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Abstract

Model reparametrization, which follows the change-of-variable rule of calculus, is
a popular way to improve the training of neural nets. But it can also be problem-
atic since it can induce inconsistencies in, e.g., Hessian-based flatness measures,
optimization trajectories, and modes of probability densities. This complicates
downstream analyses: e.g. one cannot definitively relate flatness with generaliza-
tion since arbitrary reparametrization changes their relationship. In this work, we
study the invariance of neural nets under reparametrization from the perspective of
Riemannian geometry. From this point of view, invariance is an inherent property of
any neural net if one explicitly represents the metric and uses the correct associated
transformation rules. This is important since although the metric is always present,
it is often implicitly assumed as identity, and thus dropped from the notation, then
lost under reparametrization. We discuss implications for measuring the flatness
of minima, optimization, and for probability-density maximization. Finally, we

explore some interesting directions where invariance is useful.

1 Introduction

Neural networks (NNs) are parametrized functions. Since
it is often desirable to assign meaning or interpretability
to the parameters (weights) of a network, it is interesting
to ask whether certain transformations of the parameters
leave the network invariant—equivalent in some sense.
Various notions of invariance have been studied in NNs, in
particular under weight-space symmetry [5, 14, 20, 42, 53]
and reparametrization [20, 21, 30, 32, 71]. The former
studies the behavior of a function £(8) under some invert-
ible T : © x G — © where G is a group; for any 6, the
function L is invariant under the symmetry T' if and only
if £L(0) = L(T(0,g)) for all g € G. For example, normal-
ized NNs are symmetric under scaling of the weights, i.e.
L(0) = L(cO) for all ¢ > 0 [7]—similar scale-symmetry
also presents in ReLU NNs [61]. Meanwhile, invariance
under reparametrization studies the behavior of the NN
when it is transformed under the change-of-variable rule
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Figure 1: The difference between the
symmetry (top) and reparametrization
problems (bottom). © and W are two
different parameter spaces.

of calculus: Given a transformed parameter ¢ = (6) under a bijective differentiable ¢ : © — ¥
that maps the original parameter space onto another parameter space, the function £(6) becomes
L() := L(¢~(1)). Note their difference (see Fig. 1): In the former, one works on a single
parameter space O and a single function £—the map 7" acts as a symmetry of elements of © under
the group G. In contrast, the latter assumes two parameter spaces © and ¥ which are connected by ¢

and hence two functions £ and L.
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Figure 2: Invariance is retained (bottom) if the Riemannian metric is explicitly tracked and one
transforms geometric objects such as vectors, covectors, and the metric itself properly under a
reparametrization ¢ : @ — ). (a) Gradient descent’s trajectories are therefore invariant under a
change of parametrization. (b) Invariance of the modes of a probability density function is an inherent
property under a natural base measure induced by the metric. (c) When the Hessian H at a critical
point is seen as a linear map E with the help of the metric, its determinant is invariant.

We focus on the latter. While in this scenario, we have £(vp) = £(8) whenever 1 = ¢(8), it is well-
known that downstream quantities such as optimization trajectories [55, 71], the Hessian [20, Sec. 5],
and probability densities over @ [59, Sec. 5.2.1.4] are not invariant under model reparametrization.
These non-invariances are detrimental since an arbitrary reparametrization can affect the studied
quantities and thus consistency cannot be guaranteed—parametrization muddles the analysis.

For instance, because of this, (i) one cannot relate Hessian-based sharpness measures with gener-
alization and the correlation analyses between them [27, 33, 73] become meaningless, (ii) a good
preconditioner cannot be guaranteed to be good anymore for optimizing the reparametrized model—
this is one reason why invariant methods like natural gradient are desirable [37, 50, 58, 62], and (iii)
under a reparametrization, a prior density might put low probability in a region that corresponds to
the high-probability region in the original space, making posterior inference pathological [25].

To analyze this issue, in this work we adopt the framework of Riemannian geometry, which is a
generalization of calculus studying the intrinsic properties of manifolds. “Intrinsic” in this context
means that objects such as functions, vectors, and tensors defined on the manifold must be independent
of how the manifold is represented via a coordinate system, and conserved under a change of
coordinates [47]. The parameter space of a neural network, which is by default assumed to be
© = R? with the Euclidean metric and the Cartesian coordinates, is a Riemannian manifold—model
reparametrization is such a change in the coordinate system.

Why, then, can reparametrizations bring up the aforementioned inconsistencies? In this work, we
discuss this discrepancy. We observe that this issue often arises because the Riemannian metric is
left implicit, and dropped when computing downstream quantities such as gradients, Hessians, and
volumes on the parameter space. This directly suggests the solution: Invariance under reparametriza-
tion is guaranteed if the Riemannian metric is not just implicitly assumed, but made explicit, and it is
made sure that the associated transformation rules of objects such as vectors, covectors, and tensors
are performed throughout. We show how these insights apply to common cases (Fig. 2).

Limitation Our work focuses on the reparametrization consistency of prior and future methods that
leverage geometric objects such as gradients and the Hessian. Thus, we leave the geometric analysis
for invariance under symmetry as future work. In any case, our work is complimentary to other works
that analyze invariance under symmetry [17, 22, 43, 67, etc]. Moreover, this work’s focus is not to
propose “better” methods e.g. for better preconditioners or better generalization metrics. Rather, we
provide a guardrail for existing and future methods to avoid pathologies due to reparametrization.

2 Preliminaries

This section provides background and notation on relevant concepts of neural networks and Rieman-
nian geometry. For the latter, we frame the discussion in terms of linear algebra as close as possible to
the notation of the ML community: We use regular faces to denote abstract objects and bold faces for



their concrete representations in a particular parametrization. E.g., a linear map A is represented by a
matrix A, a point z is represented by a tuple of numbers 6, an inner product G(z) at z is represented
by a matrix G(0). The same goes for the differential V, V; and the gradient grad, grad.

2.1 Some notation for neural networks

The following concepts are standard, introduced mostly to clarify notation. Let f : R x R? — R¥
with (x,0) — f(x;0) be a model with input, output, and parameter spaces R", R*, R, Let
D := {(x;,y;)}, be a dataset and write X := {@;}", and Y := {y;}",. We moreover write
f(X;0) == vec({f(x;;0)}™,) € R™*. The standard way of training f is by finding a point
0* € RYs.t. 0% = argmingcpa Yoo U(yi, f(x;0)) =: arg mingpa £(0), for some loss function
¢. If we add a weight decay /20| term to £(8), the minimization problem has a probabilistic
interpretation as maximum a posteriori (MAP) estimation of the posterior density p(6 | D) under
the likelihood function p(Y | f(X;80)) o< exp(— Y v, (yi, f(x;;0))) and an isotropic Gaussian
prior p(6) = N(0 | 0,7 'I). We denote the MAP loss by Lyap. In our present context, this
interpretation is relevant because this probabilistic interpretation implies a probability density, and it
is widely known that a probability density transforms nontrivially under reparametrization.

A textbook way of obtaining 6* is gradient descent (GD): At each time step ¢, obtain the next estimate
e+l = g() _ aV L|gw, for some o > 0. This can be considered as the discretization of the
gradient flow ODE @ = —V L|g. Among the many variants of GD is preconditioned GD which
considers a positive-definite matrix field R on R?, yielding @ = —R(8)~! VL|.

2.2 The geometry of the parameter space

Remark 1. We restrict our discussion to global coordinate charts since they are the default assumption
in neural networks, and in a bid to make our discussion clear for people outside of the differential
geometry community. We refer the curious reader to Appendix D for a discussion on local coordinate
charts. Note that, our results hold in the general local-chart formulation. |

The parameter space R? is the canonical ex-
ample of a smooth manifold. We can impose
upon this manifold a (global) coordinate chart: T.R? o

a homeomorphism that represents a point with .</<v_7ﬂ> =v' Gw
an element of R%. The standard choice is the Zw

Cartesian coordinate system 6 : R — © =~ R?, ) »
which we have used in the previous section. That
is, the image of 6 uniquely represents elements
of R%—given a point z € R%, we write 8 = 0(2)
for its coordinate representation under 6.

Rd

The choice of a coordinate system is not unique.
Any homeomorphism v : R — ¥ = R can
be used as an alternative coordinate chart. For
instance, the polar coordinates can be used to
represent points in R instead. Crucially, the
images of any pair of coordinates must be con-
nected through a diffeomorphism (a smooth function with a smooth inverse) ¢ : © — ¥, Such a
map is called a change of coordinates or reparametrization since it acts on the parameter space.

Figure 3: The implicit geometric assumption on
the parameter space R?. 6, are two different
(global) coordinates on R4,

Example 2 (Reparametrization). Reparametrization is ubiquitous in machine learning:

(a) Mean-Field Variational Inference. Let q(x;0) be a variational approximation, which is
often chosen to be N (z | p, diag(co?)), i.e. 0 = {p € R%, 02 € RZ;}. Common choices
of reparametrization of 2 include the log-space [52] or softplus [12] parametrization.

(b) Weight normalization. Given a NN fg, WeightNorm [69] applies the reparametrization
v = rn where 7 € Ry and 1 := 6/|j¢| € S¢~1. This is akin to the polar coordinates.
(Note that we assume 8 € R\ {0} since otherwise ¢ is not a global diffeomorphism.) W

At each point z € R, there exists a vector space T, R? called the tangent space at z, consisting of the
so-called tangent vectors. An important example of a tangent vector is the gradient vector grad L],



of £ : RY — R at 2. The dual space TR of T, R is referred to as the cotangent space and consists
of linear functionals of T, R?, called tangent covectors. An example of a tangent covector is the
differential VL[, of L at z. Under a coordinate system, one can think of both tangent vectors and
covectors as vectors in the sense of linear algebra, i.e., tuples of numbers.

One can take an inner product of tangent vectors by equipping the manifold with a Riemannian
metric G, which, at each point in R? is represented by a positive-definite d x d matrix G’ whose
coefficients depend on the choice of coordinates. With the help of the metric, there is an isomorphism
between T,R? and 7*R¢. In coordinates, it is given by the map T,R? — T*R? : v — Gw and its
inverse T*R? — T,R? : w ++ G~'w. One important instance of this isomorphism is the fact that
grad L|, is represented by G~V £ in coordinates. The natural gradient is a direct consequence of
this fact. In practice, it is standard to assume the Cartesian coordinates on R%, implying G = I. We
have thus grad £ = V £, which only seems trivial at first sight, but reveals the relationship between
the tangent vector on the L.h.s. and the cotangent vector on the r.h.s.

Remark 3. Another common way to define a NN’s parameter space is to define a manifold of
probabilistic models M := {p(Y | f(X;80)) : 6 € R?} and assume that p(Y | f(X;0)) — @ is
the coordinate chart [19, 55, etc.]. The problem with this construction is that there is no bijection
R? — M in general. Indeed, the Jacobian of the map f(X; -) : R? — M is in practice surjective
everywhere due to overparametrization [34, 78]. Therefore, one cannot define a proper metric
on the parameter space R? that corresponds to a metric on the distribution space M [46, Prop.
13.9]. For instance, using this construction, the Fisher metric is singular for overparametrized NNs
[10, 34, 74, 78] and thus not a valid Riemannian metric. The pseudoinverse has been used to handle
this but is mostly limited to theoretical analyses [10, 74]: As far as we know, in practice, damping—
which breaks the interpretation of the Fisher on R as the pullback metric from M—is de facto for
handling this due to its numerical stability [4].

By detaching from the distribution space, the definition used in this work does not have this issue.
It enables more general constructions of metrics in the parameter space since any positive-definite
matrix is admissible. E.g. one is free to add damping or use any approximation to the Fisher—our
results still apply to this case. Thus, our construction is closer to practice. ]

2.2.1 Transformation rules

Differential geometry is the study of coordinate-independent objects: Geometric objects must
be invariant under change-of-coordinates in the sense that any pair of representations must refer
to the same (abstract) object. Suppose ¢ : © — U is a reparametrization, with v = ¢(8).
Coordinate independence is encoded in the following transformation rules, which involve the Jacobian
J(0) = (0v;/00;) of p, and its inverse J 1 (¢p) = (J(8))~! = (06, /0vp;)—the Jacobian of 1.
(Color codes are used for clarity when different objects are present in a single expression later on.)

(a) A function /2 : © — R in #-coordinates transforms into /» = in -coordinates.

(b) A tangent vector v in #-coordinates transforms into .J (6)wv. In particular, a gradient vector
grad L]y transforms into J(0) grad L.

(c) A tangent covector w in f-coordinates transforms into .J ' (1) " w. In particular, given a
transformed function Lo ™" : ¥ — R, we have V(Lo ¢ )|y =J () VL] -1 (),
which we recognize as the standard chain rule.

(d) A metric G(6)becomes J(0)" "G(0)J(0)" ' =T () G(+p)J ' (2)). In general, this
rule applies to any tensor that takes tangent vectors as its arguments, e.g. a bilinear map.

The following examples show how these rules ensure the invariance of geometric objects.

Example 4. Let h, v, w, G respectively be a function, vector, covector, and metric in #-coordinates
at a point @ = 6(z), and let ¢ : © — ¥ be a reparametrization.

(a) Let e := ¢(0) and h:=how Lbeb c O and h expressed in -coordinates, respectively.
Then, h(1)) = h(p~1(x))) = h(0). Thatis, the actions of h and h agree in both coordinates
and thus they represent the same abstract function on R%.

(b) The action of w on v in #-coordinates is given by the product w " v. Let © := J(8)v and
@ := J(0)~ "w be the transformed vector and covectors. Then,

@ o= (L w) T (L) =w v. 1)



That is, both w and w are the representations of the same linear functional; v and ¥ are the
representations of the same tangent vector.

(c) Let G := J~TGJ! be the transformed metric in the 1-coordinates. Then,
TG = LJ/U)T,VXGJ)L(,JU) =v' G
and thus the transformation rules ensure that inner products are also invariant. |

Finally, we say that an ODE’s dynamics is invariant if the trajectory in parametrization corresponds to
the trajectory in another parametrization. Concretely, a trajectory (0;); in © is invariant if under the
reparametrization ¢ : © — W, the transformed trajectory (1, ); is related to (6;); by 6; = ¢~ (1;)
for each ¢. See Fig. 2a for an illustration.

3 Neural Networks and Reparametrization

We discuss three aspects of the parameter space under reparametrization, as illustrated in Fig. 2.
First, we address the non-invariance of Hessian-based flatness measures [e.g., 20], and show how
taking the metric into account provides invariance. Second, we show that the invariance property
often cited in favor of natural gradient is not unique, but an inherent property of any gradient descent
algorithm when considering its ODE. Finally, we show that modes of probability density functions
on the parameter space are invariant when the Lebesgue measure is generalized using the metric.

3.1 Invariance of the Hessian

A growing body of literature connects the flatness of minima found by optimizers to generalization
performance [8, 13, 23, 27, 36, 38, 48, 53]. However, as Dinh et al. [20] observed, this association
does not have a solid foundation since standard sharpness measures derived from the Hessian of the
loss function are not invariant under reparametrization.

From the Riemannian-geometric perspective, the Hessian of a function £ (or Lyap or any other
twice- dlfferentlable functlon) on 0 coordmates is represented by a d x d matrix with coefficients
H;;(0) := 0000 (0) — Zk T ( ) =(0), forany € © and i,j = 1,...,d, WhereI‘k] isa
particular three-dimensional array Whlle it might seem daunting, when 0 is a local minimum of L,
the second term is zero since the partial derivatives of £ are all zero at 6. Thus, H (0) equals the
standard Hessian matrix (9°£/06,06,) at @ € arg min L.

Considering the Hessian as a bilinear function that takes two vectors and produces a number, it follows
the covariant transformation rule, just like the metric (see Appendix B.1 for a derivation): Let p : © —
Uandy = ga( ). The Hessian matrix H (0) at a local minimum in #-coordinates transforms into
H(y)=J ('4/;)TH (p~1(2p))J ~1(%) in ¢-coordinates—this is correctly computed by automatic
differentiation, i.e. by chain and product rules. But, while this gives invariance of H as a bilinear
map (Example 4c), the determinant of H—a popular flatness measure—is not invariant because

(det H) () = det (J 7' () "H (™" (4))J "' (¥)) = (det T~} (3))*(det H (™' (3))),

and so in general, we do not have the relation (det H ) = (det H) o ¢! that would make this
function invariant under reparametrization (Example 4a).

The key to obtaining invariance is to employ the metric G to transform the bilinear Hessian into a
linear map/operator on the tangent space. This is done by simply multiplying H with the inverse of
the metric G, i.e. E := G~!'H. The determinant of E is thus an invariant quantity.' To show this,
under ¢, the linear map E transforms into

WG )T M H(o ()T (4)
=(J Y())~ 1G( (¢))H(</J’1(¢))J "),

due to the transformation of both G' and H . Hence, det E transforms into

(det E)(¢p) = (det J=Hg)T (det J=HH)T det (G (o~ () H (9™ (4))) = (det E) (9" (3))

IThis is because one can view the loss landscape as a hypersurface: H is connected to the second fundamental
form and E to the shape operator. det E is thus related to the invariant Gaussian curvature [47, Ch. 8].

(@)




in 1-coordinates. Thus, we have the desired invariant transformation (det E) = (det E) o ~!. Note
that G is an arbitrary metric—this invariance thus also holds for the Euclidean case where G = I.
Note further that the trace and eigenvalues of E are also invariant; see Appendices B.2 and B.3.
Finally, see Appendix A for a simple working example.

To obtain invariance in the Hessian-determinant, -trace, and -eigenvalues at a minimum of £, we
explicitly write it as E = G~' H, even when G = I, and transform it according to Section 2.2.1.

3.2 Invariance of gradient descent

Viewed from the geometric perspective, both gradient descent (GD) and natural gradient descent
(NGD) come from the same ODE framework 8 = —G'(0) =1V L|5. But NGD is widely presented as
invariant under reparametrization, while GD is not [51, 71, etc.]. Is the choice of the metric G the
cause? Here we will show from the framework laid out in Section 2.2 that any metric is invariant if its
transformation rule is faithfully followed. And thus, the invariance of NGD is not unique. Rather, the
Fisher metric used in NGD is part of the family of metrics that transform correctly under autodiff, and
thus it is “automatically” invariant under standard deep learning libraries like PyTorch, TensorFlow,
and JAX [1, 24, 66]—see Appendix C.

The underlying assumption of GD is that one works in the Cartesian coordinates and that G = I.
For this reason, one can ignore the metric G'in @ = —G/(0)~*V L]y, and simply write § = —V L|.
This is correct but this simplification is exactly what makes GD not invariant under a reparametrization
¢ : © — U where 1) = ¢(@). To see this, notice that while GD transforms V £ correctly via the
chainrule ¢ = —J '(¢») ' VL »1(x)» by ignoring the metric I, one would miss the important
fact that it must also be transformed into G/(vp) = J ' (¢p) T J ' (2}). It is clear that G (1)) does not
equal I in general. Thus, we cannot ignore this term in the transformed dynamics since it would
imply that one uses a different metric—the dynamics are thus different in the - and i)-coordinates.
When one explicitly considers the above transformation, one obtains

Y =-G) T () VL 1y = (LK T (@) LM VL
= —J(p  (P)) VL1 ()

This dynamics in 1-coordinates preserves the assumption that the metric is I in #-coordinates and
thus invariant. In contrast, the dynamics 1) under just the chain rule implicitly changes the metric in
0-coordinates, i.e. from I into J(6)TJ (@), and thus the trajectories are not invariant.

o1 (1)

This discussion can be extended to any metric R: Simply use the transformed metric l%(w) =
J ()" R(¢~1(v))J (1)), and we obtain the invariant dynamics of any preconditioned GD with
preconditioner R given by ¢ = —J (¢} (¢)) R(¢ ™ (¥)) 'V L] -1 ().

To obtain invariance in optimizers with any metric/preconditioner, explicitly write down the metric
even if it is trivial, and perform the proper transformation under reparametrization.

Remark 5. For the discretized dynamics, the larger the step size, the less exact the invariance. For
instance, discrete natural gradient update rule is only invariant up to the first-order [50, 71]. This is
orthogonal to our work since it is about improving ODE solvers [71]. ]

The consequence is that we need a “geometric-aware” autodiff library such that the invariant dy-
namics above is always satisfied. In this case, any preconditioner R yields invariance under any
reparametrization, even nonlinear ones. This is in contrast to the current literature, e.g. under standard
autodiff, Newton’s method is only affine-invariant, and structured approximate NGD methods such
as K-FAC are only invariant under a smaller class of reparametrizations [56].

3.3 Invariance in probability densities

Let go(0) be a probability density function (pdf) under the Lebesgue measure d@ on ©.
Under a reparametrization ¢ : © — WU with ¢ = ¢(0), it transforms into ¢y (¢p) =
qo(p~t(1))| det J~1(ab)|. This transformation rule ensures gy to be a valid pdf under the Lebesgue
measure dip on VU, i.e. f\p qu (1) dp = 1. Notice, in general gy # go © ¢! due to the change-
of-random-variable rule. Hence, pdfs transform differently than standard functions (Example 4a)



and can thus have non-invariant modes [cf. 59, Sec. 5.2.1.4]: Density maximization, such as the
optimization of Lyap, is not invariant even if an invariant optimizer is employed.

Just like the discussion in the previous section, it is frequently suggested that to obtain invariance
here, one must again employ the help of the Fisher matrix F' [21]. When applied to a prior, this
gives rise to the famous Jeffreys [31] prior p;(0) o |det F(B)\ 2 with normalization constant
Jo | det F(6)]2 2 d@. Is the Fisher actually necessary to obtain invariance in pdf maximization?

Here, we show that the same principle of “being aware of the implicit metric and following proper
transformation rules” can be applied. A pdf ge(€) can be written as gg (6) = “—5— to explicitly
show the dependency of the base measure df—this is the Lebesgue measure on ©, which is the
natural unit-volume? measure in Euclidean space. Given a metric G, the natural volume-measurement
device on @ is the Riemannian volume form dVs which has §-coordinate representation dVg =
| det G/()|2 d6. This object takes the role of the Lebesgue measure on a Riemannian manifold:
Intuitively, it behaves like the Lebesgue measure but takes the (local) distortion due to the metric G
into account. Indeed, when G = I we recover d6.

Here, we instead argue that invariance is an inherent property of the modes of probability densities, as
long as we remain aware of the metric and transform it properly under reparametrization. Explicitly
acknowledging the presence of the metric, we obtain

do

W = | det G(9)|7% =:¢§(0). 3)

This is a valid probability density under dVg on © since f® q@ )dVe = 1. This formulation
generalizes the standard Lebesgue density. And, it becomes clear that the Jeffreys prior is simply the
uniform distribution under dV; its density is qg = 1 under dVF.

We can now address the invariance question. Under ¢, considering the transformation rules for both
go(0) and G, the density (3) thus becomes

q5 () = | det(J ™ (¥) ' Ge™ ()T~ ()
= |det Gl (4))|72 = 4§ (o™ (4)).

This means, ¢§ transforms into ¢§ o ¢ =1 and is thus invariant since it transforms as standard
function—notice the lack of the Jacobian-determinant term here, compared to the standard change-of-
density rule. In particular, just like standard unconstrained functions, the modes of qg are invariant
under reparametrization. Since G is arbitrary, this also holds for G = I, and thus the modes of
Lebesgue-densities are invariant, as long as I is transformed correctly (Fig. 2b).

N|=

“

Note that, even if the transformation rule is now different from the one in standard probability theory,
¢$ is a valid density under the transformed volume form This is because due to the transformation
of the metric G »—> G we have dVa = |det G(o 1 (2))|2| det J 1 ()| dap. Thus, together with
(4), we have [, q§(¢)dVe = 1. This also shows that the |det J ()| term in the standard
change-of-density formula (i.e. when G = I) is actually part of the transformation of d@.

Put another way, the standard change-of-density formula ignores the metric. The resulting den-
sity thus must integrate w.r.t. di)—essentially assuming a change of geometry, not just a simple
reparametrization—and thus ¢g can have different modes than the original gg. While this non-
invariance and change of geometry are useful, e.g. for normalizing flows [68], they cause issues when
invariance is desirable, such as in Bayesian inference.

To obtain invariance in density maximization, transform the density function under the Riemannian
volume form as an unconstrained function. In particular when G' = I in ©, this gives the invariant
transformation of a Lebesgue density qe, i.e. ¢y = qo o ¢~ L.

4 Related Work

While reparametrization has been extensively used specifically due to its “non-invariance”, e.g. in
normalizing flows [63, 68], optimization [19, 69], and Bayesian inference [64, 72], our work is not

*In the sense that the parallelepiped spanned by an orthonormal basis has volume one.



at odds with them. Instead, it gives further insights into the inner working of those methods: They
are formulated by not following the geometric rules laid out in Section 2.2, and thus in this case,
reparametrization implies a change of metric and hence a change of geometry of the parameter space.
They can thus be seen as methods for metric learning [35, 77], i.e. finding the “best” G for the
problem at hand, and are compatible with our work since we do not assume a particular metric.

Hessian-based sharpness measures have been extensively used to measure the generalization of
neural nets [13, 27, 53]. However, as Dinh et al. [20] pointed out, they are not invariant under
reparametrization. Previous work has proposed the Fisher metric to obtain invariant flatness measures
[30, 38, 49]. In this work, we have argued that while the Fisher metric is a good choice due to
its automatic-invariance property among other statistical benefits [49], any metric is invariant if
one follows the proper transformation rules faithfully. That is, the Fisher metric is not necessary
if invariance is the only criterion. Similar reasoning about the Fisher metric has been argued in
optimization [3, 37, 51, 55, 65, 71] and MAP estimation [21, 32]: the Fisher metric is often used due
to its invariance. However, we have discussed that it is not even the unique automatically invariant
metric (Appendix C), so the invariance of the Fisher should not be the decisive factor when selecting
a metric. By removing invariance as a factor, our work gives practitioners more freedom in selecting
a more suitable metric for the problem at hand, beyond the usual Fisher metric.

Finally, the present work is not limited to just the parameter space. For instance, it is desirable for the
latent spaces of variational autoencoders [40] to be invariant under reparametrization [2, 25]. The
insights of our work can be implemented directly to latent spaces since they are also manifolds [9].

5 Some Applications

We present applications in infinite-width Bayesian NNs, model selection, and optimization, to show
some directions where the results presented above, and invariance theory in general, can be useful.
They are not exhaustive, but we hope they can be an inspiration and foundation for future research.

5.1 Infinite-width neural networks

Bayesian NNs tend to Gaussian processes (GPs)
as their widths go to infinity [57, 60]. It is widely

believed that different parametrizations of an ot

NN yield different limiting kernels [75]. For RN

instance, the NTK parametrization (NTP) yields . . : ' ‘ '
the NTK [29], and the standard parametrization -2 0 2 -2 0 2
(SP) yields the NNGP kernel [45]. e v

Due to their nomenclatures and the choice of Figure 4: Even though AV (6 | 0,07 /hT) in the SP
priors, it is tempting to treat the NTP and SP and \(¢ | 0.¢” /AT ) in the NTP, they correspond
as reparametrization of each other. That is, at to different priors. Here, weuse 0 = 1, h = 4.
each layer, the SP parameter 0 transforms into

Y =p0)=0c/ \/E h@ where h is the previous layer’s width. This induces the same prior on both 8
and 1, i.e. N'(0, 02 /hI), and thus one might guess that invariance should be immediate. However, if
they are indeed a reparametrization of the other, the NN fg must transform as fy, := fg 0 o~ (1))
and any downstream quantities, including the NTK, must also be invariant. This is a contradiction
since the functional form of the NTP shown in Jacot et al. [29] does not equal fy, and the NTK
diverges in the SP but not in the NTP [70]. The SP and NTP are thus not just reparametrizations.

Instead, we argue that the SP and NTP are two completely different choices of the NN’s architectures,
hyperparameters (e.g. learning rate), and priors—see Fig. 4 for intuition and Appendix E.1 for the
details. Seen this way, it is thus not surprising that different “parametrization” yields different limiting
behavior. Note that this argument applies to other “parametrizations” [e.g. 15, 70, 75, 76].

Altogether, our work complements previous work and opens up the avenue for constructing non-trivial
infinite-width NNs in a “Bayesian” way, in the sense that we argue to achieve a desired limiting
behavior by varying the model (i.e. architecture, functional form) and the prior (including over
hyperparameters) instead of varying the parametrization. This way, one may leverage Bayesian
analysis, e.g. model selection via the marginal likelihood [28, 54], for studying infinite-width NNs.



5.2 The Laplace marginal likelihood

The Laplace log-marginal likelihood (LML) of a model M with parameter in R%—useful for Bayesian
model comparison [11, Sec. 4.4.1]—is defined by [54]

log Z(M, BMAP) = _E(QMAP) + logp(HMAp) — % 10g(2ﬂ') + % log det H(BMAP). 5)

Let ¢ : Oyap — Ywmap be a reparametrization of R?. It is of interest to answer whether log Z is
invariant under ¢, because if it is not, then ¢ introduces an additional confounder in the model
selection and therefore might yield spurious/inconsistent results. For instance, there might exists a
reparametrization s.t. log Z (M) > log Z(M3) even though originally log Z(M;) < log Z(Mys).
The question of “which model is better” thus cannot be answered definitively.

As we have established in Section 3.3, the first and second terms, i.e. Lyap, are invariant under the
Riemannian volume measure. At a glance, the remaining terms do not seem to be invariant due to the
transformation of the bilinear-Hessian as discussed in Sec. 3.1. Here, we argue that these terms are
invariant when one considers the derivation of the Laplace LML, not just the individual terms in (5).

In the Laplace approximation, the last . »
two terms of log Z are the normalization Table 1: The Laplace LML log Z and its decomposition

constant of the unnormalized density [18] ©n @ NN under different parametrizations. £ and “Rest”
h(8) := exp (_%dT H Oy Ap)d), where stand for the first and the remaining terms in (5).

d := (0 — Oyap). Notice that d is a tan-
gent vector at Oyap and H (Oyap) is a bi-
linear form acting on d. Using the trans- Car.tesian -212.74£34  -143.44+0.0 -69.3+34
formation rules in Example 4, it is straight- WeightNorm  -227.1£3.6  -143.4£0.0 -83.7£3.6
forward to show that h +— h o ¢~ '—see

Appendix E.3. Since Z is fully determined by h, this suggests that log Z (M Oyap) also transforms
into log Z(M; ¢~ (1map)), where 1pap = ©(Omap). This is nothing but the transformation of a

standard, unconstrained function on R<, thus log Z is invariant.

Param. log Z —L Rest

We show this numerically in Table 1. We train a network in the Cartesian parametrization and obtain
its log Z. Then we reparametrize the net with WeightNorm and naively compute log Z again. These
log Z’s are different because the WeightNorm introduces more parameters than the Cartesian one,
even though the degrees of freedom are the same. Moreover, the Hessian-determinant is not invariant
under autodiff. However, when transformed as argued above, log Z is trivially invariant.

5.3 Biases of preconditioned optimizers

The loss landscape depends on the metric
assumed in the parameter space through 30
the Hessian operator E = G ~'H. The
assumption on G in practice depends on

20

Log-Trace Hessian

the choice of the optimizer. For instance, IscbH = E
under the default assumption of the Carte- I ADAM H
sian coordinates, using GD implies the Eu- l ADAM E

clidean metric G = I, and ADAM uses

the gradient-2nd-moment metric [39]. MNIST  FMNIST = CIFARIO0  CIFAR100

Dataset
We argue that explicitly including the met- o ) ]
ric is not just theoretically the correct thing Figure 5: The effect of viewing the Hessian as a lin-

to do (since it induces invariance, and by ~€ar map E to measure sharpness at minima. ADAM
Riemannian geometry), but also practically finds much sharper minima when the geometry of the
beneficial. Fig. 5 compares measurements ~parameter space is taken into account.

of sharpness of minima (Hessian-trace).

Using the metric-aware Hessian operator E, one can show definitively (i.e. independent of the
choice of parametrization) that ADAM tends to obtain much sharper minima than SGD. The benefits
of using the Hessian operator have also been confirmed in previous work. Cohen et al. [16] argue that
when analyzing the optimization dynamic of an adaptive/preconditioned GD algorithm, one should
take the preconditioner into account when measuring Hessian-based sharpness measures. From
this, they demonstrate a sharpness-evolution behavior known in vanilla GD, allowing a comparison
between vanilla and adaptive GD.



6 Conclusion

In this work, we addressed the invariance and invariance associated with the reparametrization of
neural nets. We started with the observation that the parameter space is a Riemannian manifold,
albeit often a trivial one. This raises the question of why one should observe non-invariance in neural
nets, whereas, by definition, Riemannian manifolds are invariant under a change of coordinates. As
we showed, this discrepancy only arises if the transformations used in the construction of a neural
net along with an optimizer ignore the implicitly assumed metric. By acknowledging the metric
and using the transformation rules associated with geometric objects, invariance and invariance
under reparametrization are then guaranteed. Our results provide a geometric solution towards full
invariance of neural nets—it is compatible with and complementary to other works that focus on
invariance under group-action symmetries, both in the weight and input spaces of neural networks.
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Appendix A A Simple Working Example

Let © := R% and let £ : R? — R defined by £(8) := 3¢, (6,)? be a twice-differentiable function

on ©. Suppose ¢ : © — ¥ defined by p(0) = 30 =: 1) be the reparametrization of choice. In
this example, we shall see how this often-used reparametrization leads to pathologies in the values
derived from the Hessian of £ computed by an autodiff system.

Notice that the Jacobian of ¢ is given by J(0) = diag(3,...,3) € R¥? and its inverse is J ~! (1)) =
diag(1/3, ..., 1/3). The autodiff Hessian matrix is given by H (0) = 2I € R?*?. When we transform
6 — 1, the function £(8) becomes L (1)) := Zle (1/31);)2. The autodiff will take into account this
change and thus will compute the Hessian H of £ as

H,;;(¢) = diag(/3,...,1/3) (2I) diag(1/s, ..., 1/3) = diag(?/s, ..., 2/9).
Notice that, det H (0) = 2¢, meanwhile, we have det H () = (2/9)?. Therefore, the Hessian
determinant computed by an autodiff system is not invariant under reparametrization.

But if instead we explicitly take into account the metric into the Hessian, which by default is
(implicitly) chosen to be G(6) = I, resulting in the seemingly redundant expression E(6) =
G(0)"'H(0) = I'(2I), and perform the correct transformation on both identity matrices, we
obtain

E(y) = (diag(Ys, ..., Y/3) Idiag(Y/s,...,1/3)) " ‘diag(V/s, . .., 1/3) (2I) diag(V/3, . .., 1/3)
= diag(3,... 3)@%@%(2[) diag(1/3,...,1/3)

= diag(3,...,3) (2I) diag(/s, ..., 1/3).
Thus, the determinant of the transformed “metric-conditioned Hessian” equals
det E(ep) = (det diag(3,...,3)) (det 2I)(det diag(1/3, . .., 1/3)) = 392%(1/3)¢ = 27,

which coincides with the determinant of the original E.

Appendix B Derivations

Note. Throughout this section, we use the Einstein summation convention: If the same index
appears twice, once as an upper index and once as a lower index, we sum them over. For example:
z = a'y; means z = Y, x'y; and BY = A2’ means BY = Y7, AFa’, etc. Specifically for partial
derivatives, the index of the denominator is always treated as a lower index.

B.1 The Riemannian Hessian Under Reparametrization

Let £ : M — R be a function on a Riemannian manifold M with metric G. The Riemannian Hessian
Hess L of L is defined in coordinates 6 by

= 0°L _pk 9L (6)
Y 0600007 Y 06
where I‘f] is the connection coefficient.
Under a change of coordinates ¢ : 6 — 1, we have L=Lo o1 and
- k 9™ HO™ 200 k
I‘fj _ o oY~ 0™ 0 0 oY N

90 Ot Opd - OapidpI HO°
where m, n, o are just dummy indices—present to express summations. Note that the transformation

rule for I‘fj implies that it is not a tensor—to be a tensor, there must not be the second term in the
previous formula.
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Using (7) and the standard chain & product rules to transform the partial derivatives in (6), we obtain
the coordinate representation of the transformed Hessian Hess L:

_P(Low™) i dLop™)

S T
_ 9L _00m0e oL 0% _( o OYF00™ 00" 5% a¢k> oL 0e°
DOm0" Dt i | 06° o\ " 08° Dyl Dl | Opiogi 96° ) 98° o
QPL 90™ 96" | OL 5

]

oY 00™ 90" OL 06 9%0° 0y oL 962

= 00m00" Ot Opi * 200 Opionpi Fm”/ée)o Pt DI DO° Fapk  pidapi 00° 9° Fipk

9L oo™ 60”+ oL 82H:° _ o 0™ 90" oL 0%0° _ 0L
—00mO0" Onpt O o JpiopI M Ot OrpI 06° 10 06°

0™ 00" ( 0L o 8£)

= i Opi \ 0maen ™ 9go
0™ 0™
oy g

) ®)
In the matrix form, we can write the above as H = J~ T HJ !, where J is the Jacobian of . Thus,
the Riemannian Hessian at any 6 (not just at critical points) transforms just like the metric and thus
invariant as discussed in Example 4. Note: this only holds when the term containing the connection
coefficients I‘k is explicitly considered. In particular, the Euclidean Hessian does not follow this
tensorial transformatlon under autodiff due to the fact that (i) I‘k = 0 for any 4, j, k and thus dropped
from the equation, and (ii) autodiff is not designed to handle advanced geometric objects like I‘

B.2 Hessian-Trace Under Reparametrization

Let £ : R? — R be a function of R? under the Cartesian coordinates and G a Riemannian metric.
The Riemannian trace of the Hessian matrix H of L is defined by [47]:

(tre H)(0) = tr(G(6) " H(9)). ©)
That is, it is defined as the standard trace of the Hessian operator E.
Let ¢ : @ +— 1) be a reparametrization on R%. Then, using (2) and the property tr(AB) = tr(BA)
twice, the Riemannian trace of the Hessian transforms into
(trg H)(¢) = tr(E(¢))
= (I @) G WD H( ()T @) 00
= tr(G(p~ (i/i))H(w_1 (¥)))
= (trg H)(p ™' ().

Since ¥ = (), we have that (trg H) (1)) = (trg H)(8) for any given 8. Therefore, the trace of
the Hessian operator (or the Riemannian trace of the Hessian) is invariant.

B.3 Hessian-Eigenvalues Under Reparametrization

We use the setting from the preceding section. Recall that A is an eigenvalue of the linear map
E(6) = G(0)"'H(8) on the tangent space at z € R? that is represented 6 if E(8)v = v for
an eigenvector v € T,R?. We shall show that ), the eigenvalue under under the reparametrization
@ : 8 — 1, equals the original eigenvalue .

Using the transformation rule of E(0) in (2) and the transformation rule of tangent vectors in (4),
along with the relation (J (1))~ = J(p~1(2))), we get

E@)o = Ao
(@) WD H(e MIHD (e=HTo = M (0™ (¥)w
J(so‘l(w»G(so L) H (o7 () = A (¢ (9))v (11)
(J =T e HP)) G (9) H (o™ (¥))v = §v

E(p™' (¥)v = Iv.
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Since ¢~ !(1p) = 6, we arrive back at the original equation before the reparametrization and thus we
conclude that A = \.

Appendix C The Invariance of the Fisher Metric

We have seen that any metric on the parameter space yields inv(equi)variance when all transformation
rules of geometric objects are followed. However, in practical settings, one uses autodiff libraries
[1, 66], whose job is to compute only the elementary rules of derivatives such as the chain and product
rules. Notice that derivatives and Hessians (at least at critical points) are transformed correctly under
autodiff, while the metric is not in general. It is thus practically interesting to find a family of metrics
that transform correctly and automatically under reparametrization, given only an autodiff library.
Under those metrics, the aforementioned inv(equi)variances can thus be obtained effortlessly.

Martens [55, Sec. 12] mentions the following family of curvature matrices satisfying this transforma-
tion behavior
B(6)x E [J(6;x)" A(0,2,y)J(0;2)] (12)
x, Yy~
where J(0; -) is the network’s Jacobian 9 f( - ; 8) /00, with an arbitrary data distribution D and an
invertible matrix A that transforms like A(o (1)) under ¢ : @ — ). Under a reparametrization ¢,
an autodiff library will compute

B(y)=J ' (¥) Bl (%)) ' (%), (13)

given £ o 1, due to the elementary transformation rule of J(8;-), just like Example 4(c). This
family includes the Fisher and the generalized Gauss-Newton matrices, as well as the empirical Fisher
matrix [44, 55].

However, note that any B as above is sufficient. Thus, this family is much larger than the Fisher
metric, indicating that automatic invariance is not unique to that metric and its denominations.
Moreover, in practice, these metrics are often substituted by structural approximations, such as their
diagonal and Kronecker factorization [56]. This restricts the kinds of reparametrizations under which
these approximate metrics transform automatically: Take the diagonal of (12) as an example. Its
1-representation computed by the autodiff library will only match the correct transformation for
element-wise reparametrizations, whose Jacobian J(0) is diagonal. On top of that, in practical
algorithms, such approximations are usually combined with additional techniques such as damping
or momentum, which further break their automaticness.

Due to the above and because any metric is theoretically in(equi)variant if manual intervention is
performed, the inv(equi)variance property of the Fisher metric should not be the determining factor of
using the Fisher metric. Instead, one should look into its more unique properties such as its statistical
efficiency [3] and guarantees in optimization [34, 78]. Automatic transformation is but a cherry on
top.

It is interesting for future work to extend autodiff libraries to take into account the invariant transfor-
mation rules of geometric objects. By doing so, any metric—not just the Fisher metric—will yield
invariance automatically.

Appendix D General Manifold: Local Coordinate Charts

In the main text, we have exclusively used global coordinate charts (R?, §) and (R, 1/)—these charts
cover the entire R and 6, 1) are homeomorphisms on R<. However, there exist other coordinate
systems that are not global, i.e. they are constructed using multiple charts {(U; C R% 6, : U; —
0; C RY)}; s.t. RY = U, U; and each 6); is a diffeomorphism on Uj.

If {(U;,0;)}; and {(V},%;)}; be two local coordinate systems of R?. Let (U;,6;) and (V;, ;)
be an arbitrary pair of charts from the above collections where U; N V; # @. In this setting,
reparametrization between these two charts amounts to the condition that the transition map ¢
between 6(U; N'V;) and ¥ (U; N'V;) is a diffeomorphism, see Fig. 6. Reparametrization on the whole
manifold can then be defined if for all pairs of two charts from two coordinate systems, their transition
maps are all diffeomorphism whenever they overlap with each other.
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Note that this definition is a generalization of Rd

global coordinate charts. In this case, there is Lo Tst~

only a single chart for each coordinate system, Sl

i.e. (U,0) and V, 4, and they trivially overlap U v

since U = R% and V' = R<. Moreover, there R \\\// !

is only a single diffeomorphism of concern, as 0 T ¥

shown in Fig. 3.

Our results in the main text hold in this general
case by simply replacing the domain for the
discussion to be the overlapping regions of a
pair of two charts, instead of the whole RY.

Appendix E - Details on Applications Figure 6: The diffeomorphism ¢ is defined from

E.1 Infinite-Width Neural Networks oUNV)epUnV).

Note We use a 2-layer NN without bias for clarity. The extension to deep networks follows directly
by induction—see e.g. [6, 45]. We also use the same prior variance o2 without loss of generalization
for simplicity. See also Kristiadi et al. [41, Appendix A] for further intuition. Recall the property of
Gaussians under linear transformation: z ~ N (u,¥) = Az ~ N (Au, AZAT).

Neural-network Gaussian process (NNGP)

Let f(x) : R? — R defined by f(x) := w ' ¢(Wx) be a real-valued, 2-layer NN with parameter
0 = {W € R"" w € R"} and component wise nonlinearity ¢. Note that we assume  is i.i.d.

Let vec(W) ~ N (0,0%T ) and w ~ N(0, 5-T) be priors over the weights. This parametrization of
the weights and the priors is called the standard parametrization (SP) [45, 60].

Step (a) Given a particular preactivation value z, we have a linear model f(z) = w ' ¢(z). We
can view this as a Gaussian process with mean and covariance

E[f(z)] =07 ¢(z) =0,

Covlf(@). f@)] = () o(=)) = & Z¢ 2)
Taking the limit as h — oo, the mean stays trivially zero and we have by the law of large numbers:
9 h
K(z,') = lim Cov[f(z), f(&')] = lim == 3" (2:) 6(2)) = 0* E [p(z:)6(2))].
h— oo h—oo h . ’

zi,zi

In particular, both the mean and covariance over the output does not depend on the particular
realization of the hidden units ¢(z). That is, they only depend on the distribution of z induced by the
prior, which we will obtain now.

Step (b) Notice that each z; = VVZ-Tac where W; is the ¢-th row of W. This is a linear model and
thus, z is distributed as a GP with mean and covariance
E[z] =0Tz =0,

Cov[z;, zl] = o’z "' =: K,(2;, 2)).

So, z; ~ GP(0, K ) Since the prior over W is i.i.d., this holds for all i = 1, ..., h. We can thus now
compute the expectation in K (x, z’): it is done w.r.t. this GP over z;.

To obtain the GP over the function output of a deep network, simply apply steps (a) and (b) above
recursively. The crucial message from this derivation is that as the width of each layer of a deep net
goes to infinity, the network loses representation power—the output of each layer only depends on
the prior, and not on particular values (e.g. learned) of the previous hidden units. In this sense, an
infinite-width L-layer NN is simply a linear model with a constant feature extractor induced by the
network’s first L — 1 layers that are fixed at initialization. Note that the kernel K over the function
output is called the NNGP kernel [45].
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Neural tangent kernel (NTK)

Let us transform w into v := ﬁw and Winto V := %W and define the prior to be w ~ A(0, I)
and vec(W) ~ N(0,I). Then, we define the transformed network as f(z) := v ¢(Va) =
%wﬁ{) (ﬁW:c) with parameter 1 := {V € R"" u ¢ R"}. This is called the NTK

parametrization (NTP) [29]. We will see below that even though v, V' have the same prior distribu-
tions as w, W in the SP, they have different behavior in terms of the NTK.

As before, let us assume a particular preactivation value z. The empirical NTK (i.e. finite-width
NTK) on the last layer is defined by:

5 h
A~ N " - g
K:(SB, T ) - <Tw,f ( ) vwf - ? Z
The (asymptotic) NTK is obtained by taking the limit of A — oo
O'2 h
N . - . /
K(z,a') = lim K(@,2') = - ; )= E =09z, (14)

which coincides the NNGP kernel K. Crucially, this is obtained via a backward propagation from the
output of the network and thus the linear-Gaussian property we have used to derive the NNGP via
forward propagation does not apply.? This is Why the scaling of ¢ is required in the NTP. That is,

using the SP, the empirical NTK is not scaled by 7~ ® and thus when taking the limit to obtain /C, the
sum diverges and the limit does not exist.

Is the NTP a reparametrization of the SP?

It is tempting to treat the NTP as a reparametrization of the SP—in fact, it is standard in the
literature to treat them as two different parametrizations of the same network. However, we show
that geometrically, this is inaccurate. Indeed from the geometric perspective, if two functions are
reparametrization of each other, they should be invariant, as we have discussed in the main text.
Instead, we show that the different limiting behaviors are present because the NTP and SP assume
two different functions and two different priors—they are not connected by a reparametrization.
This clears up confusion and provides a foundation for future work in this field: To obtain a desired
limiting behavior, study the network architecture and its prior, instead of the parametrization.

Suppose 1 in the NTP is a reparametrization of @ in the SP. Then the function ¢ : 8 — 1) defined
by 0 — %0 is obviously the smooth reparametrization with an invertible (diagonal) Jacobian
J(0) = %I . In this case, the network in the NTP must be defined by f = f o ¢!, where f is the
SP-network, by Example 4. That is, with some abuse of notation,

f@)=¢ ' (0) (e~ (V)2) = w 6(Wa) = f(=).

This is different from the definition of the NTP-network f(x) = v ¢(Vz). So, obviously, the NTP
is not the reparametrization of the SP. Therefore, a clearer way of thinking about the NTP and SP is
to treat them as two separate network functions (i.e. two separate architectures)—the scaling factor
ﬁ should be thought of as part of the layer’s functional form instead of as part of the parameter. In

particular, they are not two representations of a single abstract function.

To verify this, let us compute the NTK of f (x) (i.e. treating the scaling as a reparametrization) at its
last layer. The derivation is based on Section 3.2. First, notice that the differential V, f(x) transforms
into J~!(v) "V f(x)|,-1(v) for any 2 € R™. Next, notice that the Euclidean metric transforms into
G(v) := J ! (v) " J~!(v). So the gradient transforms into J (¢~ (v))V f()|,-1().* Therefore,

31t still applies for obtaining the distribution of z;. The NTK can thus be thought of as a kernel that arises
from performing forward and backward propagations once at initialization [6, 75]. This can be seen in the
expression of the NTKs on lower layers which decompose into the NNGP and an expression similar to (14), but
involving the derivative of ¢ [29].

“We use the gradient to get the NTK since otherwise it does not make sense to take the inner product of
differentials w.r.t. the metric.
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Table 2: Test accuracies, averaged over 5 random seeds.

Methods MNIST FMNIST CIFAR10 CIFAR100

SGD 99.3 929 94.9 76.8
ADAM 99.2 92.6 92.4 71.9

the empirical NTK kernel Ky for f is given by

Ky(@,2') = (J (o () VF(@)] o1 (0), T (¢ (0) V(@) o1 (0)) &)

—(J < <u>>w< >\n 0) G@)J (0 () V (@) o1 0)

= (Vf(@)p1(v)) MWMMV/ o1 ()
:<v,f< )| 1(0), V(@) 51 ()-

Thus, the empirical NTK is invariant and the asymptotic NTK also is. Therefore, we still have a
problem with the NTK blow-up in this parametrization. This reinforces the fact that the difference
between the SP and NTP is not because of parametrization.

Additionally, let us now inspect the priors in the SP and NTP. In the SP, the prior is (6 | 0,7°/nI).
Therefore, so that we have the same prior in both © and W, the prior of ¥» = ¢(6) must be
N (3 | 0,I). This is obviously not the case since we have N (1) | 0,7°/nI) because the NTP
explicitly defines N'(60 | 0, I) as the prior of 8. Thus, not only that the SP and NTP assume two
different architectures, but they also assume two different prior altogether. It is thus not surprising
that the distribution over their network outputs f(x), f(x) are different, both in the finite- and
infinite-width regimes.

Implication In his seminal work, Neal [60] concluded that the fact that infinite-width NNs are
Gaussian processes disappointing. However, as we have seen in the discussion above, different
functional forms, architectures, and priors of NNs yield different limiting behaviors. Therefore,
this gives us hope that meaningful, non-GP infinite-width NNs can be obtained. Indeed, Yang and
Hu [75], Yang et al. [76] have recently shown us a way to do so. However, they argue that their
feature-learning limiting behavior is due to a different parametrization, contrary to the present work.
Our work thus complements theirs and opens up the avenue for constructing non-trivial infinite-width
NNs in a “Bayesian” way, in the sense that we achieve the desired limiting behaviors by varying the
model and the prior.

E.2 Biases of Preconditioned Optimizers

For MNIST and FMNIST, the network is LeNet. Meanwhile, we use the WiderResNet-16-4 model
for CIFAR-10 and -100. For ADAM, we use the default setting suggested by Kingma and Ba [39].
For SGD, we use the commonly-used learning rate of 0.1 with Nesterov momentum 0.9 [26]. The
cosine annealing method is used to schedule the learning rate for 100 epochs. The test accuracies
are in Table 2. Additionally, in Table 3, we discuss the effect of reparametrization to sharpness on
ADAM and SGD.

E.3 Laplace Marginal Likelihood

Let Oyiap be a MAP estimate in an arbitrary §-coordinates of R, obtained by minimizing the MAP
loss Lyap. Let logh = —Lyap—note that Lyap itself is a log-density function. The Laplace
marginal likelihood [18, 28, 54] is obtained by performing a second-order Taylor’s expansion:

1
log h(g) =~ log h(eMAp) — 5(0 — OMAP)TH(GMAP)(B — GMAP)7

where H (O\ap) is the Hessian matrix of Lyap at Oyvap. Then, by exponentiating and taking the
integral over 8, we have

Z(BMAP) ~ h(eMAp) /Rd exp (—;(0 — HMAP)TH(OMAP)(G — 0MAP)> d0 (15)
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Table 3: Hessian-based sharpness measures can change under reparametrization without affecting the
model’s generalization (results on CIFAR-10). The generalization gap is the test accuracy, subtracted
from the train accuracy—lower is better. Under the default parametrization, SGD achieves lower
sharpness and generalizes better than ADAM which achieves higher sharpness. However, one can
reparametrize SGD’s minimum s.t. it achieves much higher (or lower) sharpness than ADAM while
retaining the same generalization performance. Hence, it is hard to study the correlation between
sharpness and generalization. This highlights the need for invariance.

Optimizer Reparametrization Yvar = ©(Omar) Generalization gap [%]  Sharpness tr(I:I (¢mar))

ADAM Wmar = Omvap 7.2+0.2 1929.8 £ 61.2

Pmap = Ovar 1531.8 £ 14.2

SGD Pyap = 56map 5.2+0.2 6143.7 + 60.8
Pmap = 20map 383.6 +3.3

Since the integral is the normalization constant of the Gaussian N (6 | Oyap, H (Onmap)), we obtain
the Laplace log-marginal likelihood (LML):

d
IOg Z(OMAP) = *ACMAP(OMAP) — 5 IOg(Qﬂ') + log det H(eMAP)-

Notice that H (0) is a bilinear form, acting on the tangent vector d(Oyiap) := (6 — Oyap). Under a
reparametrization ¢ : 6 — 1) with Yyap = ¢©(Oumap), the term inside the exponent in (15) transforms
into

7%@(?7 '(thumar))d(e ™ (Pmiar)) T (T~ (mar) T H (97 (thmiar))J " (mar))
T (o™ (Ywar)) (¢~ (bmiar)),

due to the transformations of the tangent vector and the bilinear-Hessian. This simplifies into

exp (—;d(gﬁl (thuar)) T H (0~ (thriap))d (ot W’MAP)))

which always equals the original integrand in (15). Thus, the integral evaluates to the same value.
Hence, the last two terms of log Z(6yiap) transform into — £ log(27) + log det H (¢! (¥map)) in
1p-coordinates. This quantity is thus invariant under reparametrization since it behaves like standard
functions.

E.3.1 Experiment Setup

We use the toy regression dataset of size 150. Training inputs are sampled uniformly from [0, 8],
while training targets are obtained via y = sinz + €, where € ~ A(0,0.3%). The network is a
1-hidden layer TanH network trained for 1000 epochs.
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