
6 Supplementary material

All spiking network simulations were run using Auryn [51] on single cpu-cores. Network simulations
performed in fSBI were distributed over 300 cores from four workstations for two months. Simulations
were analyzed using numpy, scipy, sklearn and pytorch [52–55]. Inference was performed using
the sbi package [56]. Figures were made using matplotlib [57]. Code for simulations, analysis and
figures is available on https://github.com/VogelsLab/fSBI.

6.1 Spiking network simulations

Table 1:

Neuron model parameters (E and I populations)

Membrane time-constant τm 20ms
Resting potential Vrest −70mV
Excitatory reversal potential EE 0mV
Inhibitory reversal potential EI −80mV
AMPA/NMDA ratio a 0.3
GABA time-constant τGABA 10ms
AMPA time-constant τAMPA 5ms
NMDA time-constant τNMDA 100ms
Threshold resting state V th

base −50mV
Threshold time-constant τth 5ms
Threshold increment on spike V th

spike 100mV

Table 2:

Network parameters

Number of excitatory neurons NE 4096
Number of inhibitory neurons NI 1024
Initial EE weights wEE 0.1
Initial EI weights wEI 0.1
Initial IE weights wIE 1
Initial II weights wII 1
Sparsity (EE, EI, IE, II) ξrec 0.1
Number of input neurons Next 5000
Sparsity inputs (Ext-E, Ext-I) ξext 0.05
Input weights (Ext-E, Ext-I) wext 0.075

Table 3:

Simulation parameters

Simulation time polynomial rules (no recording) tpoly
init 120s

Simulation time MLP rules (no recording) tMLP
init 60s

Recording time trec 10s
Simulation time-step ∆tauryn 0.1ms

Early stopping of simulations: To save compute-time during simulation of plastic SNNs, specif-
ically in the earlier rounds of fSBI, we used an online estimate of the network population activity
(exponential kernel with time constant 1s) and stopped the simulation if the network displayed a
population activity above 100Hz.

Note that in the networks with an MLP rule, adaptation (spike-triggered self-inhibition, with time-
constant τsfa = 100ms) was added to both neuron populations.

15

6.2 Network metrics

Given spike-trains (Si(t))i∈E and weight evolutions (wij(t))i,j∈E,I during a recording window
[tstart, tstop], and consistent with previous studies [23, 25], we introduced multiple network met-
rics, defined as functions taking spike-trains or weight traces as inputs and outputting scalars:
M :

{
Si(t), wij(t)

}
i,j∈E → R. Below we detail the metrics chosen in this study. In practice, the

activity of 1000 random excitatory neurons, 500 inhibitory neurons, and 100 weights for each plastic
connection type was recorded and stored for each network simulation.

6.2.1 Stable activity

Excitatory/inhibitory population firing rate rexc and rinh: number of spikes produced by all neurons
during the recording window, divided by number of neurons and recording length. Rules were flagged
as suitable if rexc ∈ [1, 50]Hz and rinh ∈ [1, 50]Hz. The lower bound of 1Hz was chosen mainly
for numerical reasons: allowing us to collect enough spikes in a given 2min simulation and thus
meaningfully assess rules with spike-triggered updates.

6.2.2 Stable weights

Weigth blow-up fwblow : the fraction of blown-up weights (w = 0 or w = wmax) across the recording
was computed and averaged across all plastic connection types. The condition chosen was fwblow < 0.1.
This metric was introduced to reject biologically unrealistic rules that led more than 10% of the
weights of any synapse type to 0 or to the maximum weight .

Weight creep wcreep: the maximum change in relative mean weights across all plastic connection

types across the recording window: wcreep = max
(
2
|⟨wXY

ij ⟩tstop−⟨wXY
ij ⟩tstart |

⟨wXY
ij ⟩tstop+⟨wXY

ij ⟩tstart

)
XY

. The condition chosen

was wcreep < 0.05. This metric was designed to reject weights that changed unrealistically fast,
excluding mean relative changes of more than 5% over the final 10s of simulation.

Mean final weight ⟨wXY⟩: The mean value of weights of each connection type at tstop was computed.
The condition chosen was ⟨wEY⟩ < 0.5 (excitatory connections) and ⟨wIY⟩ < 5 (inhibitory connec-
tions). These ranges were chosen so that PSPs were smaller than 3 millivolts on average, in line with
experimental data [29, 31].

6.2.3 Near-asynchronous activity

Several metrics were used to enforce the broadly asynchronous-irregular activity observed in cortex
[24, 25, 27, 29, 30]. Ranges for these were devised with independent Poisson spike trains in mind,
with leeway for spatiotemporal correlations, as seen in cortical recordings [32–34].

Standard deviation of the population firing rate ⟨σ⟩i: the excitatory population firing rate was
computed over successive 1ms time windows, on which the standard deviation was computed.
The condition was ⟨σ⟩i < 5. This measure has been widely used to detect network-wide events
—synchrony—, corresponding to high standard deviations [23, 25].

Fourier transform < S >i,f : spike trains pooled across all recorded neurons were binned over
successive 1ms time windows. The resulting 1D signal was Fourier-transformed. The sum of the
absolute value of the signal in Fourier space was computed, excluding the contribution of the mean
firing rate (power at frequency f = 0Hz in Fourier space), and used as a metric with the condition
< S >i,f< 1.

Fano factor (spatial) ⟨Fano⟩i: after binning the spike-trains over 100ms successive windows, the
Fano factor across neurons was computed for each time window, then averaged over the windows.
The condition used was ⟨Fano⟩i,t ∈ [0.5, 2.5].

6.2.4 Near-irregular activity

CV ⟨cv(ISIi)⟩i: the coefficient of variation of the inter-spike intervals (ISIs) for each neuron in the
network was computed, then averaged over neurons: ⟨cv(ISIi)⟩i =<

σISIi
µISIi

>i. This measure has no
hyper-parameters, and has been widely used in neuroscience for decades to assess the regularity of a
spike-train [23, 25].

16

Auto-covariance ⟨ρ⟩i,t: After binning the spike-trains with a window of 10ms, we computed the
normalized, absolute value of the auto-covariance for each neuron between -500ms and 500ms. We
then took the mean area under the curve and averaged over neurons. The condition was ⟨ρ⟩i,t < 0.1.
This metric also targets the regularity of spike-trains, but does not assume unimodality of ISIs like
the cv.

Fano-factor (temporal) ⟨Fano⟩t: after binning the spike-trains over 100ms successive windows, the
Fano factor was computed per neuron, then averaged over windows. The condition was ⟨Fano⟩t ∈
[0.5, 2.5].

We chose the ranges for the less widespread metrics by benchmarking the respective metrics on
example networks such as Poisson spike trains at various rates, networks from classical studies in the
field [7–9] and also implausible networks e.g., synchronous-regular regime.

The choices of metrics and ranges made in this study are not universal, and a focus on specific brain
regions, especially subcortical ones, may necessitate some changes. fSBI allows for such changes of
metrics and corresponding ranges post hoc, at little computational cost, because the raw spike trains
and weight traces are stored.

6.3 Mean-field analysis

In the polynomial search space, we performed a self-consistent analysis of the weight and activity
dynamics in the network at steady state, as was done previously [23, 7, 10]. Such analysis is performed
independently for every synapse-type and links the plasticity parameters and the population activity.
If we consider the EE rule:

dwij

dt
= η [δi(t)(αEE + κEExj(t)) + δj(t)(βEE + γEExi(t))] , (6.1)

with δk(t) =
∑

δ(t− t∗k) the spike train of neuron k, t∗k denotes the spike times of neuron k, and δ
the Dirac delta. The variables xi(t) and xj(t) trace the pre- and post-synaptic spike trains:

dxi

dt
= − xi

τ pre
EE

+ δi(t) and
dxj

dt
= − xj

τ post
EE

+ δj(t), (6.2)

where τ pre
EE and τ post

EE are the time constants of the traces associated with the pre- and postsynaptic
neurons, respectively. We can average this equation over a large time-window compared to the
timescales involved:〈

dwij

dt

〉
= η [αEE ⟨δi(t)⟩+ κEE ⟨δi(t)xj(t)⟩+ βEE ⟨δj(t)⟩+ γEE ⟨δj(t)xi(t)⟩] , (6.3)

Assuming the existence of steady-state on the weights and activities, and a homogeneous network of
independent Poisson spike-trains, this steady state is given by:〈

dwij

dt

〉
= 0, ⟨δi(t)⟩ = ⟨δj(t)⟩ = r∗exc, ⟨xi(t)⟩ = τ pre

EE r
∗
exc, ⟨xj(t)⟩ = τ post

EE r∗exc, (6.4)

which leads to the equation used in Methods. 7. Similar analysis on the other connection types leads
to:

(EE) r∗exc =
−αEE − βEE

λEE
; (EI) r∗inh =

−αEIr
∗
exc

βEI + λEIr∗exc

(IE) r∗exc =
−αIEr

∗
inh

βIE + λIEr∗inh
; (II) r∗inh =

−αII − βII

λII
,

(6.5)

with the notation λXY = κXYτ
post
XY + γXYτ

pre
XY.

In addition, the fixed-point should be stable, thus for EE:

∂

∂rexc

(
drexc

dt

)
(r∗exc) < 0. (6.6)

We can then assume for an excitatory synapse (considering a linear rate model) that:

drexc

dt
∝

〈
dw
dt

〉
, (6.7)

17

which leads to αEE + βEE > 0 and λEE < 0, and similar conditions on other synapse types.

Overall, such analysis provided a rough first guess of analytically plausible rules, against which to fit
the rules recovered from fSBI. Further constraining across synapse-types could be done by adding
that since we consider a recurrent network, rexc and rinh are related.

6.4 Pre-post pairing protocol

The pre-post pairing protocol was implemented by computing the total weight change of a synapse
receiving one pre-synaptic spike and one post-synaptic spike with time lag ∆t = tpost − tpre.

For the case of an MLP rule, for which the other input variables were not constrained by the protocol,
the protocol was repeated 5 times with several values for the other synaptic variables reflecting
various overall levels of activity: from low to high. For an EE rule:

wij = 0.01 → 1, ⟨Vj ⟩ = −70mV → −50mV, Cexc
j = 0 → 30mV, C inh

j = 0 → 30mV, (6.8)

For an IE rule:

wij = 1 → 10, ⟨Vj⟩) = −70mV → −50mV, Cexc
j = 0 → 30mV, C inh

j = 0 → 30mV (6.9)

6.5 fSBI and true Bayesian posteriors

With fSBI, the final distribution we obtain after T rounds of filtering is not the true Bayesian posterior
p(θ|m1,m2, . . . ,mT), since the metrics m1, . . . ,mT we condition the posterior on change at each
filtering round. We also do not correct for the change in prior at each round. Furthermore, when we
replace the prior in each subsequent round with the posterior from the preceding round, we sample
from it for a range of metric values, rather than a single value.

We here clarify the relationship between the pseudo-posterior obtained from fSBI and the correspond-
ing true Bayesian posterior. We note that targeting the true Bayesian posterior (and the additional
theoretical and computational burden it would add to the algorithm) is unnecessary, since our main
objective is rather to sample plausible rules. Nevertheless, clarifying the relationship between the
pseudo- and true posterior can help choose strategies in applying fSBI to recover plausible rules, as
we describe below.

We infer fSBI posteriors in two ways: by conditioning only on new metrics at each filtering round, or
conditioning on new metrics in addition to the metrics from previous rounds. We address the two
cases separately and restrict our discussion to two filtering rounds, for clarity.

New metrics only at each round: We recall from Eqns. 10 that after two rounds of filtering, fSBI
returns a pseudo-posterior p2(θ|m2), and setting m· such that Ig·(m·) = I(m·) to elide notation, we
get:

p2(θ|m2) =
p(m2|θ)π1(θ)

p(m2)
(6.10)

=
p(m2|θ)p1(θ|I(m1)

p(m2)
(6.11)

=

∫
I(m1)

dm1
p(m2|θ)p1(θ|m1)

p(m2)
(6.12)

=

∫
I(m1)

dm1
p(m2|θ)p(m1|θ)π0(θ)

p(m2)p(m1)
(6.13)

⇒ p2(θ|I(m2)) =

∫∫
I(m1),I(m2)

dm2dm1
p(m2|θ)p(m1|θ)π0(θ)

p(m2)p(m1)
(6.14)

Note that the true Bayesian posterior after two rounds would be, using Bayes’ rule:

ptrue(θ|I(m2), I(m1)) =
p(I(m2), I(m1)|θ)π0(θ)

p(I(m2), I(m1))
(6.15)

=

∫
I(m1),I(m2)

dm2dm1
p(m2,m1|θ)π0(θ)

p(m2,m1)
(6.16)

18

Eqns 6.14 and 6.16 would be equal iff the metrics m1 and m2 were conditionally independent. In
other words:

p2(θ|I(m2)) = ptrue(θ|I(m2), I(m1)) iff (6.17)
p(I(m2), I(m1)|θ) = p(I(m2)|θ)p(I(m1)|θ) (6.18)

Since we do not explicitly take the correlations between metrics into account in fSBI, this indicates
that this fSBI pseudo posterior is broader than the true posterior. In other words:∫

p2(θ|I(m2))dθ >

∫
ptrue(θ|I(m2), I(m1))dθ (6.19)

Intuitively, sampling from the l.h.s. distribution in the equation above is less restrictive than sampling
from the r.h.s.: we could potentially sample θ leading to simulations x that respect either condition
a1 < m1 < b1 or a2 < m2 < b2, but not both.

New metrics in addition to metrics from previous rounds: If we condition on all preceding metrics
at every filtering round, we have a more restrictive distribution than the true posterior. Here, fSBI
explicitly targets:

p2(θ|I(m2), I(m1)) =

∫∫
I(m1),I(m2)

dm1dm2
p(m2,m1|θ)p1(θ|m1)

p(m2,m1)
(6.20)

=

∫∫
I(m1),I(m2)

dm1dm2
p(m2,m1|θ)p(m1|θ)π0(θ)

p(m2,m1)p(m1)
(6.21)

=

∫∫
I(m1),I(m2)

dm1dm2
ptrue(θ|m2,m1)p(m1|θ)

p(m1)
(6.22)

<

∫∫
I(m1),I(m2)

dm1dm2ptrue(θ|m2,m1) (6.23)

This extra factor p(m1|θ)
p(m1)

in the ratio inside the integral collapses the neural density estimator to
a narrower marginal density, since we now marginalize the true posterior ptrue(θ|m1,m2) over
p(I(m1)|θ) to estimate this density2.

Intuitively the fSBI posterior mass is restricted strictly to the regions satisfying Ig1(m1). This is
clearly more conservative than sampling from the true posterior jointly conditioned on all possible
values of m1 and m2, and then marginalising over I(m1) and I(m2).

Thus, the former fSBI procedure allows us to find a broader density from which to sample parameters—
this allows us to explore the space of possible parameters more thoroughly with respect to each
metric, while having the disadvantage that by ignoring correlations between metrics, we can be
sampling from regions of posterior space where conditions on both metrics are not satisfied. The
latter approach is more conservative, such that we are highly likely to find samples that satisfy the
condition on m1, but at the cost of leaving many regions of parameter space unexplored.

2Note that we can correct for this simply by using importance weights p(m1)
p(m1|θ)

in the integral

19

6.6 fSBI on polynomial search space

Table 4:

Plasticity parameters, polynomial search space

Learning rate η 0.01
Tunable synaptic traces time constants τ pre

XY, τ
post
XY ∈ [10, 100]ms

Other tunable plasticity parameters αXY, βXY, γXY, κXY ∈ [−2, 2]ms
Maximum weight (EE, EI, IE, II) wmax 20

Figure 6.1: Pairplot of 10k plausible (obeying all conditions) rules from the polynomial search space.
The diagonals show the distribution of values for each plasticity parameter. The off-diagonal plots
show the marginals between each pair of plasticity parameters.

20

Figure 6.2: Companion figure to Fig. 3 A: Full visualization of the networks simulated with rules
shown in Fig. 3D, E. B: Pearson correlation matrix of 10k plausible rules (obeying all conditions)
from the polynomial search space. Less structure is seen than in Fig. 3A, since a wide collection of
rules with various corresponding network dynamics (e.g., activities between 1 and 50Hz) is included.
C: Emergence of mean-field-like structure for EE, EI, IE, and II rules, polynomial search-space.

21

6.7 fSBI on MLP search space

Table 5:

Plasticity parameters, MLP search space

Tunable learning rate ηEE, ηIE ∈ [0, 1]
Tunable weights and bias θ ∈ {W EE

pre ,W
EE
post,W

IE
pre,W

IE
post} ∈ [−1, 1]

Time-constant of Cexc τCexc 10ms
Time-constant of Cinh τCinh 100ms
Time-constant of ⟨Vj⟩ τV trace 100ms
Maximum weight (EE, IE) wmax 20

Fast pre-synaptic traces time-constant τ
(1)
pre EE, τ

(1)
pre IE 10ms

Slow pre-synaptic traces time-constant τ
(2)
pre EE, τ

(2)
pre IE 100ms

Fast post-synaptic traces time-constant τ
(1)
post EE, τ

(1)
post IE 10ms

Slow post-synaptic traces time-constant τ
(2)
post EE, τ

(2)
post IE 100ms

Figure 6.3: Companion figure to Fig. 4 A: Principal component analysis (PCA) on samples from
each intermediate fSBI MLP posterior (π0 → π3). Variance explained along the corresponding PCA
directions across rounds. B: Another plausible rule from the MLP search space (same plot as in
Fig. 4D) and its visualization under the pre-post protocol. C: Pearson correlation matrix between the
rule parameters of 10k plausible rules from the MLP search space.

22

Figure 6.4: Pairplot of 10k plausible (obeying all conditions) rules from the polynomial search space.
The diagonals show the distribution of values for each plasticity parameter. The off-diagonal plots
show the marginals between each pair of plasticity parameters.

Figure 6.5: Weight distributions of some meta-learned rules.

23

Proof of principle of the flexibility of the MLP search space: Below, we detail a preliminary
analysis suggesting that approximating potentially highly non-linear plasticity rules in spiking
networks could be done using a partially trained MLP. Refer to Section. 2.2 for the definition and
architecture of one MLP.

First, we trained the final layer of one MLP (corresponding to a "half rule", i.e., weight updates at
a pre-synaptic spike, or at a post-synaptic spike, with the same shared weights as the ones used in
Fig. 4) to approximate the weight updates on a pre-synaptic spike of the rule proposed by Vogels
et al. [7]:

dwij

dt
= ηδi(t)(−0.2 + xj(t)), (6.24)

Note that this rule belongs to our polynomial search space. This fit does not involve any network simu-
lations, we instead minimize the loss L = MSE(∆wMLP,∆w∗) with the standard auto-differentiation
tools available in Pytorch. The result, shown Fig. 6.6, suggests that this linear rule can be well
approximated by the MLP.

Finally, to check in practice how well-behaved this MLP search space would be, we used an
evolutionary strategy (CMA-ES [58]) to find IE MLP rules that would establish a firing rate of 10Hz
after 1min of simulation of a SNN similar to the ones described in Section. 2.1. The loss optimized
was

L(θ) =

〈(
⟨rexc⟩t − rtarget

)2

⟨rexc⟩t + ϵ

〉
trials

, (6.25)

Each rule was evaluated on ntrial = 5 trials. The evolution of the loss across meta-iterations (epochs
of training the MLP plasticity rule with CMA-ES) shows that satisfying rules are found within a
dozen iterations (Fig. 6.6B), suggesting that the search space is well-behaved enough to be navigated
by ES optimizers such as CMA-ES. When simulating a learnt IE rule in a SNN, we see that the rule
stabilizes the population firing rate at the desired target (Fig. 6.6C) after 2min of simulation. Note
that the weight changes and values are not plausible, which is not surprising given this criterion was
not part of the meta-objective. In contrast, fSBI was designed such that one can post-hoc introduce
"regularizers" to an implicit loss, thus allowing to react on-the-fly to the implausible features of the
considered candidate rules.

Figure 6.6: Proof of principle of the flexibility of the MLP search space. A: MLP with the same
architecture and shared weights as the one in Fig. 4 trained to approximate the update at a pre-
synaptic spike of the rule proposed in Vogels et al. [7]. B: SNN with MLP-parameterized rule for IE
connections. The same parameters as in Fig. 4 of one MLP rule were trained with CMA-ES [58] in
order to target a 10Hz population firing rate. Left: evolution of the loss function. Right: raster plots,
population activity and IE weight traces of a SNN evolving with the meta-learnt solution (note that
the loss did not include a penalty regarding the plausibility of weight traces).

24

	Supplementary material
	Spiking network simulations
	Network metrics
	Stable activity
	Stable weights
	Near-asynchronous activity
	Near-irregular activity

	Mean-field analysis
	Pre-post pairing protocol
	fSBI and true Bayesian posteriors
	fSBI on polynomial search space
	fSBI on MLP search space

