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Abstract

The hippocampus plays a critical role in learning, memory, and spatial representa-
tion, processes that depend on the NMDA receptor (NMDAR). Inspired by recent
findings that compare deep learning models to the hippocampus, we propose a
new nonlinear activation function that mimics NMDAR dynamics. NMDAR-like
nonlinearity shifts short-term working memory into long-term reference memory
in transformers, thus enhancing a process that is similar to memory consolida-
tion in the mammalian brain. We design a navigation task assessing these two
memory functions and show that manipulating the activation function (i.e., mim-
icking the Mg2+-gating of NMDAR) disrupts long-term memory processes. Our
experiments suggest that place cell-like functions and reference memory reside in
the feed-forward network layer of transformers and that nonlinearity drives these
processes. We discuss the role of NMDAR-like nonlinearity in establishing this
striking resemblance between transformer architecture and hippocampal spatial
representation.

1 Introduction

Synaptic plasticity in the hippocampus is crucial for converting short-term memories into long-term
memories during memory consolidation [1–3]. The N-methyl-D-aspartic acid receptor (NMDAR) is
essential for mediating this memory formation as well as spatial representation. NMDAR serves as a
switch for such plasticity and long-term memory formation [4–6]. Hippocampal place cells [7] and
entorhinal cortex grid cells [8] are known to be central for spatial navigation in animals. NMDAR has
been highlighted for its importance in place cell representations through hippocampal CA1 neurons [9,
3]. These discoveries have led to a deeper understanding of hippocampal function, inspiring recent
efforts to replicate such spatial representation mechanisms in deep neural networks [10–12]. However,
whether non-linear dynamics resembling hippocampal functions can be developed and used to support
spatial representation in deep learning models remains unclear.

NMDAR is a post-synaptic ion channel that is characterized by nonlinear dynamics that distinguish it
from other ion channels in the brain. These nonlinear dynamics are evident in the whole-cell current
voltage (I-V) relationship (Fig. 1a) and are modulated by Mg2+ ion blockade at the pore region of the
channel. Previous research indicates that the Mg2+-dependent nonlinear dynamics of NMDAR play a
key role in synaptic plasticity and memory formation [5, 6].

Recently, transformer-based deep learning models have been reported to have functions that resemble
hippocampal formations [13]. Transformers comprise two consecutive modules: a self-attention
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Figure 1: (a) Schematic diagram of Mg2+-gated NMDAR modulating synaptic plasticity (left), current-
voltage dynamics (I-V curve; top right) and an NMDAR-inspired activation function, NMDAα(x)
(bottom right). (b) Transformer architecture and nonlinear activation functions in its feed-forward
network (bottom left): ReLU, Gaussian Error Linear Unit (GELU), and Sigmoid Linear Unit (SiLU).

layer and a feed-forward network (FFN; see Fig. 1b). The self-attention layer is closely related to a
recent neuroscience model that bridges with transformer [14] and it has been argued that softmax
neurons in this layer behave like place cells in a navigation task [12]. However, the role of neurons in
FFNs involved in a spatial navigation task has yet to be elucidated and compared to hippocampal
characteristics.

This paper uncovers a resemblance between the NMDAR nonlinearity and recently developed
activation functions commonly used in FFNs of deep learning models (Fig. 1). NMDAR functions
operate on activity-dependent repulsion of Mg2+ ions [15, 16] and this phenomenon is particularly
interesting because it supports self-gating of information flow (Ca2+ ion influx) in the post-synaptic
region. Similar to this NMDAR activity-dependent gating mechanism, activation functions in modern
neural networks combine input with a self-gating function (i.e., a sigmoidal function that ranges
between 0 to 1) that determines information flow. Our observation prompted the following inquiry:
Can NMDAR-like nonlinearity in the feed-forward network layer of transformers enhance the
formation of long-term memory and spatial representation by place cells?

Here we derive a novel NMDAR-like activation function using the NMDAR current-voltage (I-V)
curve. In parallel we design a spatial navigation task in a 2D grid environment that assesses two
memory types well-defined by neuroscience research: working memory and reference memory [17,
18]. The former assesses events from within-trial, while the latter controls across trials in a stable
(unchanging) environment. We then test the transformer model with the NMDAR-like activation
function and find that 1) place cell representations emerge in the FFN layer rather than in the self-
attention layer, 2) the nonlinearity of the NMDAR-like activation function can regulate reference
memory, 3) place cell-like neurons in FFNs are strongly correlated with reference memory, whereas
this correlation is not observed in the self-attention layer; and 4) NMDAR-like activation shows the
best reference memory performance when compared to other available activation functions.

Collectively, these findings suggest that adopting NMDAR-like nonlinearity in FFN of transformer
models can enhance the formation of long-term memory and spatial place cell representation, similar
to previous observations in the animal brain. We believe these findings have important implications
for developing new brain-inspired AI models and for understanding similar processes that occur in
the brain and AI models.

2 Methods

2.1 Designing a 2D navigation task to test the role of working memory and reference memory

We designed a sensory observation prediction task in which an agent randomly walks in a 2D grid
environment and is trained to predict subsequent sensory observations (see Fig. 2a) [12]. The agent
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Figure 2: (a) Sensory observation prediction task in a 2D grid, where dotted squares indicate the
target position to predict given a sequence of past actions and observations. The unvisited and visited
places are represented in gray and black blocks, respectively. (b) A transformer model for predicting
the location of an upcoming sensory observation based on sequences of [Action (a), Observation (x)]
pairs. Using a sequence of pairs in the context, the model is trained to predict the masked observation
(i.e., the subsequent observation) corresponding to the final query action.

receives a sequence of previous [Action (a), Observation (x)] pairs as input, and its goal is to predict
the next observation, which is masked (i.e., dotted squares in the sequence of Observation (x) in the
figure). We use the transformer architecture as our model.

We generated N maps of 11×11 2D grids. A random sensory observation chosen from ten letters is
placed at each position on each map. Agents can move ‘up,’ ‘right,’ ‘down,’ ‘left,’ or ‘stay.’ An agent
starts at a random position and initiates a random walk on the map, which is randomly selected from
N training maps, for 2,048 steps for each trial.

Our design novelty is the consideration of two memory types: short-term working memory and
long-term reference memory. When the prediction based on nodes that were previously visited
during the random walk is incorrect, it counts as a working memory error (Fig. 2a left). In contrast,
when the prediction based on unvisited nodes is incorrect, it counts as a reference memory error
(Fig. 2a right). See details of the navigation task and definitions in Appendix A.4 and Fig. S3.

It is important to note that minimizing the reference memory error by memorizing input sequences is
infeasible; the possible number of sequence configurations is exponential since the input sequence is
randomly generated at each trial. To solve this task, the model needs to: 1) understand the abstract
structure of 2D space, 2) infer which map it is on from the input sequence data, and 3) memorize the
sensory observations and their positions on that map. Compared to the previous works [14, 12] that
focused on working memory error, the current paradigm evaluates two distinct types of memory error
and gives a more holistic view of model performance.

2.2 Transformer: two separate memory systems

We here review the self-attention mechanism and FFNs in the transformer architecture [13] that
hypotheses about two separate memory systems are based on—working memory (formed within-trial)
and reference memory (formed across-trials)—and why they are inferred to reside in self-attention
layers and FFNs, respectively.

Self-attention mechanism Given a sequence {x1, ...,xT } of d-dimensional input embeddings, the
self-attention layer calculates the interaction term between each embedding element within a context
window via the self-attention mechanism. More formally, each input embedding applies two linear
layers (Wk and Wv) to the embeddings to form the key matrix K and value matrix V :

K⊤ = [k⊤
t−c k

⊤
t−c+1 . . . k⊤

t ], V ⊤ = [v⊤
t−c v

⊤
t−c+1 . . . v⊤

t ], (1)

where vi = xiWv (Wv ∈ Rd×dk) and ki = xiWk (Wk ∈ Rd×dk). Here, c denotes the context
length. The key matrix K ∈ R(c+1)×dk is then used to compute the interaction score between an
input embedding at step t and all the vectors in K via dot products:

st = qtK
⊤, where qt = xtWq (Wq ∈ Rd×dk). (2)

The normalized values of st ∈ R(c+1), called attention values, are calculated via the softmax
function; the final output of the self-attention mechanism is a weighted sum of the value vectors in
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Table 1: Comparison of common activation functions with NMDAα,β

NMDAα,β Name Equation Reference
NMDAα=1,β=1(x) SiLU(x) xσ(x) [20]
NMDAα=1,β=1.702(x) GELU(x) xσ(1.702x) [21]
NMDAα=1,β=∞(x) ReLU(x) max(0, x) [22]
NMDAα=1,β(x) Swish(x) xσ(βx) [23]

V ∈ R(c+1)×dk with the attention values:

yt = softmax
(
qtK

⊤
√
dk

)
V. (3)

After this update, yt ∈ Rdk is updated by another linear transformation Wo ∈ Rdk×d: zt = ytWo.
The output zt is added to the xt; zt + xt providing the final output of the self-attention layer, and
this information is sent through to the subsequent layer.

Feed-forward networks (FFNs) This component consists of two linear layers with a point-wise
nonlinear activation function ϕ:

FFN(xt) = ϕ(xtU
⊤
1 )U2, (4)

where U1 ∈ Rdf×d and U2 ∈ Rdf×d are trainable weight matrices. Sukhbaatar et al. [19] showed
that Eq. (3) and Eq. (4) have similar structures except for the following: 1) U1 and U2 matrices are
fixed over different input sequences while K and V matrices are dynamically changed with input and
2) operations in FFNs are point-wise or local while the self-attention layer has non-local operations,
e.g., the softmax function and dot products between different elements. This observation suggests
that the FFNs store “general” knowledge about the task that does not depend on the situation.

2.3 Resemblance of NMDA receptor nonlinear dynamics with modern activation functions

NMDAR’s nonlinear dynamics mostly arise from the voltage-gated Mg2+ repulsion at the NMDAR
channel’s pore [15, 16] (Fig. 1a left). Previous work showed this nonlinear I-V relationship to be:

Inorm = V pα,β(V ) (5)

where V represents an input voltage and pα,β(V ) is a voltage-dependent channel open probability
that follows the ion blockade model [24]:

pα,β(V ) =
1

1 + αe−βV
(6)

where α = [Mg2+]/KMg2+ is a parameter determined by [Mg2+], KMg2+ is a dissociation constant,
and β is a temperature constant. For further details, see Appendix A.2.

The dynamics of the NMDA receptor closely resemble those of new activation functions such as
ReLU or GELU (see Fig. S2 in Appendix A.3). This visual resemblance motivated us to define a new
NMDAR-inspired activation function (see details in Appendix A.3) as follows:

NMDAα,β(x) = xpα,β(x) =
x

1 + αe−βx
. (7)

This NMDAα,β(x) incorporates modern activation functions with varying values of temperature
constant, β (Table 1). To investigate the Mg2+-gated nonlinear dynamics, α, we compared various
activation functions with NMDAα(x) = xpα,β=1(x).

2.4 Testing the NMDAR-inspired activation in navigation tasks

The transformer model is trained using softmax cross-entropy loss to predict subsequent sensory
observations (i.e., dotted squares in Fig. 2). Instead of using sinusoidal positional encoding [13], we
employ recurrent positional embedding which encodes the location of an input element by using the
recurrent neural network (RNN); this method is closely related to the most advanced neuroscience
model of the hippocampus [12].
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We generate the embedding vectors of the sensory observation sequence with a word embedding layer,
but the embedding vectors of the action sequence are generated using an RNN; et+1 = tanh (etWa),
where et is a recurrent positional embedding at step t, and Wa is the action-dependent trainable
weight matrix. The input is given by {[e1,x1], [e2,x2], . . . , [et,xt]}, where x denotes the embedding
vector of sensory observation x; the initial recurrent positional embedding e1 is sampled from a
normal distribution, and we mask the last observation xt.

In our experiment, FFN in the transformer model consists of two linear layers (see Fig. 1b and
Eq. (4)) with the NMDAR-inspired activation function NMDAα. We use TransformerXL [25] with
an extended memory length of 32 and segment length of 32 so that the context length c is 64 and
working memory error is measured when the node to predict its sensory observation is in the context
window (see Fig. 2b); i.e., a node that the agent has not been visited in the last 64 steps is treated
as an unvisited node. Note that our model is unable to access the sensory observations of unvisited
nodes via the self-attention mechanism due to the fixed context window size.

The input embedding is a concatenated vector [e,x] of the word embedding x (dimension of 256), and
the recurrent positional embedding e (dimension of 256) so that the total input embedding dimension
is 512. The number of heads in the self-attention layer is 8, and the number of neurons in the FFN is
2,048. The dropout rate is set to 0.1, and the maximum clip norm of the gradient is set to 0.25. We
employ the ADAM optimizer [26] and a learning rate schedule with a linear decay from 0.0001 (start)
to 0 (end). We run 512 random walk simulations (trials) in parallel to collect training trajectories.
The total number of random walking steps is 2,048 for each simulation, and the total number of steps
for training a model is 512 (batch size; the number of trials per epoch) × 2,048 (total number of
steps in a trial) × 200 (number of epochs) (see Fig. S3 in Appendix A.4). The average number of
unvisited nodes in a single trial was 561. The PyTorch code for reproducing our results is available at
https://github.com/kdkyum/transformer_memory_consolidation.

3 Results

3.1 Working memory and reference memory errors

To measure the impact of nonlinearity α in the FNNs, we trained transformer models with different
values of α in [0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10] and evaluated the working memory and reference
memory errors on the train maps (i.e., familiar maps) and test maps (i.e., novel maps). The changing
α values in a transformer model mimic the changes in NMDAR Mg2+-gating in the brain, as inspired
by neuroscience findings that selective inhibition of hippocampal CA1 NMDAR can disrupt the
consolidation of short-term working memory to long-term reference memory.

The top left plot in Fig. 3a shows that the reference memory error on the training maps rapidly
decreased over training trials when α is larger than zero, with a larger improvement for increasing α.
The reference memory error on the novel maps, however, was nearly constant at a chance level of
0.9 (= 1 − 1/(number of letters)) for all α (see Fig. 3a top right). Fig. 3a bottom right shows that
working memory was active on novel maps that had not previously been shown during training. This
finding suggests that working memory formation is intact on novel maps. Training the models on
different numbers of maps, N , Fig. 3b shows that increasing nonlinearity (i.e., α) helped to activate
reference memory, and the trend of improvement was consistent, as shown for N = 32, 48, and 64.
Training more maps led to larger reference memory errors, because increasing N means the model
needs to memorize what-where pairs (i.e., each training contains unique what-where information).

In addition, we find that removing nonlinearity in the NMDAR-inspired activation function (α = 0)
impairs reference memory formation (Fig. 3b) but leaves working memory formation intact (Fig. 3a).
This means that even though the trainable parameters exist in the self-attention layer, a lack of
nonlinearity in the feed-forward layer significantly impairs the formation of long-term reference
memory in familiar maps. This result suggests that short-term working memory and long-term
reference memory are physically stored in separate structures (the self-attention layer and the FFN)
of transformers and possibly gated by the nonlinear activation functions residing in the FFN.

We next tested other nonlinear activation functions, including GELU (xσ(1.702x)), ReLU
(max(0, x)), LeakyReLU (max(0, x) + 0.01min(0, x)), sigmoid, and tanh. Fig. 3c shows that the
newly proposed biologically-inspired function (NMDAα=10) yielded substantially lower reference
memory errors relative to other activation functions. A comparison with the second-best-performing
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GELU activation, for example, indicated a statistically significant difference with p-value less than
0.05 (see Appendix A.6). These results open up the possibility of finding a better activation function
through a new α hyperparameter space of the NMDA-inspired activation function.

Expanding on the evaluation, one may consider other memory types like recurrent positional embed-
ding instead of reference memory. We used non-recurrent positional embeddings to train the models
(see Appendix A.5) and confirmed that working memory and reference memory errors increased more
substantially. This finding supports the idea that working memory is crucial for memory consolidation
and that disrupting it impairs reference memory. However, we also saw a similar trend of decreasing
reference memory error while increasing α of NMDAα (see Fig. S4).

We further assessed the prediction error of the first visited node. While the reference memory error
is defined as a prediction error on a node that the agent has not visited in the previous 65 steps, the
first visited node prediction error is a prediction error on a node that the agent visits for the first time
in a trial. The results for the first visited node prediction error were identical to the results for the
reference memory error (see Fig. S6 in Appendix A.5). These findings suggest that reference memory
is used in training maps to predict the unvisited node.

3.2 Place cells in feed-forward networks

One of the most striking characteristics of the hippocampus is the presence of the place cells [7],
which are neurons in the brain that fire at a particular place in the environment [7]. Studies have shown
that hippocampal place cells encode spatial location through localized firing patterns. They have been
considered a substrate for long-term memory of the location where specific events occurred (e.g., a
previously visited position in a navigation task). Selective impairment of NMDAR in hippocampal
CA1 disrupts place cell emergence and memory consolidation of long-term memory [2, 3, 9].

We investigated whether place cells emerge during the formation of long-term reference memory
in a transformer model, building upon our previous results demonstrating selective impairment in
long-term reference memory with NMDAα modulation. We newly designed a metric called the place
cell score described in Eq. S1 in Appendix A.1 and examined the spatial representation within the
transformer architecture. This metric, ranging from 0 (i.e., homogeneous firing) to 1 (i.e., firing is
specific to the agent’s position in the grid) quantifies the firing specificity of each neuron for spatial

(a) (b)

(c)

Figure 3: (a) Reference and working memory error rates over training trials for training maps and
testing maps for N = 32 training maps. Insets in the bottom figures show working memory error
rates during the initial training phase. (b) Reference memory errors were evaluated on training maps
over different values of α in NMDAα and N . (c) Reference memory error comparison between
NMDAα = 10, GELU, ReLU, LeakyReLU, sigmoid, and tanh activation functions. Inset: magnified
view of the top 4 activation functions. Error bars and shaded areas represent the standard deviation of
errors from three independently trained models.
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Figure 4: Reference memory-related place cells selectively emerge in FFN but not in the self-attention
layer over increasing α. (a, b) Example rate maps with place scores in FFN and self-attention layers at
α = 10; from top left (high) to bottom right (low); color bar indicates the firing rate between ρmax and
ρmin. (c-d) Place cell score distributions with varying α in FFN (c) and self-attention layers (d). (e-f)
Scatter plot of average place cell scores and reference memory errors. r and p denote Spearman’s
rank correlation coefficient and significance score, respectively. (g) place cell score distribution and
relationship of average place cell scores and reference memory errors in common activation functions:
GELU, ReLU, LeakyReLU, tanh, and sigmoid. All results are evaluated using training maps. (h)
Rate maps of neurons with top-16 place cell scores in the FFNs with varying values of α; α = 10
(left), α = 1 (middle), and α = 0 (right).

locations, similar to the approach described in the TEM-t model [12]. We recorded the activation
values of each neuron at every step during a random walk process. As the agent traversed the
environment, which had an 11 × 11 grid structure, we accumulated the activation values for each
grid point, resulting in a 2D array known as the rate map or place field (i.e., the spatial distribution of
single neuron activation during a random walk, as shown in Fig.4a and Fig.4b).

Fig. 4a and 4b show the rate maps of neurons with place cell scores in the FFN and self-attention
layers, respectively. For the self-attention layer, the total number of neurons in the softmax layer was
65 (context length + masked sensory observation) × 8 (number of heads) × 2 (number of layers).
The total number of neurons in the FFN layer was set at 2,048 (number of neurons) × 2 (number
of layers). As can be seen, our metric accurately represents location specificity. Fig. 4c and 4d
show the distribution of place cell scores in the two layers with different values of α. When the α
value is increased, the place cell score distribution found in the FFN becomes positively shifted (see
Fig. 4h rate map examples for α = 0, 1.0, and 10.0), whereas the place cell score distribution in the
self-attention layers remains.

Fig. 4e and 4f show a relationship between the average place cell score and the reference memory
error for each α. The average place cell scores in the self-attention layers show no correlation
with reference memory errors, while neurons in the FFN exhibit a clear correlation. These results
imply that reference memory formation and place cell emergence can be enhanced by NMDAR-like
nonlinearity in the FFN.
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Fig. 4g compares the place cell representations of our NMDA (α = 0, 10) with the representations in
FFNs with the activation functions used in Fig. 3c, indicating that the case of NMDAα=10 outperforms
other activation functions, in both reference memory formation and place cell representation. Our
finding that large α (the [Mg2+] component) enhances reference memory is in line with the biological
observation that increasing the [Mg2+] in the brain enhances long-term memory formation [6].

We also explored the possibility of extending the hyper-parameter space by contrasting the NMDA-
inspired activation function with an alternative activation function based on α. LeakyReLU was
considered for this experiment because of its adjustable negative slope, which was re-defined as
(max(0, x) + αmin(0, x)). The results reported in Fig. S10 of Appendix A.7 show that LeakyReLU
activation, for all tested α values, produced lower place cell scores than the best-performing NMDA-
inspired function (i.e., NMDAα=10). Our findings suggest that NMDA-like nonlinearity, which is
already known to be critical in biological systems, could be used to enhance transformer models.

Building upon these results, our work connects memory consolidation theory from neuroscience
to transformer-based processing of short-term and long-term memory. Unlike previous studies that
directly provide 2D geometric information to models [11, 10], our model only takes sensory-action
pairs as an input, which was sufficient to observe the emergence of place cells in the transformer
model. Specifically, we showed that nonlinearity in the transformer’s FFNs plays a crucial role in
transforming short-term working memory from the self-attention layer into long-term memory, and
the place cell emergence. The observed place cells may correspond to sparse interpretable activation
in FFN. See Appendix A.10 for further analysis on the sparsity and place cells. These findings
provide new insight into the inner workings of transformers and their connection to neural processes
in the brain.

4 Related works

The current study is inspired by recent studies that connect neuroscience and AI models. One such
seminal work is by Whittington et al. [12], which showed a relationship between the self-attention
layer and a recent hippocampal model called the Tolman-Eichenbaum Machine (TEM; Whittington
et al. [14]). Our work expands the literature by focusing on FFNs in the transformer and making a
connection to the emergence of place cells.

TEM is a neuroscience-based model that reproduces neural representations in the hippocampus and
entorhinal cortex. Instead of storing memory in the key matrix K and value matrix V , it instead
stores memory using a Hebbian weight matrix M ∈ Rdk×dk . Every outer product of key and value
vector k⊤

i vi at each step i is simply stored in M via the Hebbian update rule. M is initialized to a
zero matrix at the beginning of the task and adds every outer product at each time step:

M = a

t∑
i=1

k⊤
i vi = aK⊤V, (8)

where a is a weighting factor. In the memory retrieving phase with the query vector q, TEM uses an
attractor network:

qM = aqK⊤V. (9)
Whittington et al. [12] found that the memory retrieving process in TEM has a close mathematical
structure to Eq. (3) when the softmax function is replaced with a linear function. We note that methods
for linearizing softmax in self-attention layers have been studied to address high computational costs
when context length c is very long [27, 28]. The subsequent model of TEM, called TEM-t [12],
replaces the attractor network (Eq. (9)) with a self-attention mechanism (Eq. (3)). This study
demonstrated that TEM-t learns significantly faster than TEM.

TEM-t and TEM do not have a fixed context length c; therefore, these models store all information
before step t, i.e., c = t. The computational cost of the self-attention layer in TEM-t is O(t2),
and retaining all previous information is too expensive from both a biological and computational
standpoint3. For TEM, the Hebbian update rule has no quadratic computational cost and can add
all previous information in a fixed number of synapses d2k; however, the memory capacity of the
Hebbian matrix M is O(dk) and the speed of memory retrieval is substantially slower than the

3Due to the computational cost, TEM-t does not store all historical data but selectively chooses which data to
store in K and V .
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self-attention mechanism [29–31]. In contrast to TEM and TEM-t that rely on a single memory
system, we investigated two separate memory systems: 1) context-dependent matrices K and V in
the self-attention layer with a fixed context length c and 2) context-independent fixed matrices U1

and U2 (in Eq. (4)) in the FFNs.

Our research differs from previous studies in the following ways: 1) We designed a navigation test
that assesses working memory and reference memory separately, providing a more comprehensive
evaluation of the model’s performance. 2) We proposed a new brain-inspired activation function,
NMDAα, which relates to modern nonlinear activation functions and allows for the analysis of
the effect of α on long-term reference memory formation. 3) We demonstrated that place cell-like
neurons emerge in FFNs in conjunction with reference memory formation, which is a novel finding
that has not been addressed in the TEM or TEM-t models. 4) TEM and TEM-t focus on working
memory errors and do not cover reference memory errors. In contrast, our work evaluates both types
of memory errors, providing a more detailed analysis of the model’s performance.

5 Discussion

While extensive efforts have been directed toward finding the optimal nonlinear activation function
for improving modern deep neural network models [21–23], their relationship to neural substrates
that mediate nonlinearity in the human brain remains obscure. Furthermore, the role of nonlinearity
in intelligent functions remain unclear. Our research attempts to fill this gap by proposing and testing
how a biologically inspired nonlinearity functions in a transformer model that was previously related
to the hippocampal formation. We examined functions in terms of long-term reference memory
formation and place cell representation. This idea was evaluated in a carefully designed 2D grid
environment and by implementing an activation function derived from NMDAR-like nonlinearity.

Our research reveals that place cell-like neurons that are critical to spatial navigation can be found in
both the self-attention layers and FFNs of the transformer model, similar to the presence of place cells
in the CA3 and CA1 regions of the hippocampus [32]. In the hippocampus, the CA3 region is thought
to be involved in the initial formation of new memories, specifically in pattern completion [33], while
CA1 is thought to be important for the long-term consolidation of memories. As such, we suggest
that the CA3 region may serve a similar function to the self-attention layer, while the CA1 region may
function similarly to FFN. However, further research is needed to fully understand the similarities
and differences between the properties of place cells in the transformer model and those found in the
CA3 and CA1 regions of the hippocampus. For more discussions regarding the biological plausibility
of this proposal, see Appendix A.8.

Recent machine learning research has tested whether the transformer architecture is analogous to
different types of biological memory. It has been suggested that (1) transformer FFN modules
resemble associative memory [34], (2) the FFN in a transformer block functioning as a key-value
memory [35, 36], (3) activation sparsity in the transformer FFN enhances robustness to noisy
input [37, 38], and (4) sparse activity in FFNs increases the percentage of neurons that selectively
activate to human interpretable input features [39].

Our data instead suggests the transformer architecture resembles memory consolidation by the animal
brain, which refers to the transfer process of a short-term memory into a long-term memory system
in neuroscience research [40]. Previous research has revealed that Mg2+-gating of NMDA receptors
modulates the formation of long-term memories [5, 6]. These observations imply that the nonlinear
dynamics of NMDA receptors in hippocampus CA1 are critical for consolidating short-term memory
into long-term memory.

To our surprise, our results agree qualitatively with previous NMDAR impairment experiments
from neuroscience: 1) selective inhibition of hippocampal CA1 NMDAR inhibition does not disrupt
working memory [41] but impairs the long-term memory formation [2], 2) changing NMDAR
Mg2+-gating (changing α in this work) enhances or disrupts long-term memory formation [5, 6],
3) NMDAR is required for long-term stabilization of newly forming place fields [9, 3]. These
similarities between hippocampal memory consolidation and our results suggest that the transformer
is an effective memory consolidation model.

Our research points to exciting future directions. The current study examined what-where memory
using a sensory observation task in a static environment. However, our real-world environment
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changes constantly and provides new inputs over time. Modern deep learning systems are generally
incapable of adapting to a dynamic environment or reordering of sensory inputs. We intend to explore
what-where-when memory, called episodic memory, in transformers and other deep models.
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A Appendix

A.1 Place cell

A.1.1 Place cell overview

Place cells are a distinct class of neurons in the hippocampus that fire selectively in a certain
location [S1], and provide a sparse population code for self-location. Place cells play a key role
in understanding how the hippocampus represents spatial locations [S2], which is characterized by
their place fields, which are spatially stable regions where the cell preferentially fires. As the subject
moves through the environment, different place cells fire in response to its position, collectively
forming a cognitive map [S3]. This dynamic encoding allows the brain to create and maintain spatial
representations, which are essential for navigation and memory [S4].

Relevance to machine learning Accurately identifying place cells and understanding their prop-
erties is crucial for machine learning practitioners working on spatial representation, navigation,
and memory problems. Recent studies investigated the role of place cells and grid cells in spatial
representation in navigation tasks with deep models [S5–S8]. The concept of place cells can provide
insights that support the development of novel algorithms and techniques for potential machine
learning applications such as robotics, autonomous vehicles, virtual reality, and other areas where
spatial understanding is essential.

Grid cells and path integration While our work was mainly on the emergence of place cells, we
could also observe grid cells based on the experiment, similar to TEM and TEM-t models. When we
removed the recurrent connection in the action embedding layer, grid cells did not emerge, and the
model’s performance declined, indicating the role of grid cells in place cell formation and spatial
memory. An interesting hypothesis in neuroscience is that the interaction between grid cells, path
integration, and place cells forms a critical loop [S9, S10] in the neural circuitry underlying spatial
memory formation, which is similar to our findings from removing recurrent connections. This
finding awaits future investigation on how grid cells and path integration affect place cell emergence
and spatial memory formation.

A.1.2 Place cell score calculation

Figure S1: Schematic diagram for creating auxiliary graph for place cell score calculation (a) Consider
the 2D grid environment of the place field as an undirected graph G. Colors represent the firing rate
of nodes. (b) Convert G into a directed graph by comparing the firing rate ρ between nodes (direction
of higher to lower firing rates) (c) Operate Depth First Search algorithm from peak node to construct
all connected components }(yellow). Dashed circles are leaf nodes.

Our place cell score metric is inspired by the metric described in the TEM-t model [S8]. The place
cell score in Eq. S1 is a scalar value that quantifies each neuron’s firing specificity for a grid location.
We record every neuron’s activation value at every step during the random walk process. Since the
map has an 11× 11 grid structure, we accumulate the activation value for each grid point as the agent
random walks, creating a 2D array. This array is called the rate map or the place field (i.e., the spatial
distribution of single neuron activation during a random walk).
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We investigated the role of neurons in the FFNs and self-attention layers by measuring their place
specificity. Given a K × K 2D grid environment as graph G = (V,E) and a firing rate (i.e.,
cumulative activation value at node i divided by the length of evaluation trial) of node i ∈ V as a
ρi, we defined a maximally firing node as imax and its firing rate as ρmax. E are directed edges that
connect high to low firing nodes in G. From G, we ran a depth-first-search from source node imax to
build a sub-graph G = (V, E) which we call all connected components S1. Given G and G, the place
cell score is defined as follows:

Place cell score = γ

∑
i∈V ρi∑
i∈V ρi

, (S1)

where γ = 1 − |V∗|/|V | is a discount factor and V∗ is V without node imax and leaf nodes. To
measure place cell score, we recorded the firing rate ρi of neurons over a random walking trajectory
with 105 steps in one of the training maps. We then measured the place cell scores of neurons in the
FFN and self-attention layers. The place cell score is 1 when the neuron is firing only at a specific
node; the score is 0 when it fires homogeneously across all nodes.

Since 2D-grid spaces cannot be directly interpreted as Euclidean spaces, it is not appropriate to apply
space-related functions, such as Gaussian kernel density estimation, to the place fields. Place cell
evaluation methods in previous research can be broadly categorized into four types [S11]:

1. Peak method: Classifies cells based on the average firing rate in one location being higher
than in the rest of the environment.

2. Stability method: Classifies cells with stable firing patterns across locations over time.

3. Information method: Classifies cells based on the increased amount of spatial information
they hold about the animal’s location.

4. Combination method: A combined approach that considers cell’s place fields, including
their size, peak, and activity.

We chose the Peak method approach because it easily applies to 2D-grid structures.

To implement the Peak method in a 2D grid environment, we represent the 2D grid environment
as a graph structure where neuron activities at each node are tracked while the agent explores the
environment. Averaging neuronal activities per node yields the neuron’s place fields, as illustrated
in Figures 4 and 5. In these place fields, we find a node with a maximal firing rate, imax Starting
from this node, we find all connected components as a subgraph by connecting neighboring nodes
within the nearest minimum. We create directed edges connecting nodes from high to low firing rates
and run depth first search (DFS) from the node imax. DFS can be considered an inverted watershed
algorithm that fills a single pool containing the global minimum. The advantage of our place cell
metric is its ability to generalize to various graph structures, such as 2D hexagonal grids or 3D grid
spaces.
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A.1.3 Pseudo code for calculating place cell score metric

function PlaceCellScore(place field)
Input : place field (K ×K 2D array)
Output : place score
G := 2D grid graph (K ×K)
G := empty directed graph (K ×K)
for edge (nodei −→ nodej) in G do

if firing rate ρi > firing rate ρj then
G add edge (nodei −→ nodej)

end
end
Find nodek of firing rate ρmax

for nodev in G do
if nodev is not descendant of nodek found with DFS(k) then

delete nodev from G
end

end
conn. components = sum of all nodes’ firing rates in G
total components = sum of all nodes’ firing rates in G

place score = γ
conn. components
total components

† γ is discount factor, determined by connected component size
return place score

Algorithm 1: Pseudo code for calculating place cell score metric

The place field in Algorithm 1 is measured as following procedure:

1. During a random walk simulation, the activation value of a neuron at node i, where the
agent is located, is measured every 65 steps. Let’s say this value is ai.

2. Every time the agent visits node i again, value ai is added cumulatively to the recorded
value; Ai+ = ai such that Ai is the cumulative activation value at node i. We assume the
initial value of Ai is zero.

3. After the random walk is done, Ai divided by the length of the random walk trajectory is the
firing rate ρi at node i of the neuron (place field ∈ RK×K).

In our place cell evaluation experiment, the length of the random walk is 105 and K = 11; the
evaluate map is one of the training maps.

A.2 Derivation of NMDAR nonlinearity from the molecular level chemical interaction

Here, we describe the NMDAR nonlinear dynamics from chemical interaction between Mg2+ and
NMDAR following previous literature [S12–S14]. At the molecular level, one Mg2+ ion binds to
one NMDAR receptor when opening the NMDAR channel. Thus, the chemical equation of binding
reaction between Mg2+ ion and NMDAR receptor, R, can be described as

Mg2+ + R −−⇀↽−− Mg2+R. (S2)

From this chemical equation, the equilibrium constant K is given by

K =
[Mg2+R]
[Mg2+][R]

. (S3)

Thus, dissociation constant KD, which correspond to Mg2+ dissociation from NMDAR, follows

KD = K−1 =
[Mg2+][R]
[Mg2+R]

, (S4)

in which [R] and [Mg2+R] are the free and Mg2+-bound NMDARs respectively. The fraction
of opened NMDAR channels (number of unbound NMDAR over a number of total NMDAR) at
equilibrium follows,
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p =
[R]

[R] + [Mg2+R]

=
1

1 + [Mg2+]/KD

(S5)

Experimentally, the voltage-dependent dynamics of KD has been described as following equation
by Ascher and Nowak [S15]

KD = KMg2+e
βV , (S6)

where, V is membrane voltage, β is a temperature constant and KMg2+ is a dissociation constant at
V = 0. If Eq. S6 is substituted into Eq. S5, voltage-dependent open fraction of NMDAR can be
expressed as follows:

p(V ) =
1

1 + [Mg2+]
KMg2+

e−βV
.

=
1

1 + αe−βV
.

(S7)

in which α = [Mg2+]/KMg2+ , the parameter determined by the [Mg2+]. Given the voltage-dependent
open fraction of NMDAR, p(V ), and NMDAR’s maximal conductance, gmax, then voltage-dependent
NMDAR conductance g(V ) can be described as

g(V ) = gmaxp(V ) (S8)

Given g(V ), and driving force, V −Vr, and current I , they have a relationship of I = (V −Vr)g(V ),
in which Vr is reversal potential (the value of membrane potential above which current inverts the
direction). As experimental investigations on the physiological reversal potential of NMDAR to be
Vr = 0 [S16–S18], I = V g(V ). Then, the normalized NMDAR current Inorm = I/gmax follows:

Inorm = V p(V ) (S9)
From Eq. S9 and previous electrophysiological experimental results [S19], we reconstruct IV curve
in (Fig. 1a, right top).

A.3 NMDAR-inspired nonlinear activation function

Here, we propose an NMDAR-inspired nonlinear activation function from the nonlinear dynamics of
the NMDAR-IV curve. If we consider the nonlinear IV curve of NMDAR (Eq. S9) as a nonlinear
mapping function, ϕ, the membrane voltage, V , can be viewed as an input, x, and normalized
NMDAR current, Inorm, as an output, ϕ(x). Therefore, we can rewrite the nonlinear mapping function
ϕ as follows

ϕ(x) = xp(x). (S10)

We define the NMDAR-inspired activation function as a nonlinear mapping function,
NMDA(x):=ϕ(x). By substituting Eq. S7 into Eq. S10, we show the generalized expression
of NMDA(x) equation with α and β parameters as follows:

NMDAα,β(x) =xpα,β(x)

=
x

1 + αe−βx
.

(S11)

Given α = 1 and β = 1, p(x) is identical to the sigmoid function, σ(x) = 1/(1 + e−x). This
particular case of α and β leads to xσ(x), Sigmoid Linear Unit (SiLU) activation function [S20]. In
the case of α = 1 and β = 1.702, xσ(1.702x) corresponds to the GELU activation function, which
is popular in transformer models [S21, S22, S21]. Ramachandran et al. [S23] introduced the swish
activation function, xσ(βx), which is a generalized form of GELU and SiLU. They demonstrated
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Figure S2: Comparison of common activation functions (left) and their derivatives (right) with
NMDAα,β .

that when β → ∞, the activation function resembles RELU. We summarized these four activation
functions by comparing them with our NMDAα,β(x) in Table 1 and Fig. S2.

In contrast to the extensive research on β in NMDAα,β(x), α, the Mg2+-gating component, is not
explored. For this reason, we focused on the parameter α over β, and investigated NMDAα(X). It is
interesting to note that the Swish function was originally proposed as a self-gating function, inspired
by the use of the sigmoid function as a gating of information flow in the long short-term memory
(LSTM) network [S24]. In contrast, our activation function NMDA(x) is inspired by the physical
Mg2+-gating mechanism that occurs at the real biological synapses. These shared mechanisms
of self-gating in artificial models and biological observations raise the interesting possibility that
NMDAR is a neural substrate of nonlinear activation function in the brain.

A.4 Detailed description of task design and definition of short-term working memory and
long-term reference memory

Our task is based on a widely employed neuroscience experiment for two separate memory systems:
working memory and reference memory [S25, S26]. Errors in working memory are measured by
within-trial error, whereas errors in reference memory are measured by across-trial error. The training
phase and the test phase alternate at each trial. In the test phase, the unvisited place prediction error
and visited place prediction error for the familiar map and the novel map, respectively, are measured.
The memory of a relatively recent experience can be defined as short-term working memory (STWM),
and the memory of relatively old experience can be defined as long-term reference memory (LTRM).
Within trial visited place prediction measures relatively short-term experience for our task. On the
other hand, the across-trial unvisited place prediction task in the familiar map measures the relatively
long-term experience. Measuring unvisited place prediction error in the novel map will establish a
baseline of chance-level accuracy; above this baseline, the formation of long-term memory can be
observed (Fig. S3).
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Figure S3: Detailed task design of working and reference memory evaluation. At each random walk
step, a batch is created (which is then used in the backpropagation step). The batch size is 512 since
there are 512 parallel random walkers in use. Note that at each trial the agent randomly selects a map
from training maps (familiar maps), the initial position of the agent is random, and the agent does a
random walk.
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A.5 Non-recurrent positional embeddings and prediction errors on the node visited for the
first time

(a)

(b)

Figure S4: Experiment with non-recurrent positional embeddings. (a) Reference and working memory
errors over training trials for training (familiar) maps and testing (novel) maps for N = 32 where
N is the number of training maps. (b) Reference memory errors evaluated on training maps over
different values of α in NMDAα for N = 32. Error bars and shaded areas represent the standard
deviation of errors from three independently trained models.

Non-recurrent positional embeddings We tested the non-recurrent positional embedding by
substituting the recurrent positional embedding et with the action embedding A(at), where A is
the embedding layer and at is the action at step t. Compared to Fig. S4a, the result demonstrates
a significant increase in working memory error and reference memory error (Fig. 3 vs. Fig. S4).
Nonetheless, the model’s behavior is comparable to the trend of decreasing reference memory error
with increasing α of NMDAα (see Fig. S4b).

Moreover, we found that place cells do emerge in the feedforward layers for this standard positional
embedding method (see Fig. S5). It is worth noting that these place cell scores are noticeably
lower compared to those obtained through the recurrent positional embedding. Despite the hindered
performance in working memory and reference memory, a strong correlation persists between the
place cell scores in FFNs and the reference memory errors (see Fig. S5c and S5d).

Prediction errors on the node visited for the first time We compared unvisited node prediction
error (unvisited within context window, in this case, 64 steps) versus first visited node prediction
error (unvisited for within a trial). As shown in Fig. S6, the prediction error results for the first visited
node do not differ from the reference memory error results.

These results strongly support the conclusions that (1) while the path-integrated information from
recurrent positional embedding is important for learning the spatial structure of the map, this informa-
tion is not used in predicting the unvisited node, and (2) the reference memory is used for predicting
an unvisited node on a familiar map.
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(a) (b)

(c) (d)

Figure S5: Place cell score analysis for non-recurrent positional embeddings for N = 32. Place cell
score distributions with varying α in self-attention layers (a) and feed-forward layers (c). Scatter plot
of average place cell scores and reference memory errors for self-attention layers (b) and feed-forward
layers (d). r and p denote Spearman’s rank correlation coefficient and significance score, respectively.

Figure S6: First visited node prediction error evaluated on training maps over different values of α in
NMDAα for N = 32, 48, and 64. Error bars and shaded areas represent the standard deviation of
errors from three independently trained models.

A.6 Statistical significance between the NMDA and GELU activation functions & learning
rate effect: is it an under-trained effect?

In this section, we address concerns about the NMDA style activation with large α being a trivial
effect for the emergence of place cells and the improvement of learning speed. We provide additional
evidence to support our claims and demonstrate that the observed effects are not trivial or due to
under-training.

Statistical test across activation functions Our primary claim regarding the effectiveness of
NMDA-style activation is based on the results shown in Fig. 3. To support our claim, we conducted a
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statistical across various activation functions. Our findings revealed a significant difference between
NMDAα and other activation functions, indicating that the NMDA style activation is beneficial for
the emergence of place cells and the improvement of learning speed (see Table S7).

Figure S7: Statistical test result across various activation functions with different numbers of maps
(N) related to Figure 3. (a-c) Mann-Whitney test across various α of NMDAα. (d-f) Mann-Whitney
test across various activation functions. The sample size (or trials) used for tests ranges from 3
to 11. Colors represent p-values and asterisks indicates statistical significances: * 0.01<p<0.1; **
0.001<p<0.01; *** p<0.001. α = 10 for NMDA and α = 0.01 for LeakyReLU.

Gradient around x = 0 and learning speed The performance gain at large alpha values might be
due to an increased gradient around x = 0. However, the gradient around x = 0 at α = 1 (green) is
actually larger than α = 10 (blue) in Fig. S2. Therefore, the performance gain at large alpha values is
not due to an increased effective learning speed around x = 0. Instead, it may be attributed to the
activation function’s ability to better capture nonlinear relationships.

Learning rate effect on reference memory error To clarify that our result is not simply due
to the under-trained model, we performed experiments with varying learning rates: 0.001, 0.0005,
0.0003, 0.0002, and 0.0001. As can be seen in Fig. S8, a larger learning rate at low alpha values is
not helpful for reducing reference memory error. It is worth noting that all models’ working memory
error is almost zero. Larger learning rates lead to faster decrease in working memory error, but at
high learning rates, reference memory error stays around the chance level of 0.9, i.e., no reference
memory emerges. Additionally, Fig. S9 shows that higher place cell scores correspond to lower
reference memory errors. Note that we employed a linear decay learning rate schedule (from the
starting learning rate to 0) and the starting learning rate used in our manuscript is 0.0001.

In conclusion, our additional experiments and analyses demonstrate that the NMDA style activation
with large α plays a critical role in the emergence of place cells and the improvement of reference
memory, and it is not a trivial effect or an under-trained effect.
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Figure S8: Familiar map reference memory error results with five different learning rates, where
α ∈ {0.1, 1.0, 10.0}, for a total of 64 training maps (N = 64). The error bars represent the standard
deviation of errors from three independently trained models.

Figure S9: (top) Scatter plot between reference memory error and average place score; (bottom)
Distribution of place cell scores with five different learning rates, where α ∈ {0.1, 1.0, 10.0} (shown
at the top of each figure), for a total of 64 training maps (N = 64).

A.7 Consequent of changing nonlinear dynamics in Leaky ReLU activation function

Here, we investigated the consequence of changing nonlinearity with an activation function other
than NMDAα. We chose LeakyReLU (max(0, x) + αmin(0, x)) activation function to compare
with NMDAα. Regarding LeakyReLU, α = 1 of LeakyReLU also leads to a fully linear activation
function similar to α = 0 of NMDAα. Compared to NMDAα=10, LeakyReLU exhibits a lower
average place score in the allowed range of α, indicating that NMDAα performs better in terms of
robust place cell emergence (see Fig. S10)
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Figure S10: Evaluation of reference memory error in LeakyReLU (LRELU) while modulating α(top)
and relationship of average place cell score and reference memory error (bottom).

A.8 Transformer as a memory consolidation model and its biological plausibility

Next, we examined the biologically inspired NMDAα activation function in the feed-forward layer
of the transformer and its role in memory formation and place cell representation. We show that
modulating α corresponds to a change in extracellular [Mg2+], by deriving the nonlinear activation
function from the real NMDAR nonlinear IV curve. The reconstructed real nonlinear IV curve is
shown in Fig. 1a (top right panel).

The modulation of α selectively affects the formation of long-term reference memory (i.e., prediction
of unvisited places across trials) while leaving the formation of short-term working memory (i.e.,
prediction of unvisited places within trials) intact. This result suggests that short-term working
memory and long-term reference memory are physically stored in separate structures: the self-
attention layer and the feed-forward layer. In psychology, a multi-store model for the animal brain
that comprises short-term memory and long-term memory was historically suggested in [S27]. In this
biological model, sensory inputs are stored in short-term memory systems via attention, and some are
transferred to a long-term memory system while others quickly disappear.

In neuroscience, the transfer of short-term memory into a long-term system is called memory
consolidation [S28]. Animal studies have demonstrated that the CA1 region of the hippocampus
is essential for memory consolidation [S29, S30]. In hippocampal CA1, the postsynaptic NMDA
receptor mediates synaptic plasticity, and the selective perturbation of these receptors leads to
impairment in long-term memory formation [S31, S30]. Later research revealed that Mg2+-gating
of NMDA receptors modulates the formation of long-term memory [S32, S33]. These observations
imply that the nonlinear dynamics of NMDA receptors in CA1 are critical for consolidating short-term
memory into long-term memory S11.

On the basis of a previous link between the hippocampus and the transformer model, we
hypothesize that the latter is a model for memory consolidation. Given the resemblance of the
GELU nonlinear activation function and CA1 NMDAR nonlinear IV curve, we assumed that the
GELU activation function serves as a key component that links short-term working memory and
long-term reference memory. Our experimental results indicate that that the formation of long-term
reference memory is impaired when the activation function is completely linear (corresponding to no
Mg2+). In contrast, increasing α (which corresponds to an increase in Mg2+ level) revealed that for
long-term reference memory, our model outperforms other activation functions (e.g., RELU, GELU,
LRELU, Sigmoid, Tanh). Based on these similarities between hippocampal memory consolidation
and our results, we propose that transformer is an effective memory consolidation model.
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Figure S11: Schematic illustration of the transformer as a memory consolidation model of hippocam-
pus via NMDAR nonlinearity. Top, transformer with NMDAα nonlinear activation function.Bottom,
summarized brain model with NMDA receptor mediated long-term memory formation. Colors
represent the corresponding stage of the memory consolidation process.

In addition to the performance gain in long-term memory formation with NMDAα, we found that
modulating the α affects the emergences of place cells in the feed-forward layer and conclude that
there is a significant correlation between place cell score and long-term reference memory formation.
Our results align with previous biological findings that perturbation of CA1 NMDARs leads to
impairment in both place cell representation and long-term memory formation [S31, S34, S35, S29].
These similarities support the idea that place cells are the neural correlates of long-term spatial
memories. Altogether, our findings suggest the exciting possibility that the nonlinear IV curve of
NMDAR in the hippocampal CA1 is a neural substrate of nonlinear activation function in the brain.

A.9 GPT2 and Vision Transformer with NMDA activation functions

In this section, we present the detailed experimental setup and results for applying the proposed
NMDAα activation function to the GPT2 [S36] and Vision Transformer (ViT) models.

A.9.1 Language Modeling with GPT2

We replaced the GELU activation function in the feed-forward networks (FFNs) of the GPT2 model
(model size: 124M) with the NMDAα=10 activation function and conducted experiments on the Open-
WebText dataset [S37]. We employed the GPT2 training PyTorch code from karpathy/nanoGPT
GitHub repository [S38]. The application of NMDAα=10 showed a slight increase in performance,
as illustrated in Fig. S12.

A.9.2 Image Classification Tasks with ViT

We conducted experiments on image classification tasks using the ViT model, and the results were
examined on the CIFAR-100 and TinyImageNet datasets. Three trials were conducted for each
condition, and an increasing, though statistically insignificant, tendency in performance was observed.
The top-1 test accuracies for these datasets are provided in Table S1.

Table S1: Top-1 test accuracies with ViT model on CIFAR-100 and TinyImageNet datasets.
Dataset GELU NMDAα=10 NMDAα=0

CIFAR100 69.92± 0.34 70.27± 0.47 49.91± 0.58
TinyImNet 54.90± 0.45 55.72± 0.03 40.36± 0.52

Hyperparameter Consideration It is important to note that we did not scan a range of hyperpa-
rameters for either NMDA or the GELU-based model. The optimal hyperparameters for NMDA
might differ from those for the GELU-based model.
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Figure S12: Validation loss curve over training iteration for GPT2 model on the OpenWebText dataset.
The blue (red) line represents the GPT2 with GELU (NMDAα=10) function.

Future Works Although these results are promising, they are not conclusive in stating that NMDA
generally outperforms GELU for various real-world tasks. Future works will include evaluating our
NMDA function on different model sizes of GPT or other language models, as well as evaluating the
pre-trained models on downstream NLP tasks such as reading comprehension, question answering,
common sense, MMLU, and BIG-bench.

A.10 Sparsity of Activation

In this section, we present more intuitive evidence to support the effectiveness of our proposed
nonlinearity, based on the sparsity of activation in FFNs.

Mathematical Intuition Given the NMDAα activation function, NMDAα(x) = x/(1 + αe−x),
we can rewrite this function as follows:

NMDAα(x) = x · 1

1 + e−(x−c)
, where α = ec. (S12)

In the given expression, an increase in α results in shifting the sigmoid function towards the positive
direction by increasing c. This shift can be understood as an increase in the threshold of information
gating, which is mediated by the sigmoid function. Consequently, an increase in α might enhance the
sparsity of the NMDA activation.

Empirical Results To validate the aforementioned mathematical intuition, we conducted measure-
ments on the sparsity of the activities in the feed-forward layer by calculating the Gini index [S39]
for each input sequence. The Gini index is defined as follows:

G =

∑K
i=1

∑K
j=1 |xi − xj |
2K2x̄

, (S13)

where xi is the i-th neuron’s activation value and x̄ =
∑K

i=0 xi/K is the mean of the activation
values in the feed-forward layer (K = 2048 is the total number of neurons in a feed-forward layer).

The Gini index ranges from 0 to 1. When only a few neurons have very high activation values and
others are small, the Gini index is close to 1; on the other hand, when most neurons have homogeneous
activation values, this value is close to 0 (1 = absolute sparsity, 0 = all activations equal).

According to Fig. S13a, when the value of α in NMDAα(x) is increased, the Gini index also increases.
This increase signifies that the population activities become more heterogeneous, leading to a heavy-
tailed distribution. Furthermore, the Gini index of NMDA with an α value of 10 is greater than that of
the GELU activation function (indicated by the dashed line). These findings imply that NMDAα(x)
could potentially improve long-term memory formation by promoting sparsity in the activations of
the feed-forward layer.
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(a) (b)

Figure S13: (a) Comparison of Gini index for different values of α in NMDAα. (b) Comparison of
Gini index between different nonlinear activation functions.

Previous studies have explored the generalization performance and sparsity in overparameterized
models [S40]. Although the mechanism behind the emergence of sparse representation in large
models is not fully understood, it is worth noting that overparameterized models converge to simpler
models than those with dense representations.

The high sparsity properties of the NMDA function may contribute to the increased score of place
cells. In the case of Transformers, enforcing neuron activation sparsity in MLPs has been found to
improve the interpretability or selectivity of a higher percentage of neurons [S41]. This evidence
could potentially explain the higher place cell score observed when the alpha value is increased.
We observed that NMDA with α = 10 exhibits the highest Gini index among different activation
functions. See Fig. S13a for a comparison of Gini index among activation functions.
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