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Abstract

Deep network models are often purely inductive during both training and infer-
ence on unseen data. When these models are used for prediction, but they may
fail to capture important semantic information and implicit dependencies within
datasets. Recent advancements have shown that combining multiple modalities
in large-scale vision and language settings can improve understanding and gen-
eralization performance. However, as the model size increases, fine-tuning and
deployment become computationally expensive, even for a small number of down-
stream tasks. Moreover, it is still unclear how domain or prior modal knowledge
can be specified in a backpropagation friendly manner, especially in large-scale
and noisy settings. To address these challenges, we propose a simplified alternative
of combining features from pretrained deep networks and freely available semantic
explicit knowledge. In order to remove irrelevant explicit knowledge that does
not correspond well to the images, we introduce an implicit Differentiable Out-
of-Distribution (OOD) detection layer. This layer addresses outlier detection by
solving for fixed points of a differentiable function and using the last iterate of
fixed point solver to backpropagate. In practice, we apply our model on several
vision and language downstream tasks including visual question answering, visual
reasoning, and image-text retrieval on different datasets. Our experiments show
that it is possible to design models that perform similarly to state-of-the-art results
but with significantly fewer samples and less training time. Our models and code
are available here: https://github.com/ellenzhuwang/implicit_vkood

1 Introduction

Numerous neural network models are constructed via the stacking of explicit layers that transform
inputs into outputs through a sequence of operations associated with the designated layers. Although
these explicit layers are expressive, they may be unnecessary in many large-scale applications where
only the function value and its gradients are required. For instance, it is possible to employ implicit
layers for diverse tasks, including hyperparameter optimization [7], meta learning [50], and solving
inverse problems in image processing [21]. Indeed, if a desired input-output correspondence within a
network can be expressed as an optimization problem, gradients can be computed efficiently [30].

Recently, JFB [17] proposed an efficient method to backpropagate through implicit layers by imple-
menting them as a Network Operator N (·). Here, N is defined as a sequential application of a map
F (·), which is guaranteed to converge in T <∞ iterations. Formally, N (x) can be represented as,

N (x; Θ) = F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
T times

(x; Θ), (1)

where Θ corresponds to parameters of a potential multimodal model. The convenience of N in
Equation (1) lies in its ability to backpropagate through N without requiring its full sequence (or
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Figure 1: Our Proposed Architecture. The inputs are images and captions/questions. Image patches
are processing by a visual encoder, while the caption, integrated with a knowledge graph, is passed to
a language encoder. The extracted features are then fed into the OOD detection layer. This implicit
layer identifies noise concepts before forwarding the features to the multimodal encoder. The ITM
and MLM are training objectives, and VQA, NLVR, and image-text retrieval are downstream tasks.

trajectory) or solving an inverse problem with its Jacobian matrix for gradients. In Vision tasks,
implicit maps like clustering with fixed parameters – for instance, N could be k−means with fixed
means – have been shown to enhance performance [57]. To enable small-scale custom applications
or to fine-tune large-scale models, fixed parameters are insufficient, so we consider the problem of
evaluating gradients with respect to the means efficiently.

Introducing “Benign” noise in Multimodal Pipelines. Recent advancements [65, 27] have demon-
strated that the combinations of multiple modalities improve understanding and boost generalization
performance. However, these models, trained by a simple relation (matched or unmatched) between
the image and text pair, often falter in capturing important semantic information and implicit de-
pendencies within datasets. For example, as depicted in Figure 1, these models may recognize the
green light but fail to infer the legality of a person crossing at the green light. Thus, the incorporation
of “noisy” external knowledge presents a potential solution. In this work, we explore the design of
an implicit Network Operator N to manage feature-level noise during training. Specifically, N is
employed to integrate external knowledge in multimodal learning, which is a deep network with
parameters Θ developed to align multiple modalities [49, 46].

Using External Knowledge for Reasoning Purposes. A knowledge graph collects information,
organizes it in a specific structure, i.e., ontology, and is utilized to deduce novel insights and
knowledge from the integrated information [16]. Often, external knowledge may be beneficial
for reasoning tasks [22]. Most recent knowledge-based multimodal models [22, 36, 53] focus on
entity retrieval methods from external knowledge resources such as structural knowledge graphs
and large language models. Unfortunately, these methods become impractical when combined with
features derived from external knowledge resources that are prone to incompleteness and noise.
Furthermore, vision-language models like those in [18, 66] often struggle to filter noise pairs during
training, resulting in slow convergence. For instance, in Figure 1, given an object “street” and relation
“locatedAt”, noisy objects like “fire hydrant” are returned with high confidence by ConceptNet [55].
However, the “fire hydrant” is absent in the input image, which is undesirable for training objectives,
such as image-text matching .

We propose an implicit out-of-distribution (OOD) detection layer to handle outliers from external
knowledge as discussed above. We demonstrate how such a layer can be expressed as a network
operator N in Equation (1) for memory saving and efficient training. Specifically, in the ongoing
example in Figure 1, our proposed approach approximates the density of in-distribution features,
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which are extracted from the triplets in the caption (question) corpus, by a fixed point iterative layer.
Thus, F is trained with implicit differentiation at the fixed point according to OOD scores [44] for the
retrieved knowledge triplets. Overall, we provide an end-to-end training framework with knowledge
graphs and multimodal models in an implicitly differentiable manner, as illustrated in Figure 1
showcase the effectiveness of the proposed implicit layer based on N in large-scale multimodal
pipelines. We conducted several experiments on multiple vision and language tasks, such as visual
question answering and image text retrieval. We have included extensive evaluations and ablation
studies to demonstrate the improvements in memory usage and training time compared to vanilla
backpropagation.

We summarize our three primary contributions as follows: (1) Our proposed implicit layer
can perform outlier detection tasks efficiently with less memory costs during backpropagation in
practical settings. This layer can scale to different datasets and multimodal backbones. (2) We
demonstrated that integrating explicit knowledge enhances multimodal fusion models. Our model
learned from visual and textual modalities while using external knowledge seamlessly that may
available in certain situations. (3) Resulting model after training and/or fine-tuning, outperforms
baseline models on various downstream tasks. Moreover, we provided various ablation studies and an
interactive simulation based user study, which shows that users can sustain their desired in-distribution
inputs or features while being able to update model parameters simultaneously.

2 Related Work

Deep implicit layers. Implicit differentiation has been an emerging and competitive alternative
to explicit unrolling for backpropagation. From the practical point of view, it is often memory-
efficient and numerically stable compared to vanilla unrolling [7, 25]. Recent works apply implicit
functions and layers in various problems with deep neural network, such as optimization layers
[2, 6], convolutional sparse modeling [33] and object representations [9]. Moreover, implicit layers
can be used to produce representations that are robust to perturbations, as well as better empirical
performance in downstream predictions. For example, [3, 5] used path independence as a technique
to improve the OOD generalization. The main argument is that path independence can be guaranteed
while training using implicit layers instead of unrolling which is crucial for our applications.

Out-of-distribution (OOD) detection. Out-of-distribution detection is usually studied from the
statistical point of view, mainly under Robust Statistics [26]. We will summarize recent developments
focusing on our use cases. For OOD detection, Maximum Mahalanobis Distance [29] and energy
score [37] are statistical methods for detecting features that may not be obtained using training data.
Recently, GEM [44] has introduced a provable and competitive OOD detection method to estimate
outliers for deep networks. GEM score can be used to recognize irrelevant distributions of concepts
during training. The primary focus is on the detection performance with simulated outliers, whereas
our focus in this paper is on utilizing them in real-world noisy data for training purposes efficiently.

Vision-and-language transformers and knowledge-based VQA. Most recent vision-and-language
models have shown improved performance by optimizing self-supervision based losses. For example,
[10, 27, 32, 31, 54, 1] introduce multimodal architectures wherein cross-modal features are used to
learn combined representations of visual and textual contents that can be used to improve predictions.
In Vision and Language Processing, knowledge representations in the form of extracted consensus or
semantic concepts are aligned with visual concepts to construct concepts vocabulary [24, 19, 60]. In
knowledge-based VQA, different explicit knowledge bases can be integrated for answering purposes
[40, 63, 23, 22, 53, 36, 11]. In this work, we explore the effectiveness of utilizing external knowledge
in deep multimodal models during training.

3 Implict OOD Detection Layer for Multimodal Analysis

Basic Notations. We denote input features as xi ∈ Rd, i = 1, . . . , N including features of extracted
knowledge triplets lj ∈ Rd, j = 1, . . . ,M . The goal of OOD layer is to compute a score s(lj) ∈ R+

for lj to estimate density of in-distribution (ID) data. In this section, we explain how to estimate the
distribution of the ID features as a (normalized) linear combination of simpler distributions using an
implicit layer to detect outliers and backpropagate for gradients, efficiently.
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3.1 Finding Fixed Points for Forward Pass

Finite mixtures with k components are conceptually simple, and computationally attractive. Math-
ematically, they can produce accurate approximations to most density functions [43]. So, we
approximated the density of ID features using a Gaussian Mixture Model (GMM) and used
µ∗
k ∈ Rd, σ∗

k ∈ Rd×d, k = 1, . . . ,K to denote the optimal means and covariance matrices of
K components.

To obtain an optimal GMM, we solved µ∗ and σ∗ by using Expectation Maximization (EM) algorithm
[45]. Our main observation is that the update rule used in an EM-based algorithm of µk on the current
iterate t ∈ T can be written as a fixed point iteration as follows:

µt+1
k ←

∑N
i=1 exp(−w(µt

k))xi∑N
i=1 exp(−w(µt

k))
(2)

where the weight of current iterate µt
k on xi denoted by w(µt

k) :=
∑K

k=1 ∥σ
−0.5
k (xi − µt

k)∥22. We
updated σk similarly using (xi − µt

k)(xi − µt
k)

T in the numerator of Equation (2). Therefore, we
obtained an approximation of in-distribution density that can be used for further outlier detection.

3.2 GEM score for Outlier Detection

After computing the optimal means µ∗ and covariances σ∗ using the above described fixed point
function, the final ingredient we need is a samplewise and memory efficient forward pass OOD
detection method. After obtaining the ID parameters, we can compute a score for each lj , the features
derived from external knowledge triplet. In deep network context, the recently introduced GEM score
[44] has already been tested on a few classification applications. Specifically, we used GEM score to
filter anomalous triplets. GEM score is also beneficial to obtain memory efficient gradients, details
will be explained in Section 3.4. Given a derived feature from a knowledge triple j ∈M , its GEM
score s(lj) is defined using an energy function as,

s(lj) = log

K∑
k=1

exp (−1

2
(lj − µ∗

k)
Tσ−1

k (lj − µ∗
k)) (3)

where lj is the textual feature of retrieved external triplets, µ∗
k is the optimal means and σ∗

k is the
optimal covariance matrix of ID features.

Do we require fixed point iterations in Equation (2) to be exact? In our training pipeline, we only
require that the gradients provided by the proposed OOD detection layer to be a descent direction
with respect to the loss as a function of network parameters. Thus, the only use of µ∗ and σ∗ is
to calculate OOD score s in Equation (3), so the approximate µ∗, σ∗ may be sufficient enough for
the training purpose. To see this, we considered a simplified setup in which language features l in
Equation (3) are first processed by ReLU based upstream layer parameterized by Wup, followed by
energy calculation using the output means µ∗

k of EM algorithm.

Formally, we considered the loss function given by E(Wup;µ
∗) := − log(exp(0.5 · ∥ relu(Wup · l)−

µ∗∥22)) where we assumed number of components to be one i.e., K = 1 for simplicity. We now look
at the gradients computed by using the approximate output of EM algorithm. Now, the gradients of
the energy score (Equation (3)) itself is given by Chain rule as follows:

∇WupE(Wup;µ
∗) =

∂(− log(exp(0.5 · ∥ relu(Wup · l)− µ∗∥22)))
∂Wup

= −(relu(t0)− µ∗)⊙ relu(sign(t0)) · lT (4)

where t0 := Wup · l, and ⊙ denotes the Hadamard or Elementwise product. Impor-
tantly, ∇WupE(Wup;µ

∗) is linear in µ∗. By definition of a descent direction, it is possi-
ble to reduce the loss using an approximate µ̃ computed with finite iterations as long as
tr
(
∇WupE(Wup;µ

∗)⊤∇WupE(Wup; µ̃)
)
< 0. Our calculation above considered only one upstream

layer which is rarely the case in practice. We leave extensions to more upstream layers as future work.
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Algorithm 1 Fixed Point Network Operator based OOD Detection Layer for Language Features lj
Input

xi∀ i ∈ [N ], lj∀ j ∈ [M ], µ0
k∀ k ∈ [K], σ0

k∀ k ∈ [K], T
Output

s(lj),∇lis(lj)(lj , µ
∗
i , σ

∗
i ) ▷ Feature-wise OOD scores and Gradients

– Begin Forward Pass –
while t ≤ T do Update µt+1

k using Equation (2)
end while
Set µ∗

k to be the last iterate of µT
k

OOD Detection. Compute s(lj) in Equation (3)
– Begin Backward Pass –
Jacobian Free Backpropagation. Output gradient ∇ljs(lj)(lj , µ

∗
i , σ

∗
i ) by computing derivative

of composition of log-sum-exp and ReLU functions in Equations (3) using Chain rule.

3.3 Implementing Differentiable OOD layer in Multimodal Pipeline

To implement our implicit OOD detection layer discussed in previous sections in multimodal pipelines,
we propose a novel architecture called VK-OOD by fusing Vision and external Knowledge features.
In essence, we used an OOD detector as the network operatorN and detected the retrieved knowledge
triplets which can potentially lead to slow convergence of upstream and/or downstream layers during
training.

Architecture. Given an image with a caption (question), our pipeline consists of the following steps:
(1) Transform the image to visual features using the vision encoder, such as ViT-based [15], (2)
Retrieve knowledge triplets using external knowledge bases, and transform to textual features with
the language encoder, such as BERT-based [14], more details of retrieval module are introduced in
Appendix A, (3) Approximate density of in-distribution features, and filter outliers in the image-
triplet pairs with the proposed implicit OOD detection layer, (4) Finally, we learn vision and textual
representations by a multimodal encoder with multiple training objectives.

Image-text Matching Loss with GEM scores. We aimed to incorporate the calculated GEM scores
to the widely used image-text matching (ITM) loss. Specifically, we consider the model is encouraged
to not only match images and texts correctly, but also to map OOD pairs farther away from ID pairs
in the feature space. Given image-text pairs D = {(vj , lj)}Mj=1, the similarity of image-text pair
based on s(·) is derived as:

p(vq, lj) =
exp(m(vq, lj)/τ + β · sign(m(vq, lj)) · s(lj))∑M
u=1 exp(m(vq, lu)τ + β · sign(m(vq, lj)) · s(lu))

(5)

where m(·) is the cosine similarity of image-text pair, β is a learnable weight parameter, sign(·) is a
sign function. Then, the modified ITM loss is written as:

Litm = E(v,l)∼DH(yitm, p(v, l)) (6)
where H denotes the cross-entropy, yitm corresponds to the image-text matching label. Note that,
s(·) of the same triplets may vary on random masks and different tasks. Hence, we also modified
other training objectives losses based on s(·), which are similar to Litm. See more details in B.

3.4 Efficient Backpropagation for OOD Detection Layer

Having found µ∗
k, σ

∗
k in the forward pass, we can view the initial part of our OOD network operatorN

as the EM algorithm. It outputs the optimal parameters of ID feature density given by µ, σ. However,
EM viewed as an operator from Rd → Rd (mapping lj ∈ Rd to µ∗

k ∈ Rd) makes backpropagation
tricky since the Jacobian of such a map will be a Rd×d matrix, practically infeasible for training
purposes even when d ≈ 100 is not very large. Hence, in this section, we describe how we adopted
Jacoian-Free backpropagation for the implicit OOD detection layer.

Applying Chain Rule with Limited Unrolling for Gradients. Since each iteration in GMM as in
Equation (2) is differentiable, we can easily backpropagate through few iterations of EM algorithm
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to compute gradients. First we used Chain rule to illustrate the necessary components to obtain
gradients. Note that from Equation (3), we know that ∇sL ∈ R is a scalar, and moreover for a fixed
µ, s itself is a smooth scalar function sµ : Rd → R. Thus, we consider the following composition of
maps to compute ∇xL ∈ Rd gradient with respect to xi (denoted generically as x),

x 7−→ µ∗ 7−→ s 7→ L

Rd Jx,µ∗
−−−→ Rd−→ R→ R,

(7)

where µ∗ is the output of our OOD layer from forward pass. The key difficulty is in approximating
the Jacobian Jx,µ∗ ∈ Rd and/or its inverse for backpropagation since it maybe dense. We now
describe three standard ways that can be used to backpropagate through implicit layers. First, in
the vanilla backpropagation often called as “unrolling” is used where each iterate is stored, and a
“path” gradient approximation is calculated. That is, since the parmeters of each unrolled layer are
fixed, we can simply use them along with the closed form gradients available for Equation (2) for
backpropagation. Second, Jacobian based methods form an approximation to the Jacobian inverse or
in other words, solve a linear system formed using the fixed point condition in Equation (2) itself.
Often, this approach yields better gradients. Third, Jacobian-Free Backpropagation (JFB) combines
both these approaches, that is, in which we simply use or unroll the last few iterates of the EM
algorithm for gradients. As we can see, JFB enables to train with fixed memory costs (O(1)) and
efficient backpropagation without computing gradients at each iterations. The time complexity is
O(n) for forward and O(1) for backprop. We provide empirical results of the above three methods
in Section 4.1.

Benefits of EM algorithm. EM updates are provably convergent in various settings, and it takes
few iterations when it is guaranteed to converge [13]. This also implies that we can simply initialize
µk randomly and perform few more iterations to find a fixed point. However, since the denominator
in Equation (2) contains terms that are also unknown parameters, such update schemes may be
numerically unstable. In such cases, we can simply use recently proposed gradient based EM
algorithms as the network operator, for fine-tuning deep networks in large scale settings, see [51] for
convergence analysis.

Interaction via Outlier Detection. The applications which require a high number of image patches
(or concepts), the likelihood that one of the patch features or text features to be an outlier also increases
dramatically. In high dimensional settings, this increases the training time taken by first order methods
significantly, especially when mini-batches are used to compute gradients [20]. Alternatively, when
features lj are computationally easy to extract, say using CLIP [49], it is reasonable to expect that a
certain fraction of the lj are outliers, and should not be used for backpropagation purposes. In a more
optimistic scenario, we consider to customize our predictions, and handle “on-the-fly” integration of
explicit knowledge. In our framework, this corresponds to treating µk in Equation (3) as trainable
parameters. We can update the initialization µk without storing the trajectory, or forming the full
Jacobian which can be expensive, as in our Algorithm 1.

4 Experiments

In this section, we present empirical results addressing the following questions: (1) How effective
and robust is the OOD detection layer? (2) What improvement does the Jacobian-Free backpropa-
gation (JFB) provide in computational cost within our VK-OOD architecture? (3) How do external
knowledge resources influence the performance of multimodal pipelines? (4) Can VK-OOD work
with different backbones in large-scale settings for various downstream tasks? To answer (1) and
(2), we performed experiments on VQA task with various setups, comparing memory and training
costs with unrolled EM (vanilla), Jacobian-based-EM, and JFB-EM. To answer (3), we evaluated the
influences of knowledge resources by explicitly (or intentionally) introducing outliers in the pipeline.
Finally, for (4) we utilized ViLT [27], CLIP [49], and BLIP [31] as the backbone model and illustrate
performance on downstream tasks, including natural language for visual reasoning and image-text
retrieval. More implementation and training details are described in the Appendix C.1. For ablation
studies, we fixed the backbone model to be ViLT with pretrained parameters.

4.1 Results and analysis of OOD detection layer

Backprop methods. We used different backpropgation methods in OOD detection layer with ViLT
as the backbone. As shown in Table 1, compared to vanilla and Jacobian-based methods, JFB-EM
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Method #Param(M) #FLOPs(G) Time(m)/epoch Max Mem(Mb) VQAv2Forward Backward
Vanilla-EM 152.6 185.2 39.6 26.8 18673 76.6

JB-EM 125.2 115.7 39.6 12.7 14512 76.6
JFB-EM 124.8 108.6 39.6 6.3 13674 76.8

Table 1: Experimental results of different backpropagation method in the dense OOD detection layer.
JFB-EM is much more efficient in backward pass and use less memory. It also outperforms on the
VQAv2 task in terms of accuracy.

Figure 2: Visualization of the multimodal feature space. Here, k denotes the number of clusters.

outperformed them in term of accuracy on VQAv2 task. It is trained with significantly less memory
and time cost per epoch, which is beneficial for large-scale settings. Additionally, we conducted
experiments on T - number of iterations, which is a critical parameter to compute fixed points. The
results are shown in Figure 3a. We found the improvements to be marginal for T ≥ 5, and JFB
achieves faster performance on all settings. Based on the results in Figure 3a, we fixed T = 10 for
the subsequent experimental settings. Additionally, we have provided the fixed point error plot over
iterations in Figure 3b. We observed that the squared euclidean distance between successive iterates
indeed went to zero showing convergence of forward pass.

Number of Clusters. We investigated the effects of the number of clusters on optimizing the GMM
process, and the results are presented in Figure 3c (see green line). The general trend indicates that
performance improves with an increase in the number of clusters. Qualitatively, Figure 2 shows
that learned output features using U-MAP embeddings [42]. Feature embedding spaces of multiple
modalities on COCO val dataset are shown in different colors representing different clusters. We
provide example images of the clusters in Appendix C.3. The results show that our VK-OOD model
can identify clusters over the extracted multimodal features – our layer can accurately detect outliers.

Robustness of OOD layer. Usually OOD features are not present within the training datasets
themselves. However, we may encounter outliers when integrating external knowledge triplets into
the training pipeline. If we denote M as the number of external knowledge triplets, then M = 0
corresponds to the ID setup – no outliers. To delve into further quantitative analysis, we considered
two setups: one with M = 0, i.e., ID setup, and OOD setup with M = 5 (so possibly 5 outliers per
language caption) that corresponds to augmenting features from external knowledge. We can see
from the results in Table 2b that there is not a significant difference from the the rate of convergence
perspective — as indicated by squared norm of successive iterates ∥µt − µt+1∥22 — in both setups.
However, from the accuracy (Acc) column in Table 2b, we can conclude that the performance in
VQA tasks has significant improvements over iterations when considering external knowledge.

(a) (b) (c)

Figure 3: Ablation studies results on VQA task. (a) Results on accuracy with different T iterations in
EM on VQAv2 dataset. (b) ∥µt − µt+1∥22 over EM iterations in forward pass.(c) Results on accuracy
with different numbers of external triplets and the number of clusters in the GMM process (see
Equation (2)) on OKVQA dataset.
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Incomplete Knowledge Triplets. To evaluate the sensitivity of models to OOD detection perfor-
mance, we conducted experiments of incomplete knowledge triplets with missing values. Note that,
we only dropped language features inputs due to computational reasons – augmenting image patches
requires more resources such as GPUs. However, since x is used for both visual and language
features, the implementation remains the same as that of dropping patches in language features. So, it
is equivalent to drop either the visual or the language feature since the computational effort involved
in running EM algorithm depends only on the total number of features. We now present more results
of ∥µt − µt+1∥22 and OKVQA performance in term of accuracy over optimization iterations in Table
2a. With higher level of incompleteness, the rate of convergence is slower as expected. Once again,
as in previous robustness experiments, we found accuracy gain over iterations here also.

25% 50% 75%
T Err Acc Err Acc Err Acc
1 2.213 48.2 2.448 47.3 2.735 44.6
3 0.174 48.9 0.214 47.7 0.208 45.1
5 0.065 50.6 0.092 48.6 0.244 46.0
8 0.057 51.2 0.108 49.1 0.112 46.6
10 0.051 51.8 0.084 49.4 0.167 46.9

(a) µ error and OKVQA accuracy

ID(M=0) OOD(M=5)
T Err Acc Err Acc
1 1.94 73.6 2.15 73.1
3 0.059 73.8 0.089 74.8
5 0.038 73.9 0.051 76.1
8 0.042 73.9 0.036 76.5

10 0.036 74.1 0.034 76.8

(b) µ error and VQA accuracy

Table 2: Fixed point error is measured using consecutive iterate distance ∥µt − µt+1∥22. (a) µ error
and OKVQA accuracy over the EM optimization iterations in different level of incompleteness. (b) µ
error and VQA accuracy over the EM optimization iterations in ID and OOD setups.

4.2 Ablation study on VK-OOD Components and External Knowledge

Effectiveness of Each Component. To compare the impact of the proposed OOD layer in VK-OOD,
we considered different combinations of inclusion and exclusion of knowledge graph representations
(KG) and OOD detection layer. The results are shown in Table 3. The results show that our model
achieves the best performance when both the components are included in the model. Moreover,
comparing the results on VQAV2 and OKVQA datasets, the results imply that external knowledge
triplets (KG) can be beneficial to improve the performance especially on VQA task. Furthermore,
using OOD layer even when there are no external knowledge triplets has good performance. This
shows that including OOD layer in our model is helpful and able to capture the noise of multiple
modalities, such as missing or mismatching modalities.

Method Downstream tasks
KG OOD VQAV2 OKVQA

73.9 45.5
✓ 74.6 48.3

✓ 74.1 46.2
✓ ✓ 76.8 52.4

Table 3: Ablation studies of different
components of VK-OOD. “KG" and
“OOD" denote knowledge graph and
OOD detection layer respectively.

Numbers of external knowledge triplets. We conducted
experiments to explore the impact of the amount of the
knowledge triplets. We evaluate this on VQA tasks using
OKVQA dataset. Figure 3c shows the experimental results.
As expected, we observed that increasing the number of
retrieved knowledge triplets improve the accuracy of pre-
dicted answers. We achieved the best accuracy of 52.4%
when the number of triplets is ≈ 5.

Knowledge resources. We evaluated different knowledge
resources, i.e., different embeddings of implicit and/or
explicit knowledge. Table 4 shows benefits provided by
different external resources in our pipeline. We queried
knowledge from Wikidata [59] and used BERT to get embeddings lj ∈ Rd. Our model produced
1.8% and 18.7% more accurate results than the best and worst performing baselines respectively.
Moreover, using ConcepNet embeddings solely, our multimodal training pipeline also learn implicit
knowledge in the multimodal fusion encoder. We compared our model performance with the models
using external knowledge resources. As results shown in Table 4, all the different external knowledge
resources brought improvements in the OKVQA tasks. Our proposed model takes advantages of
implicit knowledge from vision-language models and integrates explicit knowledge prior information,
thus outperforms other models using external knowledge resources without OOD detection.

4.3 Scalability of VK-OOD

In this section, we incorporated the proposed OOD detection layer to various backbone models with
different architectures and model sizes. We initialized the parameters (µ and σ) of our proposed

8



OOD detection layer in two different ways, scalar σ or the dense one which σ is a d × d matrix,
where d is the dimension of input embeddings. As showin in Table 5, the number of parameters
in scalar VK-OOD are approximately similar to the baselines. Specifically, comparing to other
baseline models, while our scalar VK-OOD increases the #-parameters slightly – ≈ 0.4 million more
parameters (since d ≈ 700) – it significantly improved the performance in downstream tasks.

Method Knolwedge resources OKVQA
ConceptBERT CN 33.7

KRISP Wiki + CN 38.4
MAVEx Wiki + CN + GI 39.4
KAT-B Wiki + GPT3 50.6
UnifER CN + ViLT 42.1

VK-OOD (Ours)

CN - w/o BERT 51.1
Wiki 51.9

Wiki + CN 52.2
CN 52.4

Table 4: Results on the different knowledge resources on
OKVQA dataset. “CN" and “GI" denote ConceptNet and
Google Images respectively.

We then conducted experiments on sev-
eral downstream tasks. In all these
experiments, our model consistently
achieved the best and second-best per-
formance compared to five state-of-
the-art (SOTA) vision-language models
across three downstream tasks on vari-
ous datasets(see Table 5). We trained on
open-source data and compare the results
with the models having similar number
of parameters. In particular, for VQA
tasks, we evaluated on the VQAv2 test
set. As shown in Table 5, our model
outperformed all the baselines on this
dataset, yielding an accuracy of 77.9%.

Furthermore, in the Natural Language for Visual Reasoning (NLVR) task, VK-OOD achieved the
best and second-best result in terms of accuracy with different backbone models, respectively. We
also evaluated our model, along with the baseline models, on the test set of COCO and F30K dataset
for image-text retrieval task. Our model produced the best performance and outperformed the best
and worst-performing baselines, with the exception of BLIP, by up to 0.5% and 11.6% respectively
on the COCO dataset (Table 5). In other settings and on the F30K dataset, the results are similar.
Further details are provided in Appendix C.2.

The performance of our model demonstrates its ability for visual reasoning while integrating both
implicit and explicit knowledge. Moreover, we are able to show that the proposed OOD detection
layer can scale with different models and contribute improvements to various tasks. For inference,
since µ and σ are fixed, the inference time is similar to the backbone models considered – the average
inference time for one VQA instance is around 57 ms on a single 2080Ti GPU. Therefore, we believe
that our implicit layer can function as a plug-and-play module and can be easily integrated with other
vision-language models.

4.4 Qualitative Analysis

Visualizing Attention with Multimodal Information. Figure 4 is an example of multimodal
alignment results from our VK-OOD representations. We use Grad-cam [52] to visualize the
multimodal maps of the models on the image corresponding to knowledge triplets. As shown in

Model #Params VQAv2 NLVR2 COCO Flickr30k
TR R@5 IR R@5 TR R@5 IR R@5

ViLT 87 70.3 74.6 86.2 72 95.6 86.8
UNITER 155 72.7 75.8 87.4 78.5 97.1 92.4
ALBEF 314 74.5 80.5 91.4 81.5 99.4 96.7
VinVL 157 75.9 83.1 92.6 83.2 - -
BLIP* 346 77.5 82.8 95.2 85.4 99.8 97.5

VK-OOD-s(ViLT) 87.4 76.7 84.3 90.9 81.6 97 94.3
VK-OOD-s(CLIP) 113.4 76.2 83.8 92.8 83.4 99.6 96.7
VK-OOD-s(BLIP) 346.4 77.8 84.1 95.4 85.2 99.8 97.2
VK-OOD-l(ViLT) 125 76.8 84.6 91.7 81.3 97.2 94.5
VK-OOD-l(CLIP) 151 76.1 83.9 93.1 83.6 99.6 96.8
VK-OOD-l(BLIP) 412 77.9 84.5 95.1 84.8 99.6 97.1

Table 5: Overall performance on multiple downstream tasks. We demonstrate VK-OOD scale with
different model backbones and achieve the best and second-best results. VK-OOD-s is the scalar
case, and VK-OOD-l is the dense case. *our implementation.
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Figure 4: Visualization of the attention maps of image and triplets alignment. The original sample
caption is “A man riding a bicycle down a city street". We highlight areas in the image corresponding
to different knowledge triplets. Our model learns different objects and localize those objects correctly.

Figure 5: Example case studies with OKVQA dataset. We show the examples of retrieved knowledge
triplets. Our model is able to detect outliers of retrieved triplets shown in orange. The predicted
answers are finetuning on OKVQA dataset. Comparing with the baseline results, our model provides
more correct answers. Note that, the baseline model here is our implementation without KG and
OOD components.

Figure 4, our model has the capability to attend to the extracted knowledge concepts, such as buildings
and traffic lights. Thus, our model can detect more objects to provide the ability for answering open
questions. We discuss more user studies on interactive OOD detections by feeding in domain
knowledge with different distributions in the Appendix C.3.

Furthermore, we present prediction results in Figure 5 with VK-OOD model on OKVQA dataset
along with the extracted knowledge triplets based on the captions. In the example, the caption 〈apple,
used for, making apple pie〉 is useful to obtain correct answers. This observation validated that
explicit knowledge provides more reasoning capability than implicit knowledge. Moreover, our
model detected OOD triplets by combining modalities, i.e, the apple fruit is in image, thus is not
used for computing. The last one is a failure case, because the ground truth caption is not sufficiently
specific. Therefore, it might be beneficial to consider more inference and reasoning abilities in
multimodal analysis, such as chain of thoughts [62].

5 Discussion

Limitations. A potential limitation of our proposed implicit layer arises when the covariance matrix
σ is dense. In such cases, a fast linear system solver would be required to evaluate the likelihood. We
will consider to explore sparse approaches to further saccelerater OOD detection layer in the future.
Additionally, given that we have demonstrated that explicit knowledge can serve as supervision
in vision-language training, we believe that various knowledge bases, such as medical knowledge
graphs, can provide user-desired domain distributions.

Conclusions. In this work, we presented a training framework designed to facilitate multimodal
analysis under distribution shifts and/or the presence of outlier distributions within the input feature
space. Several other models have been proposed to exploit special structures in the available modalities
for faster training purposes, as mentioned in [61], and for tasks involving egocentric vision [64].
While the approaches have been shown to perform well in large-scale settings, they may not be
sufficient on their own. For instance, most frames in a video have low semantic information content
and may require complex processing pipelines [8]. We argued that handling outliers within the
context of multimodal analysis is an crucial topic as more models are integrated or fused. Our implicit
OOD detection layer can be directly instantiated within such complex pipelines, possibly allowing us
to intervene and accelerate the training process while reducing computation costs. We demonstrated
through extensive empirical analysis across various setups that incorporating OOD detection in the
training pipeline can significantly enhance the performance on downstream tasks.
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A More details of Multimodal Pipeline

A.1 Image Encoder

We extracted features from image patches and used vision transformer based models(ViTs) [58] as
our encoder for the patches. To do so, we split input image into a sequence of patches and project
them using linear maps to obtain embedding of patch features vq , which simplifies the step for fusing
with text embedding. Following the vision-language models, we trained our model with multiple
popular ViTs to examine the influence of image encoder in OOD detection backpropagation process.

A.2 Knowledge Retrieval Module

Given the caption S, we first parsed it into triplets in the form of T id = ⟨o(c), r(c), o′(c)⟩, where o(c)
and o′(c) are concepts ∈ Cid ,and r(c) is the relation(s) between them, i.e., 〈man, riding, bicycle〉.
In our example, the seed triplets (ID triplets) parsed from the caption are ⟨man, riding, bicycle⟩ and
⟨bicycle, down, street⟩. Then we augmented knowledge by matching these triplets with external
open knowledge including domain and commonsense knowledge graphs, i.e., ConceptNet [55].
ConceptNet provides a large scale commonsense knowledge with over 21 million edges by 36 type
of relations, i.e., IsA, UsedFor, AtLocation, connecting 8 million nodes. To complete our knowledge
graph based augmentation, we collected concepts by querying from ConceptNet using o(c), o′(c)
and reli where i ∈ [0, 36] and concatenated them to seed triplets. For example, given “street" as o(c)
and “AtLocation" as reli, we will extract the related concepts are located at street to form triple Ti.
Specifically, we queried explicit knowledge triplets of o(c) and o′(c) from ConceptNet to form T cn,
i.e., 〈bicycle, used for, transport〉. Finally, these knowledge triplets ∈ T = T cn ∪ T id are encoded as
language features, such as lj using a language encoder (i.e., BERT[14]).

A.3 Multimodal Fusion Encoder

We used our proposed OOD detection layer as a “plug-and-play” module that can be used in different
vision-language architectures. In ViLT and CLIP, we added the visual and textual embeddings with
s(·) as in Equation (3), and passed them to a standard L-depth transformer. While using the BLIP
backbones, we implemented a two-stream transformer pipeline consisting of stacked multiple layers
to joint vision and knowledge textual representations. For each layer, we used self-attention unit and
merged cross-attention unit, thus integrating vision and knowledge semantic information and the
alignments across them.

Multimodal Attention Module. As in the standard transformer architecture [58], the attention
function computes identical learnable parameters (weights) as in Equation (8) and Equation (9) ,
where d is the dimension of the inputs, a query Q, key K, and value V. We used fusion encoder to
compare similarity among the image-text pairs given by,

Attn (QI ,KL, VL) =

softmax
(
QIK

T
L√

d

)
)VL,

(8)

and

Attn (QL,KI , VI) =

softmax
(
QLK

T
I√

d

)
)VI

(9)

where I and L correspond to image modality and language modality.

In implementation of multimodal encoder, we updated the image and language embedding outputs
themselves from previous layer as queries and concatenate them together to get keys and values. As
a further improvement of attention function, we used a multi-head attention which is composed by
multiple paralleled attention function in each head. The feed-forward layers transform the outputs of
multi-head attention through two fully-connected layers with GeLU activation.
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B More details on formulating Training objectives

We provide more details on our training objectives in our pipeline in this section, including image
text matching (ITM) and masked language modeling (MLM).

B.1 Image Text Matching (ITM)

To incorporate both the vision and the language representations, we used ITM which is widely used
in previous VL studies. Given an image and text of triple pair ⟨vq, lj⟩, ITM predicts whether they are
matched as positive examples or not, and it is a binary classification problem with the loss function in
Equation (5) and Equation (6). We assumed that each image and ID triple pair ⟨vq, lj⟩, as a positive
example. The negative pairs are constructed through batch-sampling.

B.2 Masked Language Modeling (MLM)

MLM utilizes vision features and text features of ID concepts and relations to predict the masked
tokens in the caption sentence S. Masking tokens is a form of self-supervision, and is well known
to improve performance [34]. Here, we randomly masked some tokens in S replacing as ymsk and
predicted them with their visual and textual features. Since some tokens are replaced with “[mask]",
the OOD score s(·) becomes a function of the random masks. With this, we used s(·) to calculate the
predicted probability for a masked token as in Equation (3). Our final MLM loss can be written as,

Lmlm = E(v,l̂)∼DH(ymlm, p(v, l̂)) (10)

whereH denotes the cross-entropy, ymlm is a one-hot vector where the ground truth tokens are with
probabilities of 1, l̂ denotes the masked text.

C Additional Experiments

In this section, we provide details on experimental setups that we used to conduct ablation studies,
and more qualitative analysis of our proposed VK-OOD multimodal pipeline.

C.1 Implementation details

Datasets. Following standard practice in Vision, we used training strategies wherein we pre-trained
on a fixed, large dataset and then fine-tuned on datasets specific to downstream tasks. We pre-trained
on three datasets, including COCO [35], Visual Genome [28], and SBU Captions [47] with total of
1M images and 6.8M image-caption pairs, as approximate 30% less than the baseline(ViLT). Each
caption is parsed to 1 - 3 triplets and augmented with 5 external knowledge triplets. For downstream
datasts, we used Flickr30k [48] and COCO for image-text retrieval, VQAv2 [4] and OKVQA [41]
for visual question answering (and ablation studies), and NLVR2 [56] for visual reasoning. We
resized each image to the size of 224× 224 by center-cropping. In the merged attention module, each
multimodal encoder layer consists of one multi-head self-attention block and one feedforward block,
and total number of identical layers is equal to 12.

Encoder backbones. First, we retrieved explicit knowledge triplets as pre-processing, by using
ConceptNet Numberbatch1. Next, for ViLT, we used RoBERTa [38] as text encoder and ViT-B/32
[49] as visual encoder. To scale with CLIP, we used CLIP-ViT-B/32 [49] as both backbones. Then,
we followed the BLIP design with BERT-base as text encoder and ViT-B/16 as visual encoder.

Network training. We pre-trained the model for 10 epochs using AdamW optimizer [39] with
learning rate of 1e−4 and weight decay of 1e−2. We chose the warm-up phase of learning rate to be
10% of the total training steps, and the learning rate was decayed linearly to 0 afterwards. Then, we
fine-tuned our model for 5 epochs with learning rate of 2e− 4 for all downstream tasks. In addition,
we applied RandAugment [12] as augmentation strategy in fine-tuning steps. We pre-trained and
fine-tuned both on 8 NVIDIA RTX 2080Ti GPUs, and for inference we used 1 NVIDIA RTX 2080Ti
GPU.

1https://github.com/commonsense/conceptnet-numberbatch
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Model
COCO F30k

TR IR TR IR
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ViLT 61.8 86.2 92.6 41.3 72.0 82.5 81.4 95.6 97.6 61.9 86.8 92.8
UNITER 64.4 87.4 93.1 50.3 78.5 87.2 85.9 97.1 98.8 72.5 92.4 96.1
ALBEF 73.1 91.4 96.0 56.8 81.5 89.2 94.3 99.4 99.8 82.8 96.7 98.4
VinVL 74.6 92.6 96.3 58.1 83.2 90.1 - - - - - -
BLIP 80.6 95.2 97.6 63.1 85.3 91.1 96.6 99.8 100 87.2 97.5 98.8

Ours(ViLT) 73.8 91.4 96 52.4 81.3 90.1 85.9 97.1 97.6 80.1 94.6 96.7
Ours(CLIP) 69.8 87.5 93.6 48.8 78.5 82.5 92.3 98.4 99.5 79.8 92.1 96.4
Ours(BLIP) 80.7 95.1 96.8 62.9 84.8 92.8 96.4 99.6 99.8 86.3 97.1 98.8

Table 6: Detailed results of image-text retrieval tasks on COCO and Flickr30k datasets. Our model
with different backbones outperforms other models and achieve the best and second-best results.

Model Objectives VQA Flickr30k
test-dev TR@1 IR@1

ViLT ITM 70.6 82.1 65.6
ViLT MLM 72.8 - -
ViLT ITM+MLM 74.2 88.1 74.1
VK-OOD-s ITM 72.1 84.5 69.8
VK-OOD-s MLM 73.4 - -
VK-OOD-s ITM+MLM 74.8 89.0 77.2

Table 7: Ablation study experiment results of VK-OOD model. ViLT is our implementation without
explicit knowledge and OOD detection layer. ITM is image-text matching, and MLM is masked
language modeling. Results on VQA are on test-dev set. Both downstream results are in zero-shot
settings. The bold values mean the best model in the table. Comparing with the baselines, our model
with OOD detection layer outperforms on all objectives with two datasets. Training on combinations
of objectives improves model performance.

C.2 Experimental Results

Details of image-text retrieval tasks. We now discuss detailed results on COCO and F30K datasets,
as shown in Table 6. We can see that the model of OOD detection layer with ViLT has significant
improvements in image retrieval and text retrieval tasks. Overall, we once again see that our model
achieved the best and second-best results on both datasets comparing to other SOTA models.

Training Objectives with OOD detection Layer. To precisely characterize the performance benefits
of using our OOD layer, we performed more ablations with the default training settings of the baseline
and our model mentioned in Section 4.2. We considered different combinations of train objectives
and evaluated them in zero-shot settings and observed our model performance on training objectives.
Note that ViLT we compare to in Table 7 is our implementation with the same subset of training
datasets. Our raw results are presented in Table 7. Here, we trained on pre-train datasets with Litm in
Equation (6), Lmlm in Equation (10), and the sum of Litm and Lmlm losses as our training objectives.
We see that training on image-text matching and masked language modeling is beneficial for both
downstream tasks comparing to the baseline model. Specifically, there is improvements in image
retrieval and text retrieval tasks. Thus, it is beneficial to train on both ITM and MLM for filtering
outlier concepts and improved performance on downstream tasks.

C.3 Qualitative Analysis

As shown in Figure 2, the feature maps obtained using our VK-OOD pipeline can be clustered
that are easily identified. This means that we can detect outliers and group images closest to the
corresponding µk with image and explicit knowledge triplets. Figure 6a and Figure 6b are examples
with the nearest images in each cluster.

Figure 7 and Figure 8 show more qualitative examples of multimodal alignment results of our models.
Here, we visualized the multimodal attention maps on images corresponding to concept triplets
using Grad-cam [52]. Following our model architecture, the caption is parsed and integrated with
knowledge triplets. The right bottom sub-figures of our model in Figure 7 and Figure 8 are the
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(a) Example cluster 1 (b) Example cluster 2

Figure 6: Example images in the clusters on COCO val set.

Figure 7: Visualization of the attention maps of image feature vq and language features lj of external
knowledge alignment. The results are from our VK-OOD-s (ViLT) model. The original sample
caption is “a giraffe and zebras mingle as cars drive out of an animal park". We highlight areas in the
example image corresponding to different knowledge triplets. Comparing with the attention maps of
the baseline model, our model learns object shapes such as zebras and localize those objects correctly.

multimodal alignment of original captions from MSCOCO dataset [35]. Other sub-figures show the
alignments of extracted knowledge triplets on the image.

Interestingly, we found that VK-OOD model is able to capture concept “plug” as a part of “refrigerator”
or “microwave” in Figure 7. The heatmap area of “plug” and “microwave” in Figure 7 clearly suggest
that our model has the capability to exploit different relevance between visual and corresponding
conceptual text features. In contrast, the baseline results did not show the relation between plug
and microwave. Figure 8, shows that VK-OOD can detect three zebras comparing with baseline,
but counting cars is not performing well as we expected – since the size (or scale) of cars is not
sufficiently high, and moreover some parts of them are occluded.
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Figure 8: Visualization of the attention maps of image and knowledge concept triplets alignment. The
results are from our VK-OOD-s (ViLT) model. The original sample caption is “a metallic refrigerator
freezer next to a microwave oven". We highlight areas in the example image corresponding to
different knowledge triplets. Comparing with the attention maps of the baseline model, our model
learns the relations between the parts (i.e., plug) of the objects correctly.
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