian-based flatness measures [e.g., 20], and show how
taking the metric into account provides invariance. Second, we show that the invariance property
often cited in favor of natural gradient is not unique, but an inherent property of any gradient descent
algorithm when considering its ODE. Finally, we show that modes of probability density functions
on the parameter space are invariant when the Lebesgue measure is generalized using the metric.

3.1 Invariance of the Hessian

A growing body of literature connects the flatness of minima found by optimizers to generalization
performance [8, 13, 23, 27, 36, 38, 48, 53]. However, as Dinh et al. [20] observed, this association
does not have a solid foundation since standard sharpness measures derived from the Hessian of the
loss function are not invariant under reparametrization.

From the Riemannian-geometric perspective, the Hessian of a function L (or LMAP or any other
twice-differentiable function) on θ-coordinates is represented by a d × d matrix with coefficients
Hij(θ) :=

∂2L
∂θi∂θj

(θ)−
∑d
k=1 Γ

k
ij(θ)

∂L
∂θk

(θ), for any θ ∈ Θ and i, j = 1, . . . , d, where Γkij is a
particular three-dimensional array. While it might seem daunting, when θ is a local minimum of L,
the second term is zero since the partial derivatives of L are all zero at θ. Thus, H(θ) equals the
standard Hessian matrix (∂

2L/∂θi∂θj) at θ ∈ argminL.

Considering the Hessian as a bilinear function that takes two vectors and produces a number, it follows
the covariant transformation rule, just like the metric (see Appendix B.1 for a derivation): Let φ : Θ →
Ψ and ψ = φ(θ). The Hessian matrix H(θ) at a local minimum in θ-coordinates transforms into
Ĥ(ψ) = J−1(ψ)⊤H(φ−1(ψ))J−1(ψ) in ψ-coordinates—this is correctly computed by automatic
differentiation, i.e. by chain and product rules. But, while this gives invariance of H as a bilinear
map (Example 4c), the determinant ofH—a popular flatness measure—is not invariant because

(det Ĥ)(ψ) := det
(
J−1(ψ)⊤H(φ−1(ψ))J−1(ψ)

)
= (detJ−1(ψ))2(detH(φ−1(ψ))),

and so in general, we do not have the relation (det Ĥ) = (detH) ◦ φ−1 that would make this
function invariant under reparametrization (Example 4a).

The key to obtaining invariance is to employ the metricG to transform the bilinear Hessian into a
linear map/operator on the tangent space. This is done by simply multiplyingH with the inverse of
the metricG, i.e. E := G−1H . The determinant of E is thus an invariant quantity.1 To show this,
under φ, the linear map E transforms into

Ê(ψ) = (�����
J−1(ψ)⊤G(φ−1(ψ))J−1(ψ))−1

�����
J−1(ψ)⊤H(φ−1(ψ))J−1(ψ)

= (J−1(ψ))−1G(φ−1(ψ))H(φ−1(ψ))J−1(ψ),
(2)

due to the transformation of bothG andH . Hence, detE transforms into

(det Ê)(ψ) =(((((((
(detJ−1(ψ))−1

((((((
(detJ−1(ψ)) det(G(φ−1(ψ))H(φ−1(ψ))) = (detE)(φ−1(ψ))

1This is because one can view the loss landscape as a hypersurface: H is connected to the second fundamental
form and E to the shape operator. detE is thus related to the invariant Gaussian curvature [47, Ch. 8].

5

in ψ-coordinates. Thus, we have the desired invariant transformation (det Ê) = (detE)◦φ−1. Note
thatG is an arbitrary metric—this invariance thus also holds for the Euclidean case whereG ≡ I .
Note further that the trace and eigenvalues of E are also invariant; see Appendices B.2 and B.3.
Finally, see Appendix A for a simple working example.

To obtain invariance in the Hessian-determinant, -trace, and -eigenvalues at a minimum of L, we
explicitly write it as E = G−1H , even whenG ≡ I , and transform it according to Section 2.2.1.

3.2 Invariance of gradient descent

Viewed from the geometric perspective, both gradient descent (GD) and natural gradient descent
(NGD) come from the same ODE framework θ̇ = −G(θ)−1∇L|θ . But NGD is widely presented as
invariant under reparametrization, while GD is not [51, 71, etc.]. Is the choice of the metricG the
cause? Here we will show from the framework laid out in Section 2.2 that any metric is invariant if its
transformation rule is faithfully followed. And thus, the invariance of NGD is not unique. Rather, the
Fisher metric used in NGD is part of the family of metrics that transform correctly under autodiff, and
thus it is “automatically” invariant under standard deep learning libraries like PyTorch, TensorFlow,
and JAX [1, 24, 66]—see Appendix C.

The underlying assumption of GD is that one works in the Cartesian coordinates and that G ≡ I .
For this reason, one can ignore the metricG in θ̇ = −G(θ)−1∇L|θ , and simply write θ̇ = −∇L|θ .
This is correct but this simplification is exactly what makes GD not invariant under a reparametrization
φ : Θ → Ψ where ψ = φ(θ). To see this, notice that while GD transforms ∇L correctly via the
chain rule ψ̇ = −J−1(ψ)⊤∇L|φ−1(ψ), by ignoring the metric I , one would miss the important
fact that it must also be transformed into Ĝ(ψ) = J−1(ψ)⊤J−1(ψ). It is clear that Ĝ(ψ) does not
equal I in general. Thus, we cannot ignore this term in the transformed dynamics since it would
imply that one uses a different metric—the dynamics are thus different in the θ- and ψ-coordinates.
When one explicitly considers the above transformation, one obtains

ψ̇ = −Ĝ(ψ)−1J−1(ψ)⊤∇L|φ−1(ψ) = −(�����
J−1(ψ)⊤J−1(ψ))−1

�����
J−1(ψ)⊤∇L|φ−1(ψ)

= −J(φ−1(ψ))∇L|φ−1(ψ).

This dynamics in ψ-coordinates preserves the assumption that the metric is I in θ-coordinates and
thus invariant. In contrast, the dynamics ψ̇ under just the chain rule implicitly changes the metric in
θ-coordinates, i.e. from I into J(θ)⊤J(θ), and thus the trajectories are not invariant.

This discussion can be extended to any metric R: Simply use the transformed metric R̂(ψ) =
J−1(ψ)⊤R(φ−1(ψ))J−1(ψ), and we obtain the invariant dynamics of any preconditioned GD with
preconditionerR given by ψ̇ = −J(φ−1(ψ))R(φ−1(ψ))−1∇L|φ−1(ψ).

To obtain invariance in optimizers with any metric/preconditioner, explicitly write down the metric
even if it is trivial, and perform the proper transformation under reparametrization.

Remark 5. For the discretized dynamics, the larger the step size, the less exact the invariance. For
instance, discrete natural gradient update rule is only invariant up to the first-order [50, 71]. This is
orthogonal to our work since it is about improving ODE solvers [71]. ■

The consequence is that we need a “geometric-aware” autodiff library such that the invariant dy-
namics above is always satisfied. In this case, any preconditioner R yields invariance under any
reparametrization, even nonlinear ones. This is in contrast to the current literature, e.g. under standard
autodiff, Newton’s method is only affine-invariant, and structured approximate NGD methods such
as K-FAC are only invariant under a smaller class of reparametrizations [56].

3.3 Invariance in probability densities

Let qΘ(θ) be a probability density function (pdf) under the Lebesgue measure dθ on Θ.
Under a reparametrization φ : Θ → Ψ with ψ = φ(θ), it transforms into qΨ(ψ) =
qΘ(φ

−1(ψ))|detJ−1(ψ)|. This transformation rule ensures qΨ to be a valid pdf under the Lebesgue
measure dψ on Ψ, i.e.

∫
Ψ
qΨ(ψ) dψ = 1. Notice, in general qΨ ̸= qΘ ◦ φ−1 due to the change-

of-random-variable rule. Hence, pdfs transform differently than standard functions (Example 4a)

6

and can thus have non-invariant modes [cf. 59, Sec. 5.2.1.4]: Density maximization, such as the
optimization of LMAP, is not invariant even if an invariant optimizer is employed.

Just like the discussion in the previous section, it is frequently suggested that to obtain invariance
here, one must again employ the help of the Fisher matrix F [21]. When applied to a prior, this
gives rise to the famous Jeffreys [31] prior pJ(θ) ∝ | detF (θ)| 12 with normalization constant∫
Θ
|detF (θ)| 12 dθ. Is the Fisher actually necessary to obtain invariance in pdf maximization?

Here, we show that the same principle of “being aware of the implicit metric and following proper
transformation rules” can be applied. A pdf qΘ(θ) can be written as qΘ(θ) =

qΘ(θ) dθ
dθ to explicitly

show the dependency of the base measure dθ—this is the Lebesgue measure on Θ, which is the
natural unit-volume2 measure in Euclidean space. Given a metricG, the natural volume-measurement
device on Θ is the Riemannian volume form dVG which has θ-coordinate representation dVG :=
|detG(θ)| 12 dθ. This object takes the role of the Lebesgue measure on a Riemannian manifold:
Intuitively, it behaves like the Lebesgue measure but takes the (local) distortion due to the metricG
into account. Indeed, whenG ≡ I we recover dθ.

Here, we instead argue that invariance is an inherent property of the modes of probability densities, as
long as we remain aware of the metric and transform it properly under reparametrization. Explicitly
acknowledging the presence of the metric, we obtain

qΘ(θ) dθ

|detG(θ)| 12 dθ
= qΘ(θ) |detG(θ)|− 1

2 =: qGΘ (θ). (3)

This is a valid probability density under dVG on Θ since
∫
Θ
qGΘ (θ) dVG = 1. This formulation

generalizes the standard Lebesgue density. And, it becomes clear that the Jeffreys prior is simply the
uniform distribution under dVF ; its density is qFΘ ≡ 1 under dVF .

We can now address the invariance question. Under φ, considering the transformation rules for both
qΘ(θ) andG, the density (3) thus becomes

qGΨ (ψ) = qΘ(φ
−1(ψ)) |detJ−1(ψ)||det(J−1(ψ)⊤G(φ−1(ψ))J−1(ψ))|− 1

2

= qΘ(φ
−1(ψ)) |detG(φ−1(ψ))|− 1

2 = qGΘ (φ−1(ψ)).
(4)

This means, qGΘ transforms into qGΘ ◦ φ−1 and is thus invariant since it transforms as standard
function—notice the lack of the Jacobian-determinant term here, compared to the standard change-of-
density rule. In particular, just like standard unconstrained functions, the modes of qGΘ are invariant
under reparametrization. Since G is arbitrary, this also holds for G ≡ I , and thus the modes of
Lebesgue-densities are invariant, as long as I is transformed correctly (Fig. 2b).

Note that, even if the transformation rule is now different from the one in standard probability theory,
qGΨ is a valid density under the transformed volume form. This is because due to the transformation
of the metric G 7→ Ĝ, we have dVĜ = |detG(φ−1(ψ))| 12 |detJ−1(ψ)| dψ. Thus, together with
(4), we have

∫
Ψ
qGΨ (ψ) dVĜ = 1. This also shows that the |detJ−1(ψ)| term in the standard

change-of-density formula (i.e. whenG ≡ I) is actually part of the transformation of dθ.

Put another way, the standard change-of-density formula ignores the metric. The resulting den-
sity thus must integrate w.r.t. dψ—essentially assuming a change of geometry, not just a simple
reparametrization—and thus qΨ can have different modes than the original qΘ. While this non-
invariance and change of geometry are useful, e.g. for normalizing flows [68], they cause issues when
invariance is desirable, such as in Bayesian inference.

To obtain invariance in density maximization, transform the density function under the Riemannian
volume form as an unconstrained function. In particular whenG ≡ I in Θ, this gives the invariant
transformation of a Lebesgue density qΘ, i.e. qΨ = qΘ ◦ φ−1.

4 Related Work

While reparametrization has been extensively used specifically due to its “non-invariance”, e.g. in
normalizing flows [63, 68], optimization [19, 69], and Bayesian inference [64, 72], our work is not

2In the sense that the parallelepiped spanned by an orthonormal basis has volume one.

7

at odds with them. Instead, it gives further insights into the inner working of those methods: They
are formulated by not following the geometric rules laid out in Section 2.2, and thus in this case,
reparametrization implies a change of metric and hence a change of geometry of the parameter space.
They can thus be seen as methods for metric learning [35, 77], i.e. finding the “best” G for the
problem at hand, and are compatible with our work since we do not assume a particular metric.

Hessian-based sharpness measures have been extensively used to measure the generalization of
neural nets [13, 27, 53]. However, as Dinh et al. [20] pointed out, they are not invariant under
reparametrization. Previous work has proposed the Fisher metric to obtain invariant flatness measures
[30, 38, 49]. In this work, we have argued that while the Fisher metric is a good choice due to
its automatic-invariance property among other statistical benefits [49], any metric is invariant if
one follows the proper transformation rules faithfully. That is, the Fisher metric is not necessary
if invariance is the only criterion. Similar reasoning about the Fisher metric has been argued in
optimization [3, 37, 51, 55, 65, 71] and MAP estimation [21, 32]: the Fisher metric is often used due
to its invariance. However, we have discussed that it is not even the unique automatically invariant
metric (Appendix C), so the invariance of the Fisher should not be the decisive factor when selecting
a metric. By removing invariance as a factor, our work gives practitioners more freedom in selecting
a more suitable metric for the problem at hand, beyond the usual Fisher metric.

Finally, the present work is not limited to just the parameter space. For instance, it is desirable for the
latent spaces of variational autoencoders [40] to be invariant under reparametrization [2, 25]. The
insights of our work can be implemented directly to latent spaces since they are also manifolds [9].

5 Some Applications

We present applications in infinite-width Bayesian NNs, model selection, and optimization, to show
some directions where the results presented above, and invariance theory in general, can be useful.
They are not exhaustive, but we hope they can be an inspiration and foundation for future research.

5.1 Infinite-width neural networks

−2 0 2
Θ

−2 0 2
Ψ

ϕ−1

Figure 4: Even though N (θ | 0, σ2/hI) in the SP
and N (ψ | 0, σ2/hI) in the NTP, they correspond
to different priors. Here, we use σ = 1, h = 4.

Bayesian NNs tend to Gaussian processes (GPs)
as their widths go to infinity [57, 60]. It is widely
believed that different parametrizations of an
NN yield different limiting kernels [75]. For
instance, the NTK parametrization (NTP) yields
the NTK [29], and the standard parametrization
(SP) yields the NNGP kernel [45].

Due to their nomenclatures and the choice of
priors, it is tempting to treat the NTP and SP
as reparametrization of each other. That is, at
each layer, the SP parameter θ transforms into
ψ = φ(θ) = σ/

√
hθ where h is the previous layer’s width. This induces the same prior on both θ

and ψ, i.e. N (0, σ2/hI), and thus one might guess that invariance should be immediate. However, if
they are indeed a reparametrization of the other, the NN fθ must transform as fψ := fθ ◦ φ−1(ψ)
and any downstream quantities, including the NTK, must also be invariant. This is a contradiction
since the functional form of the NTP shown in Jacot et al. [29] does not equal fψ, and the NTK
diverges in the SP but not in the NTP [70]. The SP and NTP are thus not just reparametrizations.

Instead, we argue that the SP and NTP are two completely different choices of the NN’s architectures,
hyperparameters (e.g. learning rate), and priors—see Fig. 4 for intuition and Appendix E.1 for the
details. Seen this way, it is thus not surprising that different “parametrization” yields different limiting
behavior. Note that this argument applies to other “parametrizations” [e.g. 15, 70, 75, 76].

Altogether, our work complements previous work and opens up the avenue for constructing non-trivial
infinite-width NNs in a “Bayesian” way, in the sense that we argue to achieve a desired limiting
behavior by varying the model (i.e. architecture, functional form) and the prior (including over
hyperparameters) instead of varying the parametrization. This way, one may leverage Bayesian
analysis, e.g. model selection via the marginal likelihood [28, 54], for studying infinite-width NNs.

8

5.2 The Laplace marginal likelihood

The Laplace log-marginal likelihood (LML) of a model M with parameter in Rd—useful for Bayesian
model comparison [11, Sec. 4.4.1]—is defined by [54]

logZ(M;θMAP) := −L(θMAP) + log p(θMAP)− d
2 log(2π) +

1
2 log detH(θMAP). (5)

Let φ : θMAP 7→ ψMAP be a reparametrization of Rd. It is of interest to answer whether logZ is
invariant under φ, because if it is not, then φ introduces an additional confounder in the model
selection and therefore might yield spurious/inconsistent results. For instance, there might exists a
reparametrization s.t. log Z̃(M1) ≥ log Z̃(M2) even though originally logZ(M1) < logZ(M2).
The question of “which model is better” thus cannot be answered definitively.

As we have established in Section 3.3, the first and second terms, i.e. LMAP, are invariant under the
Riemannian volume measure. At a glance, the remaining terms do not seem to be invariant due to the
transformation of the bilinear-Hessian as discussed in Sec. 3.1. Here, we argue that these terms are
invariant when one considers the derivation of the Laplace LML, not just the individual terms in (5).

Table 1: The Laplace LML logZ and its decomposition
on a NN under different parametrizations. L and “Rest”
stand for the first and the remaining terms in (5).

Param. logZ −L Rest

Cartesian -212.7±3.4 -143.4±0.0 -69.3±3.4
WeightNorm -227.1±3.6 -143.4±0.0 -83.7±3.6

In the Laplace approximation, the last
two terms of logZ are the normalization
constant of the unnormalized density [18]
h(θ) := exp

(
− 1

2d
⊤H(θMAP)d

)
, where

d := (θ − θMAP). Notice that d is a tan-
gent vector at θMAP and H(θMAP) is a bi-
linear form acting on d. Using the trans-
formation rules in Example 4, it is straight-
forward to show that h 7→ h ◦ φ−1—see
Appendix E.3. Since Z is fully determined by h, this suggests that logZ(M;θMAP) also transforms
into log Z̃(M;φ−1(ψMAP)), where ψMAP = φ(θMAP). This is nothing but the transformation of a
standard, unconstrained function on Rd, thus logZ is invariant.

We show this numerically in Table 1. We train a network in the Cartesian parametrization and obtain
its logZ. Then we reparametrize the net with WeightNorm and naïvely compute logZ again. These
logZ’s are different because the WeightNorm introduces more parameters than the Cartesian one,
even though the degrees of freedom are the same. Moreover, the Hessian-determinant is not invariant
under autodiff. However, when transformed as argued above, logZ is trivially invariant.

5.3 Biases of preconditioned optimizers

MNIST FMNIST CIFAR10 CIFAR100
0

10

20

30

Dataset

L
og

-T
ra

ce
H

es
si

an

SGDH = E

ADAMH

ADAME

Figure 5: The effect of viewing the Hessian as a lin-
ear map E to measure sharpness at minima. ADAM
finds much sharper minima when the geometry of the
parameter space is taken into account.

The loss landscape depends on the metric
assumed in the parameter space through
the Hessian operator E = G−1H . The
assumption on G in practice depends on
the choice of the optimizer. For instance,
under the default assumption of the Carte-
sian coordinates, using GD implies the Eu-
clidean metric G ≡ I , and ADAM uses
the gradient-2nd-moment metric [39].

We argue that explicitly including the met-
ric is not just theoretically the correct thing
to do (since it induces invariance, and by
Riemannian geometry), but also practically
beneficial. Fig. 5 compares measurements
of sharpness of minima (Hessian-trace).
Using the metric-aware Hessian operator E, one can show definitively (i.e. independent of the
choice of parametrization) that ADAM tends to obtain much sharper minima than SGD. The benefits
of using the Hessian operator have also been confirmed in previous work. Cohen et al. [16] argue that
when analyzing the optimization dynamic of an adaptive/preconditioned GD algorithm, one should
take the preconditioner into account when measuring Hessian-based sharpness measures. From
this, they demonstrate a sharpness-evolution behavior known in vanilla GD, allowing a comparison
between vanilla and adaptive GD.

9

6 Conclusion

In this work, we addressed the invariance and invariance associated with the reparametrization of
neural nets. We started with the observation that the parameter space is a Riemannian manifold,
albeit often a trivial one. This raises the question of why one should observe non-invariance in neural
nets, whereas, by definition, Riemannian manifolds are invariant under a change of coordinates. As
we showed, this discrepancy only arises if the transformations used in the construction of a neural
net along with an optimizer ignore the implicitly assumed metric. By acknowledging the metric
and using the transformation rules associated with geometric objects, invariance and invariance
under reparametrization are then guaranteed. Our results provide a geometric solution towards full
invariance of neural nets—it is compatible with and complementary to other works that focus on
invariance under group-action symmetries, both in the weight and input spaces of neural networks.

Acknowledgments and Disclosure of Funding

The authors gratefully acknowledge financial support by the European Research Council through
ERC StG Action 757275 / PANAMA; the DFG Cluster of Excellence “Machine Learning - New
Perspectives for Science”, EXC 2064/1, project number 390727645; the German Federal Ministry
of Education and Research (BMBF) through the Tübingen AI Center (FKZ: 01IS18039A); the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) in the frame of the priority
programme SPP 2298 “Theoretical Foundations of Deep Learning”—FKZ HE 7114/5-1; and funds
from the Ministry of Science, Research and Arts of the State of Baden-Württemberg. Resources used
in preparing this research were provided, in part, by the Province of Ontario, the Government of
Canada through CIFAR, and companies sponsoring the Vector Institute. AK & FD are grateful to the
International Max Planck Research School for Intelligent Systems (IMPRS-IS) for support. AK, FD,
and PH are also grateful to Frederik Künstner and Runa Eschenhagen for fruitful discussions.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. TensorFlow: a system for large-scale machine
learning. In OSDI, 2016.

[2] Francisco E Acosta, Sophia Sanborn, Khanh Dao Duc, Manu Madhav, and Nina Miolane. Quantifying
local extrinsic curvature in neural manifolds. arXiv preprint arXiv:2212.10414, 2022.

[3] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276,
1998.

[4] Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

[5] Javier Antorán, David Janz, James U Allingham, Erik Daxberger, Riccardo Rb Barbano, Eric Nalisnick,
and José Miguel Hernández-Lobato. Adapting the linearised Laplace model evidence for modern deep
learning. In ICML, 2022.

[6] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On exact
computation with an infinitely wide neural net. In NeurIPS, 2019.

[7] Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical analysis of auto rate-tuning by batch normaliza-
tion. In ICLR, 2019.

[8] Sanjeev Arora, Zhiyuan Li, and Abhishek Panigrahi. Understanding gradient descent on edge of stability
in deep learning. arXiv preprint arXiv:2205.09745, 2022.

[9] Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space oddity: on the curvature of deep
generative models. In ICLR, 2018.

[10] Alberto Bernacchia, Máté Lengyel, and Guillaume Hennequin. Exact natural gradient in deep linear
networks and its application to the nonlinear case. In NIPS, 2018.

[11] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

10

[12] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
networks. In ICML, 2015.

[13] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs,
Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-SGD: Biasing gradient descent into wide
valleys. In ICLR, 2017.

[14] An Mei Chen, Haw-minn Lu, and Robert Hecht-Nielsen. On the geometry of feedforward neural network
error surfaces. Neural computation, 5(6), 1993.

[15] Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-parameterized
models using optimal transport. In NeurIPS, 2018.

[16] Jeremy M Cohen, Behrooz Ghorbani, Shankar Krishnan, Naman Agarwal, Sourabh Medapati, Michal
Badura, Daniel Suo, David Cardoze, Zachary Nado, George E Dahl, et al. Adaptive gradient methods at
the edge of stability. arXiv preprint arXiv:2207.14484, 2022.

[17] Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivariant convolutional
networks and the icosahedral CNN. In ICML, 2019.

[18] Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and Philipp
Hennig. Laplace redux–effortless Bayesian deep learning. In NeurIPS, 2021.

[19] Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, and Koray Kavukcuoglu. Natural neural
networks. In NIPS, 2015.

[20] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for deep
nets. In ICML, 2017.

[21] Pierre Druilhet and Jean-Michel Marin. Invariant HPD credible sets and MAP estimators. Bayesian
Analysis, 2(4), 2007.

[22] Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous models:
Layers are automatically balanced. NeurIPS, 2018.

[23] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for
efficiently improving generalization. In ICLR, 2021.

[24] Roy Frostig, Matthew James Johnson, and Chris Leary. Compiling machine learning programs via
high-level tracing. SysML, 4(9), 2018.

[25] Søren Hauberg. Only Bayes should learn a manifold (on the estimation of differential geometric structure
from data). arXiv preprint arXiv:1806.04994, 2018.

[26] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier exposure.
In ICLR, 2019.

[27] Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat minima. In NIPS,
1994.

[28] Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, and Mohammad Emtiyaz Khan.
Scalable marginal likelihood estimation for model selection in deep learning. In ICML, 2021.

[29] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In NIPS, 2018.

[30] Cheongjae Jang, Sungyoon Lee, Frank C. Park, and Yung-Kyun Noh. A reparametrization-invariant
sharpness measure based on information geometry. In NeurIPS, 2022.

[31] Harold Jeffreys. An invariant form for the prior probability in estimation problems. Proceedings of the
Royal Society of London. Series A. Mathematical and Physical Sciences, 186(1007), 1946.

[32] Ian H Jermyn. Invariant Bayesian estimation on manifolds. The Annals of Statistics, 33(2), 2005.

[33] Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic general-
ization measures and where to find them. In ICLR, 2020.

[34] Ryo Karakida and Kazuki Osawa. Understanding approximate Fisher information for fast convergence of
natural gradient descent in wide neural networks. In NeurIPS, 2020.

11

[35] Mahmut Kaya and Hasan Şakir Bilge. Deep metric learning: A survey. Symmetry, 11(9), 2019.

[36] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
On large-batch training for deep learning: Generalization gap and sharp minima. In ICLR, 2017.

[37] Minyoung Kim, Da Li, Shell X Hu, and Timothy Hospedales. Fisher SAM: Information geometry and
sharpness aware minimisation. In ICML, 2022.

[38] SungYub Kim, Sihwan Park, Kyung-Su Kim, and Eunho Yang. Scale-invariant Bayesian neural networks
with connectivity tangent kernel. In ICLR, 2023.

[39] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[40] Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In ICLR, 2014.

[41] Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. An infinite-feature extension for Bayesian ReLU
nets that fixes their asymptotic overconfidence. In NeurIPS, 2021.

[42] Věra Kůrková and Paul C Kainen. Functionally equivalent feedforward neural networks. Neural Computa-
tion, 6(3), 1994.

[43] Daniel Kunin, Javier Sagastuy-Brena, Surya Ganguli, Daniel LK Yamins, and Hidenori Tanaka. Neural
mechanics: Symmetry and broken conservation laws in deep learning dynamics. In ICLR, 2021.

[44] Frederik Kunstner, Lukas Balles, and Philipp Hennig. Limitations of the empirical Fisher approximation
for natural gradient descent. In NeurIPS, 2019.

[45] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep neural networks as Gaussian processes. In ICLR, 2018.

[46] John M Lee. Introduction to smooth manifolds. Springer, 2013.

[47] John M Lee. Introduction to Riemannian manifolds. Springer, 2018.

[48] Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What happens after SGD reaches zero loss? a mathematical
framework. In NeurIPS, 2021.

[49] Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-Rao metric, geometry, and
complexity of neural networks. In AISTATS, 2019.

[50] Wu Lin, Frank Nielsen, Mohammad Emtiyaz Khan, and Mark Schmidt. Structured second-order methods
via natural gradient descent. In ICML Workshop on beyond first-order methods in machine learning systems,
2021.

[51] Wu Lin, Frank Nielsen, Mohammad Emtiyaz Khan, and Mark Schmidt. Tractable structured natural
gradient descent using local parameterizations. In ICML, 2021.

[52] Christos Louizos and Max Welling. Structured and efficient variational deep learning with matrix Gaussian
posteriors. In ICML, 2016.

[53] Kaifeng Lyu, Zhiyuan Li, and Sanjeev Arora. Understanding the generalization benefit of normalization
layers: Sharpness reduction. arXiv preprint arXiv:2206.07085, 2022.

[54] David JC MacKay. The evidence framework applied to classification networks. Neural Computation, 4(5),
1992.

[55] James Martens. New insights and perspectives on the natural gradient method. JMLR, 21(146), 2020.

[56] James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approximate
curvature. In International conference on machine learning, pages 2408–2417, 2015.

[57] Alexander G de G Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and Zoubin Ghahramani.
Gaussian process behaviour in wide deep neural networks. In ICLR, 2018.

[58] Ted Moskovitz, Michael Arbel, Ferenc Huszar, and Arthur Gretton. Efficient Wasserstein natural gradients
for reinforcement learning. In ICLR, 2021.

[59] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

[60] Radford M Neal. Bayesian Learning for Neural Networks. PhD thesis, University of Toronto, 1995.

12

[61] Behnam Neyshabur, Russ R Salakhutdinov, and Nati Srebro. Path-SGD: Path-normalized optimization in
deep neural networks. In NIPS, 2015.

[62] Kazuki Osawa, Shigang Li, and Torsten Hoefler. PipeFisher: Efficient training of large language models
using pipelining and Fisher information matrices. arXiv preprint arXiv:2211.14133, 2022.

[63] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. Normalizing flows for probabilistic modeling and inference. JMLR, 22(57), 2021.

[64] Omiros Papaspiliopoulos, Gareth O Roberts, and Martin Sköld. A general framework for the parametriza-
tion of hierarchical models. Statistical Science, 2007.

[65] Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. In ICLR, 2014.

[66] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style, high-performance deep
learning library. In NeurIPS, 2019.

[67] Henning Petzka, Michael Kamp, Linara Adilova, Cristian Sminchisescu, and Mario Boley. Relative flatness
and generalization. In NeurIPS, 2021.

[68] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In ICML, 2015.

[69] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In NIPS, 2016.

[70] Jascha Sohl-Dickstein, Roman Novak, Samuel S Schoenholz, and Jaehoon Lee. On the infinite width limit
of neural networks with a standard parameterization. arXiv preprint arXiv:2001.07301, 2020.

[71] Yang Song, Jiaming Song, and Stefano Ermon. Accelerating natural gradient with higher-order invariance.
In ICML, 2018.

[72] Michalis K Titsias. Learning model reparametrizations: Implicit variational inference by fitting MCMC
distributions. arXiv preprint arXiv:1708.01529, 2017.

[73] Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Normalized flat minima: Exploring scale invariant
definition of flat minima for neural networks using PAC-Bayesian analysis. In ICML, 2020.

[74] Jesse van Oostrum, Johannes Müller, and Nihat Ay. Invariance properties of the natural gradient in
overparametrised systems. Information Geometry, 2022.

[75] Greg Yang and Edward J Hu. Tensor programs IV: Feature learning in infinite-width neural networks. In
ICML, 2021.

[76] Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder, Jakub
Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs V: Tuning large neural networks via zero-shot
hyperparameter transfer. In NeurIPS, 2022.

[77] Liu Yang and Rong Jin. Distance metric learning: A comprehensive survey. Michigan State Universiy, 2
(2), 2006.

[78] Guodong Zhang, James Martens, and Roger B Grosse. Fast convergence of natural gradient descent for
over-parameterized neural networks. In NeurIPS, 2019.

13

Appendix A A Simple Working Example

Let Θ := Rd and let L : Rd → R defined by L(θ) :=
∑d
i=1(θi)

2 be a twice-differentiable function
on Θ. Suppose φ : Θ → Ψ defined by φ(θ) = 3θ =: ψ be the reparametrization of choice. In
this example, we shall see how this often-used reparametrization leads to pathologies in the values
derived from the Hessian of L computed by an autodiff system.

Notice that the Jacobian of φ is given by J(θ) = diag(3, . . . , 3) ∈ Rd×d and its inverse is J−1(ψ) =
diag(1/3, . . . , 1/3). The autodiff Hessian matrix is given byH(θ) ≡ 2I ∈ Rd×d. When we transform
θ → ψ, the function L(θ) becomes L̂(ψ) :=

∑d
i=1(

1/3ψi)
2. The autodiff will take into account this

change and thus will compute the Hessian Ĥ of L̂ as

Ĥij(ψ) = diag(1/3, . . . , 1/3) (2I) diag(1/3, . . . , 1/3) = diag(2/9, . . . , 2/9).

Notice that, detH(θ) ≡ 2d, meanwhile, we have det Ĥ(ψ) ≡ (2/9)d. Therefore, the Hessian
determinant computed by an autodiff system is not invariant under reparametrization.

But if instead we explicitly take into account the metric into the Hessian, which by default is
(implicitly) chosen to be G(θ) ≡ I , resulting in the seemingly redundant expression E(θ) =
G(θ)−1H(θ) = I−1(2I), and perform the correct transformation on both identity matrices, we
obtain

Ê(ψ) = (diag(1/3, . . . , 1/3) I diag(1/3, . . . , 1/3))−1diag(1/3, . . . , 1/3) (2I) diag(1/3, . . . , 1/3)

= diag(3, . . . , 3)(((((((
diag(3, . . . , 3)((((((((

diag(1/3, . . . , 1/3) (2I) diag(1/3, . . . , 1/3)

= diag(3, . . . , 3) (2I) diag(1/3, . . . , 1/3).

Thus, the determinant of the transformed “metric-conditioned Hessian” equals

det Ê(ψ) = (det diag(3, . . . , 3)) (det 2I)(det diag(1/3, . . . , 1/3)) = 3d2d(1/3)d = 2d,

which coincides with the determinant of the original E.

Appendix B Derivations

Note. Throughout this section, we use the Einstein summation convention: If the same index
appears twice, once as an upper index and once as a lower index, we sum them over. For example:
z = xiyi means z =

∑
i x

iyi and Bkj = Akijx
i means Bkj =

∑
k A

k
ijx

i, etc. Specifically for partial
derivatives, the index of the denominator is always treated as a lower index. ■

B.1 The Riemannian Hessian Under Reparametrization

Let L :M → R be a function on a Riemannian manifold M with metric G. The Riemannian Hessian
HessL of L is defined in coordinates θ by

Hij =
∂2L

∂θi∂θj
− Γkij

∂L
∂θk

, (6)

where Γkij is the connection coefficient.

Under a change of coordinates φ : θ 7→ ψ, we have L̃ = L ◦ φ−1 and

Γ̃kij = Γomn
∂ψk

∂θo
∂θm

∂ψi
∂θn

∂ψj
+

∂2θo

∂ψi∂ψj
∂ψk

∂θo
, (7)

where m, n, o are just dummy indices—present to express summations. Note that the transformation
rule for Γkij implies that it is not a tensor—to be a tensor, there must not be the second term in the
previous formula.

14

Using (7) and the standard chain & product rules to transform the partial derivatives in (6), we obtain
the coordinate representation of the transformed Hessian Hess L̃:

H̃ij =
∂2(L ◦ φ−1)

∂ψi∂ψj
− Γ̃kij

∂(L ◦ φ−1)

∂ψk

=
∂2L

∂θm∂θn
∂θm

∂ψi
∂θn

∂ψj
+
∂L
∂θo

∂2θo

∂ψi∂ψj
−
(
Γomn

∂ψk

∂θo
∂θm

∂ψi
∂θn

∂ψj
+

∂2θo

∂ψi∂ψj
∂ψk

∂θo

)
∂L
∂θo

∂θo

∂ψk

=
∂2L

∂θm∂θn
∂θm

∂ψi
∂θn

∂ψj
+
∂L
∂θo

∂2θo

∂ψi∂ψj
− Γomn

�
��∂ψk

∂θo
∂θm

∂ψi
∂θn

∂ψj
∂L
∂θo�

��
∂θo

∂ψk
− ∂2θo

∂ψi∂ψj�
��∂ψk

∂θo
∂L
∂θo�

��
∂θo

∂ψk

=
∂2L

∂θm∂θn
∂θm

∂ψi
∂θn

∂ψj�������
+
∂L
∂θo

∂2θo

∂ψi∂ψj
− Γomn

∂θm

∂ψi
∂θn

∂ψj
∂L
∂θo�������

− ∂2θo

∂ψi∂ψj
∂L
∂θo

=
∂θm

∂ψi
∂θn

∂ψj

(
∂2L

∂θm∂θn
− Γomn

∂L
∂θo

)
=
∂θm

∂ψi
∂θn

∂ψj
Hmn.

(8)
In the matrix form, we can write the above as H̃ = J−⊤HJ−1, where J is the Jacobian of φ. Thus,
the Riemannian Hessian at any θ (not just at critical points) transforms just like the metric and thus
invariant as discussed in Example 4. Note: this only holds when the term containing the connection
coefficients Γkij is explicitly considered. In particular, the Euclidean Hessian does not follow this
tensorial transformation under autodiff due to the fact that (i) Γkij = 0 for any i, j, k and thus dropped
from the equation, and (ii) autodiff is not designed to handle advanced geometric objects like Γkij .

B.2 Hessian-Trace Under Reparametrization

Let L : Rd → R be a function of Rd under the Cartesian coordinates and G a Riemannian metric.
The Riemannian trace of the Hessian matrixH of L is defined by [47]:

(trGH)(θ) = tr(G(θ)
−1
H(θ)). (9)

That is, it is defined as the standard trace of the Hessian operator E.

Let φ : θ 7→ ψ be a reparametrization on Rd. Then, using (2) and the property tr(AB) = tr(BA)
twice, the Riemannian trace of the Hessian transforms into

(trG̃ H̃)(ψ) = tr(Ẽ(ψ))

= tr((J−1(ψ))−1G(φ−1(ψ))H(φ−1(ψ))J−1(ψ))

= tr(G(φ−1(ψ))H(φ−1(ψ)))

= (trGH)(φ−1(ψ)).

(10)

Since ψ = φ(θ), we have that (trG̃ H̃)(ψ) = (trGH)(θ) for any given θ. Therefore, the trace of
the Hessian operator (or the Riemannian trace of the Hessian) is invariant.

B.3 Hessian-Eigenvalues Under Reparametrization

We use the setting from the preceding section. Recall that λ is an eigenvalue of the linear map
E(θ) = G(θ)−1H(θ) on the tangent space at z ∈ Rd that is represented θ if E(θ)v = λv for
an eigenvector v ∈ TzRd. We shall show that λ̃, the eigenvalue under under the reparametrization
φ : θ 7→ ψ, equals the original eigenvalue λ.

Using the transformation rule of E(θ) in (2) and the transformation rule of tangent vectors in (4),
along with the relation (J−1(ψ))−1 = J(φ−1(ψ)), we get

Ẽ(ψ)ṽ = λ̃ṽ

(J−1(ψ))−1G(φ−1(ψ))H(φ−1(ψ))����J−1(ψ)������
J(φ−1(ψ))v = λ̃J(φ−1(ψ))v

J(φ−1(ψ))G(φ−1(ψ))H(φ−1(ψ))v = λ̃J(φ−1(ψ))v

(((((((
(J(φ−1(ψ)))−1

������
J(φ−1(ψ))G(φ−1(ψ))H(φ−1(ψ))v = λ̃v

E(φ−1(ψ))v = λ̃v.

(11)

15

Since φ−1(ψ) = θ, we arrive back at the original equation before the reparametrization and thus we
conclude that λ̃ = λ.

Appendix C The Invariance of the Fisher Metric

We have seen that any metric on the parameter space yields inv(equi)variance when all transformation
rules of geometric objects are followed. However, in practical settings, one uses autodiff libraries
[1, 66], whose job is to compute only the elementary rules of derivatives such as the chain and product
rules. Notice that derivatives and Hessians (at least at critical points) are transformed correctly under
autodiff, while the metric is not in general. It is thus practically interesting to find a family of metrics
that transform correctly and automatically under reparametrization, given only an autodiff library.
Under those metrics, the aforementioned inv(equi)variances can thus be obtained effortlessly.

Martens [55, Sec. 12] mentions the following family of curvature matrices satisfying this transforma-
tion behavior

B(θ) ∝ E
x,y∼D

[
J(θ;x)⊤A(θ,x,y)J(θ;x)

]
, (12)

where J(θ; ·) is the network’s Jacobian ∂f(· ;θ)/∂θ, with an arbitrary data distribution D and an
invertible matrix A that transforms likeA(φ−1(ψ)) under φ : θ 7→ ψ. Under a reparametrization φ,
an autodiff library will compute

B̂(ψ) = J−1(ψ)⊤B(φ−1(ψ))J−1(ψ) , (13)

given L ◦ φ−1, due to the elementary transformation rule of J(θ; ·), just like Example 4(c). This
family includes the Fisher and the generalized Gauss-Newton matrices, as well as the empirical Fisher
matrix [44, 55].

However, note that any B as above is sufficient. Thus, this family is much larger than the Fisher
metric, indicating that automatic invariance is not unique to that metric and its denominations.
Moreover, in practice, these metrics are often substituted by structural approximations, such as their
diagonal and Kronecker factorization [56]. This restricts the kinds of reparametrizations under which
these approximate metrics transform automatically: Take the diagonal of (12) as an example. Its
ψ-representation computed by the autodiff library will only match the correct transformation for
element-wise reparametrizations, whose Jacobian J(θ) is diagonal. On top of that, in practical
algorithms, such approximations are usually combined with additional techniques such as damping
or momentum, which further break their automaticness.

Due to the above and because any metric is theoretically in(equi)variant if manual intervention is
performed, the inv(equi)variance property of the Fisher metric should not be the determining factor of
using the Fisher metric. Instead, one should look into its more unique properties such as its statistical
efficiency [3] and guarantees in optimization [34, 78]. Automatic transformation is but a cherry on
top.

It is interesting for future work to extend autodiff libraries to take into account the invariant transfor-
mation rules of geometric objects. By doing so, any metric—not just the Fisher metric—will yield
invariance automatically.

Appendix D General Manifold: Local Coordinate Charts

In the main text, we have exclusively used global coordinate charts (Rd, θ) and (Rd, ψ)—these charts
cover the entire Rd and θ, ψ are homeomorphisms on Rd. However, there exist other coordinate
systems that are not global, i.e. they are constructed using multiple charts {(Ui ⊆ Rd, θi : Ui →
Θi ⊆ Rd)}i s.t. Rd = ∪iUi and each θi is a diffeomorphism on Ui.

If {(Ui, θi)}i and {(Vj , ψj)}j be two local coordinate systems of Rd. Let (Ui, θi) and (Vj , ψj)
be an arbitrary pair of charts from the above collections where Ui ∩ Vj ̸= ∅. In this setting,
reparametrization between these two charts amounts to the condition that the transition map φ
between θ(Ui ∩ Vj) and ψ(Ui ∩ Vj) is a diffeomorphism, see Fig. 6. Reparametrization on the whole
manifold can then be defined if for all pairs of two charts from two coordinate systems, their transition
maps are all diffeomorphism whenever they overlap with each other.

16

Rd

U V

θ
ψ

ϕ

Figure 6: The diffeomorphism φ is defined from
θ(U ∩ V) to ψ(U ∩ V).

Note that this definition is a generalization of
global coordinate charts. In this case, there is
only a single chart for each coordinate system,
i.e. (U, θ) and V, ψ, and they trivially overlap
since U = Rd and V = Rd. Moreover, there
is only a single diffeomorphism of concern, as
shown in Fig. 3.

Our results in the main text hold in this general
case by simply replacing the domain for the
discussion to be the overlapping regions of a
pair of two charts, instead of the whole Rd.

Appendix E Details on Applications

E.1 Infinite-Width Neural Networks

Note We use a 2-layer NN without bias for clarity. The extension to deep networks follows directly
by induction—see e.g. [6, 45]. We also use the same prior variance σ2 without loss of generalization
for simplicity. See also Kristiadi et al. [41, Appendix A] for further intuition. Recall the property of
Gaussians under linear transformation: z ∼ N (µ,Σ) =⇒ Az ∼ N (Aµ,AΣA⊤).

Neural-network Gaussian process (NNGP)

Let f(x) : Rd → R defined by f(x) := w⊤ϕ(Wx) be a real-valued, 2-layer NN with parameter
θ := {W ∈ Rh×n,w ∈ Rh} and component-wise nonlinearity ϕ. Note that we assume x is i.i.d.
Let vec(W) ∼ N (0, σ2I) and w ∼ N (0, σ

2

h I) be priors over the weights. This parametrization of
the weights and the priors is called the standard parametrization (SP) [45, 60].

Step (a) Given a particular preactivation value z, we have a linear model f(x) = w⊤ϕ(z). We
can view this as a Gaussian process with mean and covariance

E[f(x)] = 0⊤ϕ(z) = 0,

Cov[f(x), f(x′)] =
σ2

h
ϕ(z)⊤ϕ(z′) =

σ2

h

h∑
i=1

ϕ(zi)ϕ(z
′
i).

Taking the limit as h→ ∞, the mean stays trivially zero and we have by the law of large numbers:

K(x,x′) := lim
h→∞

Cov[f(x), f(x′)] = lim
h→∞

σ2

h

h∑
i=1

ϕ(zi)ϕ(z
′
i) = σ2 E

zi,z′
i

[ϕ(zi)ϕ(z
′
i)].

In particular, both the mean and covariance over the output does not depend on the particular
realization of the hidden units ϕ(z). That is, they only depend on the distribution of z induced by the
prior, which we will obtain now.

Step (b) Notice that each zi =W⊤
i x whereWi is the i-th row ofW . This is a linear model and

thus, z is distributed as a GP with mean and covariance
E[zi] = 0⊤x = 0,

Cov[zi, z
′
i] = σ2x⊤x′ =: Kz(zi, z

′
i).

So, zi ∼ GP(0,Kz) Since the prior overW is i.i.d., this holds for all i = 1, . . . , h. We can thus now
compute the expectation in K(x,x′): it is done w.r.t. this GP over zi.

To obtain the GP over the function output of a deep network, simply apply steps (a) and (b) above
recursively. The crucial message from this derivation is that as the width of each layer of a deep net
goes to infinity, the network loses representation power—the output of each layer only depends on
the prior, and not on particular values (e.g. learned) of the previous hidden units. In this sense, an
infinite-width L-layer NN is simply a linear model with a constant feature extractor induced by the
network’s first L− 1 layers that are fixed at initialization. Note that the kernel K over the function
output is called the NNGP kernel [45].

17

Neural tangent kernel (NTK)

Let us transformw into v := σ√
h
w andW into V := σ√

h
W and define the prior to bew ∼ N (0, I)

and vec(W) ∼ N (0, I). Then, we define the transformed network as f̂(x) := v⊤ϕ(V x) =
σ√
h
w⊤ϕ

(
σ√
h
Wx

)
with parameter ψ := {V ∈ Rh×n,v ∈ Rh}. This is called the NTK

parametrization (NTP) [29]. We will see below that even though v, V have the same prior distribu-
tions as w,W in the SP, they have different behavior in terms of the NTK.

As before, let us assume a particular preactivation value z. The empirical NTK (i.e. finite-width
NTK) on the last layer is defined by:

K̂(x,x′) := ⟨∇wf̂(x),∇wf̂(x′)⟩ = σ2

h

h∑
i=1

ϕ(zi)ϕ(z
′
i).

The (asymptotic) NTK is obtained by taking the limit of h→ ∞:

K(x,x′) := lim
h→∞

K̂(x,x′) =
σ2

h

h∑
i=1

ϕ(zi)ϕ(z
′
i) = E

zi,z′
i

[ϕ(zi)ϕ(z
′
i)] , (14)

which coincides the NNGP kernel K. Crucially, this is obtained via a backward propagation from the
output of the network and thus the linear-Gaussian property we have used to derive the NNGP via
forward propagation does not apply.3 This is why the scaling of σh is required in the NTP. That is,
using the SP, the empirical NTK is not scaled by σ2

h and thus when taking the limit to obtain K, the
sum diverges and the limit does not exist.

Is the NTP a reparametrization of the SP?

It is tempting to treat the NTP as a reparametrization of the SP—in fact, it is standard in the
literature to treat them as two different parametrizations of the same network. However, we show
that geometrically, this is inaccurate. Indeed from the geometric perspective, if two functions are
reparametrization of each other, they should be invariant, as we have discussed in the main text.
Instead, we show that the different limiting behaviors are present because the NTP and SP assume
two different functions and two different priors—they are not connected by a reparametrization.
This clears up confusion and provides a foundation for future work in this field: To obtain a desired
limiting behavior, study the network architecture and its prior, instead of the parametrization.

Suppose ψ in the NTP is a reparametrization of θ in the SP. Then the function φ : θ 7→ ψ defined
by θ 7→ σ√

h
θ is obviously the smooth reparametrization with an invertible (diagonal) Jacobian

J(θ) = σ√
h
I . In this case, the network in the NTP must be defined by f̃ = f ◦ φ−1, where f is the

SP-network, by Example 4. That is, with some abuse of notation,

f̃(x) = φ−1(v)⊤ϕ(φ−1(V)x) = w⊤ϕ(Wx) = f(x).

This is different from the definition of the NTP-network f̂(x) = v⊤ϕ(V x). So, obviously, the NTP
is not the reparametrization of the SP. Therefore, a clearer way of thinking about the NTP and SP is
to treat them as two separate network functions (i.e. two separate architectures)—the scaling factor
σ√
h

should be thought of as part of the layer’s functional form instead of as part of the parameter. In
particular, they are not two representations of a single abstract function.

To verify this, let us compute the NTK of f̃(x) (i.e. treating the scaling as a reparametrization) at its
last layer. The derivation is based on Section 3.2. First, notice that the differential ∇wf(x) transforms
into J−1(v)⊤∇f̃(x)|φ−1(v) for any x ∈ Rn. Next, notice that the Euclidean metric transforms into
G̃(v) := J−1(v)⊤J−1(v). So the gradient transforms into J(φ−1(v))∇f(x)|φ−1(v).4 Therefore,

3It still applies for obtaining the distribution of zi. The NTK can thus be thought of as a kernel that arises
from performing forward and backward propagations once at initialization [6, 75]. This can be seen in the
expression of the NTKs on lower layers which decompose into the NNGP and an expression similar to (14), but
involving the derivative of ϕ [29].

4We use the gradient to get the NTK since otherwise it does not make sense to take the inner product of
differentials w.r.t. the metric.

18

Table 2: Test accuracies, averaged over 5 random seeds.

Methods MNIST FMNIST CIFAR10 CIFAR100

SGD 99.3 92.9 94.9 76.8
ADAM 99.2 92.6 92.4 71.9

the empirical NTK kernel K̂Ψ for f̃ is given by

K̂Ψ(x,x
′) = ⟨J(φ−1(v))∇f(x)|φ−1(v),J(φ

−1(v))∇f(x′)|φ−1(v)⟩G̃(v)

= (J(φ−1(v))∇f(x)|φ−1(v))
⊤G̃(v)J(φ−1(v))∇f(x′)|φ−1(v)

= (∇f(x)|φ−1(v))
⊤
������
J(φ−1(v))⊤�����

J−1(v)⊤����J−1(v)�����
J(φ−1(v))∇f(x′)|φ−1(v)

= ⟨∇f(x)|φ−1(v),∇f(x′)|φ−1(v)⟩.

Thus, the empirical NTK is invariant and the asymptotic NTK also is. Therefore, we still have a
problem with the NTK blow-up in this parametrization. This reinforces the fact that the difference
between the SP and NTP is not because of parametrization.

Additionally, let us now inspect the priors in the SP and NTP. In the SP, the prior is N (θ | 0, σ2
/hI).

Therefore, so that we have the same prior in both Θ and Ψ, the prior of ψ = φ(θ) must be
N (ψ | 0, I). This is obviously not the case since we have N (ψ | 0, σ2

/hI) because the NTP
explicitly defines N (θ | 0, I) as the prior of θ. Thus, not only that the SP and NTP assume two
different architectures, but they also assume two different prior altogether. It is thus not surprising
that the distribution over their network outputs f(x), f̂(x) are different, both in the finite- and
infinite-width regimes.

Implication In his seminal work, Neal [60] concluded that the fact that infinite-width NNs are
Gaussian processes disappointing. However, as we have seen in the discussion above, different
functional forms, architectures, and priors of NNs yield different limiting behaviors. Therefore,
this gives us hope that meaningful, non-GP infinite-width NNs can be obtained. Indeed, Yang and
Hu [75], Yang et al. [76] have recently shown us a way to do so. However, they argue that their
feature-learning limiting behavior is due to a different parametrization, contrary to the present work.
Our work thus complements theirs and opens up the avenue for constructing non-trivial infinite-width
NNs in a “Bayesian” way, in the sense that we achieve the desired limiting behaviors by varying the
model and the prior.

E.2 Biases of Preconditioned Optimizers

For MNIST and FMNIST, the network is LeNet. Meanwhile, we use the WiderResNet-16-4 model
for CIFAR-10 and -100. For ADAM, we use the default setting suggested by Kingma and Ba [39].
For SGD, we use the commonly-used learning rate of 0.1 with Nesterov momentum 0.9 [26]. The
cosine annealing method is used to schedule the learning rate for 100 epochs. The test accuracies
are in Table 2. Additionally, in Table 3, we discuss the effect of reparametrization to sharpness on
ADAM and SGD.

E.3 Laplace Marginal Likelihood

Let θMAP be a MAP estimate in an arbitrary θ-coordinates of Rd, obtained by minimizing the MAP
loss LMAP. Let log h = −LMAP—note that LMAP itself is a log-density function. The Laplace
marginal likelihood [18, 28, 54] is obtained by performing a second-order Taylor’s expansion:

log h(θ) ≈ log h(θMAP)−
1

2
(θ − θMAP)

⊤H(θMAP)(θ − θMAP),

where H(θMAP) is the Hessian matrix of LMAP at θMAP. Then, by exponentiating and taking the
integral over θ, we have

Z(θMAP) ≈ h(θMAP)

∫
Rd

exp

(
−1

2
(θ − θMAP)

⊤H(θMAP)(θ − θMAP)

)
dθ. (15)

19

Table 3: Hessian-based sharpness measures can change under reparametrization without affecting the
model’s generalization (results on CIFAR-10). The generalization gap is the test accuracy, subtracted
from the train accuracy—lower is better. Under the default parametrization, SGD achieves lower
sharpness and generalizes better than ADAM which achieves higher sharpness. However, one can
reparametrize SGD’s minimum s.t. it achieves much higher (or lower) sharpness than ADAM while
retaining the same generalization performance. Hence, it is hard to study the correlation between
sharpness and generalization. This highlights the need for invariance.

Optimizer Reparametrization ψMAP = φ(θMAP) Generalization gap [%] Sharpness tr(Ĥ(ψMAP))

ADAM ψMAP = θMAP 7.2± 0.2 1929.8± 61.2

SGD
ψMAP = θMAP

5.2± 0.2
1531.8± 14.2

ψMAP = 1
2
θMAP 6143.7± 60.8

ψMAP = 2θMAP 383.6± 3.3

Since the integral is the normalization constant of the Gaussian N (θ | θMAP,H(θMAP)), we obtain
the Laplace log-marginal likelihood (LML):

logZ(θMAP) = −LMAP(θMAP)−
d

2
log(2π) + log detH(θMAP).

Notice thatH(θ) is a bilinear form, acting on the tangent vector d(θMAP) := (θ − θMAP). Under a
reparametrization φ : θ 7→ ψ withψMAP = φ(θMAP), the term inside the exponent in (15) transforms
into

−1

2
(J(φ−1(ψMAP))d(φ

−1(ψMAP)))
⊤(J−1(ψMAP)

⊤H(φ−1(ψMAP))J
−1(ψMAP))

J(φ−1(ψMAP))d(φ
−1(ψMAP)),

due to the transformations of the tangent vector and the bilinear-Hessian. This simplifies into

exp

(
−1

2
d(φ−1(ψMAP))

⊤H(φ−1(ψMAP))d(φ
−1(ψMAP))

)
which always equals the original integrand in (15). Thus, the integral evaluates to the same value.
Hence, the last two terms of logZ(θMAP) transform into −d

2 log(2π) + log detH(φ−1(ψMAP)) in
ψ-coordinates. This quantity is thus invariant under reparametrization since it behaves like standard
functions.

E.3.1 Experiment Setup

We use the toy regression dataset of size 150. Training inputs are sampled uniformly from [0, 8],
while training targets are obtained via y = sinx + ϵ, where ϵ ∼ N (0, 0.32). The network is a
1-hidden layer TanH network trained for 1000 epochs.

20

	Introduction
	Preliminaries
	Some notation for neural networks
	The geometry of the parameter space
	Transformation rules

	Neural Networks and Reparametrization
	Invariance of the Hessian
	Invariance of gradient descent
	Invariance in probability densities

	Related Work
	Some Applications
	Infinite-width neural networks
	The Laplace marginal likelihood
	Biases of preconditioned optimizers

	Conclusion
	A Simple Working Example
	Derivations
	The Riemannian Hessian Under Reparametrization
	Hessian-Trace Under Reparametrization
	Hessian-Eigenvalues Under Reparametrization

	The Invariance of the Fisher Metric
	General Manifold: Local Coordinate Charts
	Details on Applications
	Infinite-Width Neural Networks
	Biases of Preconditioned Optimizers
	Laplace Marginal Likelihood
	Experiment Setup

