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Abstract

Meta learning is a promising paradigm to enable skill transfer across tasks. Most1

previous methods employ the empirical risk minimization principle in optimization.2

However, the resulting worst fast adaptation to a subset of tasks can be catastrophic3

in risk-sensitive scenarios. To robustify fast adaptation, this paper optimizes meta4

learning pipelines from a distributionally robust perspective and meta trains models5

with the measure of expected tail risk. We take the two-stage strategy as heuristics6

to solve the robust meta learning problem, controlling the worst fast adaptation7

cases at a certain probabilistic level. Experimental results show that our simple8

method can improve the robustness of meta learning to task distributions and reduce9

the conditional expectation of the worst fast adaptation risk.10

1 Introduction11
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Figure 1: Illustrations of Distributionally Robust
Fast Adaptation. Shown are histograms of meta risk
function values ℓ(DT

τ ,D
C
τ ;ϑ) in the task distribution

p(τ). Given a probability α, we optimize meta learn-
ing model parameters ϑ to decrease the risk quantity
CVaRα in Definition (3).

The past decade has witnessed the remarkable12

progress of deep learning in real-world appli-13

cations (LeCun et al., 2015). However, train-14

ing deep learning models requires an enormous15

dataset and intensive computational power. At16

the same time, these pre-trained models can fre-17

quently encounter deployment difficulties when18

the dataset’s distribution drifts in testing time19

(Lesort et al., 2021).20

As a result, the paradigm of meta learning or21

learning to learn is proposed and impacts the ma-22

chine learning scheme (Finn et al., 2017), which23

leverages past experiences to enable fast adapta-24

tion to unseen tasks. Moreover, in the past few25

years, there has grown a large body of meta learning methods to find plausible strategies to distill26

common knowledge into separate tasks (Finn et al., 2017; Duan et al., 2016; Garnelo et al., 2018a).27

Notably, most previous work concentrates merely on the fast adaptation strategies and employs the28

standard risk minimization principle, e.g. the empirical risk minimization, ignoring the difference29

between tasks in fast adaptation. Given the sampled batch from the task distribution, the standard meta30

learning methods weight tasks equally in fast adaptation. Such an implementation raises concerns31

in some real-world scenarios, when worst fast adaptation is catastrophic in a range of risk-sensitive32

applications (Johannsmeier et al., 2019; Jaafra et al., 2019). For example, in robotic manipulations,33

humanoid robots (Duan, 2017) can quickly leverage past motor primitives to walk on plaint roads but34

might suffer from tribulation doing this on rough roads.35
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Research Motivations. Instead of seeking novel fast adaptation strategies, we take more interest36

in optimization principles for meta learning. Given the meta trained model, this paper stresses the37

performance difference in fast adaptation to various tasks as an indispensable consideration. As the38

concept of robustness in fast adaptation has not been sufficiently explored from the task distribution39

perspective, researching this topic has more practical significance and deserves more attention in40

meta learning. Naturally, we raise the question below:41

Can we reconsider the meta learning paradigm through the lens of risk distribution, and are there42

plausible measures to enhance the fast adaptation robustness in some vulnerable scenarios?43

Developed Methods. In an effort to address the above concerns and answer these questions, we44

reduce robust fast adaptation in meta learning to a stochastic optimization problem within the45

principle of minimizing the expected tail risk, e.g., conditional value-at-risk (CVaR) (Rockafellar46

et al., 2000). To tractably solve the problem, we adopt a two-stage heuristic strategy for optimization47

with the help of crude Monte Carlo methods (Kroese and Rubinstein, 2012) and give some theoretical48

analysis. In each optimization step, the algorithm estimates the value-at-risk (VaR) (Rockafellar et al.,49

2000) from a meta batch of tasks and screens and optimizes a percentile of task samples vulnerable50

to fast adaptation. As illustrated in Fig. (1), such an operation is equivalent to iteratively reshaping51

the task risk distribution to increase robustness. The consequence of optimizing the risk function52

distributions ϑk → ϑk+1 is to transport the probability mass in high-risk regions to the left side53

gradually. In this manner, the distribution of risk functions in the task domain can be optimized54

toward the anticipated direction that controls the worst-case fast adaptation at a certain probabilistic55

level.56

Outline & Primary Contributions. We overview related meta learning and robust optimization57

work in Section (2). Section (3) introduces general notations and describes meta learning optimization58

objectives together with typical models. The distributionally robust meta learning problem is presented59

together with a heuristic optimization strategy in Section (4). We report experimental results and60

analysis in Section (5), followed by conclusions and limitations in Section (6). Our primary61

contribution is two-fold:62

1. We recast the robustification of meta learning to a distributional optimization problem. The63

resulting framework minimizes the conditional expectation of task risks, namely the tail risk,64

which unifies vanilla meta-learning and worst-case meta learning frameworks.65

2. To resolve the robust meta learning problem, we adopt the heuristic two-stage strategy and66

demonstrate its improvement guarantee. Experimental results show the effectiveness of our67

method, enhancing fast adaptation robustness and mitigating the worst-case performance.68

2 Literature Review69

Meta Learning Methods. In practice, meta learning enables fast learning (adaptation to unseen70

tasks) via slow learning (meta training in a collection of tasks). There exist different families of meta71

learning methods. The optimization-based methods, such as model agnostic meta learning (MAML)72

(Finn et al., 2017) and its variants (Finn et al., 2018; Rajeswaran et al., 2019; Grant et al., 2018;73

Vuorio et al., 2019; Abbas et al., 2022), try to find the optimal initial parameters of models and then74

execute gradient updates over them to achieve adaptation with a few examples. The context-based75

methods, e.g. conditional neural processes (CNPs) (Garnelo et al., 2018a), neural processes (NPs)76

(Garnelo et al., 2018b) and extensions (Gordon et al., 2019; Foong et al., 2020; Gondal et al., 2021;77

Wang and van Hoof, 2022; Wang et al., 2023), learn the representation of tasks in the function78

space and formulate meta learning models as exchangeable stochastic processes. The metrics-based79

methods (Snell et al., 2017; Allen et al., 2019; Bartunov and Vetrov, 2018) embed tasks in a metric80

space and can achieve competitive performance in few-shot classification tasks. Other methods like81

memory-augmented models (Santoro et al., 2016), recurrent models (Duan et al., 2016) and hyper82

networks (Zhao et al., 2020; Beck et al., 2023) are also modified for meta learning purposes.83

Robust Optimization. When performing robust optimization for downstream tasks in deep learning,84

we can find massive work concerning the adversarial input noise (Goodfellow et al., 2018; Goel et al.,85

2020; Ren et al., 2021), or the perturbation on the model parameters (Goodfellow et al., 2014; Kurakin86

et al., 2016; Liu et al., 2018; Silva and Najafirad, 2020). In contrast, this paper studies the robustness87

of fast adaptation in meta learning. In terms of robust principles, the commonly considered one is88
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the worst-case optimization (Olds, 2015; Zhang et al., 2020; Tay et al., 2022). For example, Collins89

et al. (2020) conducts the worst-case optimization in MAML to obtain the robust meta initialization.90

Considering the influence of adversarial examples, Goldblum et al. (2019) propose to adversarially91

meta train the model for few-shot image classification. Wang et al. (2020) adopt the worst-case92

optimization in MAML to increase the model robustness by injecting adversarial noise to the input.93

However, distributionally robust optimization (Rahimian and Mehrotra, 2019) is rarely examined in94

the presence of the meta learning task distribution.95

3 Preliminaries96

Notations. Consider the distribution of tasks p(τ) for meta learning and denote the task space by Ωτ .97

Let τ be a task sampled from p(τ) with T the set of all tasks. We denote the meta dataset by Dτ . For98

example, in few-shot regression problems, Dτ refers to a set of data points {(xi, yi)}mi=1 to fit.99

Generally, Dτ are processed into the context set DC
τ for fast adaptation, and the target set DT

τ for100

evaluating adaptation performance. As an instance, we process the dataset Dτ = DC
τ ∪DT

τ with a101

fixed partition in MAML (Finn et al., 2017). DC
τ and DT

τ are respectively used for the inner loop and102

the outer loop in model optimization.103

Definition 1 (Meta Risk Function) With the task τ ∈ T and the pre-processed dataset Dτ and the104

model parameter ϑ ∈ Θ, the meta risk function is a map ℓ : Dτ ×Θ 7→ R+.105

In meta learning, the meta risk function ℓ(DT
τ ,D

C
τ ;ϑ), e.g. instantiations in Example (1)/(2), is106

to evaluate the model performance after fast adaptation. Now we turn to the commonly-used risk107

minimization principle, which plays a crucial role in fast adaptation. To summarize, we include the108

vanilla and worst-case optimization objectives as follows.109

Expected Risk Minimization for Meta Learning. The objective that applies to most vanilla meta110

learning methods can be formulated in Eq. (1), and the optimization executes in a distribution over111

tasks p(τ). The Monte Carlo estimate corresponds to the empirical risk minimization principle.112

min
ϑ∈Θ
E(ϑ) := Ep(τ)

[
ℓ(DT

τ ,D
C
τ ;ϑ)

]
(1)

113

Here ϑ is the parameter of meta learning models, which includes parameters for common knowledge114

shared across all tasks and for fast adaptation. Furthermore, the task distribution heavily influences115

the direction of optimization in meta training.116

Worst-case Risk Minimization for Meta Learning. This also considers meta learning in the task117

distribution p(τ), but the worst case in fast adaptation is the top priority in optimization.118

min
ϑ∈Θ

max
τ∈T

ℓ(DT
τ ,D

C
τ ;ϑ) (2)

119

The optimization objective is built upon the min-max framework, advancing the robustness of meta120

learning to the worst case. Approaches like TR-MAML (Collins et al., 2020) sample the worst121

task in a batch to meta train with gradient updates. Nevertheless, this setup might result in a highly122

conservative solution where the worst case only happens with an incredibly lower chance.123

4 Distributionally Robust Fast Adaptation124

This section starts with the concept of risk measures and the derived meta learning optimization125

objective. Then a heuristic strategy is designed to approximately solve the problem. Finally, we126

provide two examples of distributionally robust meta learning methods.127
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4.1 Meta Risk Functions as Random Variables128

Assumption 1 The meta risk function ℓ(DT
τ ,D

C
τ ;ϑ) is βτ -Lipschitz continuous w.r.t. ϑ, which

suggests: there exists a positive constant βτ such that ∀{ϑ, ϑ′} ∈ Θ:

|ℓ(DT
τ ,D

C
τ ;ϑ)− ℓ(DT

τ ,D
C
τ ;ϑ

′)| ≤ βτ ||ϑ− ϑ′||.

Let (Ωτ ,Fτ ,Pτ ) denote a probability measure over the task space, where Fτ corresponds to a
σ-algebra on the subsets of Ωτ . And we have (R+,B) a probability measure over the non-negative
real domain for the previously mentioned meta risk function ℓ(DT

τ ,D
C
τ ;ϑ) with B a Borel σ-algebra.

For any ϑ ∈ Θ, the meta learning operatorMϑ : Ωτ 7→ R+ is defined as:

Mϑ : τ 7→ ℓ(DT
τ ,D

C
τ ;ϑ).

In this way, ℓ(DT
τ ,D

C
τ ;ϑ) can be viewed as a random variable to induce the distribution129

p(ℓ(DT
τ ,D

C
τ ;ϑ)). Further, the cumulative distribution function can be formulated as Fℓ(l;ϑ) =130

P({ℓ(DT
τ ,D

C
τ ;ϑ) ≤ l; τ ∈ Ωτ , l ∈ R+}) w.r.t. the task space. Note that Fℓ(l;ϑ) implicitly depends131

on the model parameter ϑ, and we cannot access a closed-form in practice.132

Definition 2 (Value-at-Risk) Given the confidence level α ∈ [0, 1], the task distribution p(τ) and
the model parameter ϑ, the VaR (Rockafellar et al., 2000) of the meta risk function is defined as:

VaRα [ℓ(T , ϑ)] = inf
l∈R+
{l|Fℓ(l;ϑ) ≥ α, τ ∈ T }.

Definition 3 (Conditional Value-at-Risk) Given the confidence level α ∈ [0, 1], the task distribu-
tion p(τ) and the model parameter ϑ, we focus on the constrained domain of the random variable
ℓ(DT

τ ,D
C
τ ;ϑ) with ℓ(DT

τ ,D
C
τ ;ϑ) ≥ VaRα[ℓ(T , ϑ)]. The conditional expectation of this is termed as

conditional value-at-risk (Rockafellar et al., 2000):

CVaRα [ℓ(T , ϑ)] =
∫ ∞

0

ldFα
ℓ (l;ϑ),

where the normalized cumulative distribution is as follows:

Fα
ℓ (l;ϑ) =

{
0, l < VaRα[ℓ(T , ϑ)]
Fℓ(l;ϑ)−α

1−α , l ≥ VaRα[ℓ(T , ϑ)].

This results in the normalized probability measure (Ωα,τ ,Fα,τ ,Pα,τ ) over the task space, where133

Ωα,τ :=
⋃

ℓ≥VaRα[ℓ(T ,ϑ)]

[
M−1

ϑ (ℓ)
]
. For ease of presentation, we denote the corresponding task134

distribution constrained in Ωα,τ by pα(τ ;ϑ).135

Rather than optimizing VaRα, a quantile, in meta learning, we take more interest in CVaRα optimiza-136

tion, a type of the expected tail risk. Such risk measure regards the conditional expectation and has137

more desirable properties for meta learning: more adequate in handling adaptation risks in extreme138

tails, more accessible sensitivity analysis w.r.t. α, and more efficient optimization.139

Remark 1 CVaRα [ℓ(T , ϑ)] to minimize is respectively equivalent with the vanilla meta learning140

optimization objective in Eq. (1) when α = 0 and the worst-case meta learning optimization objective141

in Eq. (3) when α is sufficiently close to 1.142

4.2 Meta Learning via Controlling the Expected Tail Risk143

As mentioned in Remark (1), the previous two meta learning objectives can be viewed as special144

cases within the CVaRα principle. Furthermore, we turn to a particular distributionally robust fast145

adaptation with the adjustable confidence level α to control the expected tail risk in optimization as146

follows.147

Distributionally Robust Meta Learning Objective. With the previously introduced normalized148

probability density function pα(τ ;ϑ), minimizing CVaRα [ℓ(T , ϑ)] can be rewritten as Eq. (3).149

min
ϑ∈Θ
Eα(ϑ) := Epα(τ ;ϑ)

[
ℓ(DT

τ ,D
C
τ ;ϑ)

]
(3)

150
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Even though CVaRα[ℓ(T , ϑ)] is a function of the model parameter ϑ, the integral in Eq. (3) is151

intractable due to the involvement of pα(τ ;ϑ) in a non-closed form.152

Assumption 2 For meta risk function values, the cumulative distribution function Fℓ(l;ϑ) is βℓ-153

Lipschitz continuous w.r.t. l, and the implicit normalized probability density function of tasks pα(τ ;ϑ)154

is βθ-Lipschitz continuous w.r.t. ϑ.155

Assumption 3 For any valid ϑ ∈ Θ and corresponding implicit normalized probability density
function of tasks pα(τ ;ϑ), the meta risk function value can be bounded by a positive constant Lmax:

sup
τ∈Ωα,τ

ℓ(DT
τi ,D

C
τi ;ϑ) ≤ Lmax.

Proposition 1 Under assumptions (1)/(2)/(3), the meta learning optimization objective Eα(ϑ) in Eq.156

(3) is continuous w.r.t. ϑ.157

Further, we use ξα(ϑ) to denote the VaRα[ℓ(T , ϑ)] for simple notations. The same as that in
(Rockafellar et al., 2000), we introduce a slack variable ξ ∈ R and the auxiliary risk function[
ℓ(DT

τ ,D
C
τ ;ϑ)− ξ

]+
:= max{ℓ(DT

τ ,D
C
τ ;ϑ) − ξ, 0}. To circumvent directly optimizing the non-

analytical pα(τ ;ϑ), we can convert the probability constrained function Eα(ϑ) to the below uncon-
strained one after optimizing ξ:

φα(ξ;ϑ) = ξ +
1

1− α
Ep(τ)

[[
ℓ(DT

τ ,D
C
τ ;ϑ)− ξ

]+]
.

It is demonstrated that Eα(ϑ) = minξ∈R φα(ξ;ϑ) and ξα ∈ argminξ∈R φα(ξ;ϑ) in (Rockafellar158

et al., 2000), and also note that CVaRα is the upper bound of ξα, implying159

ξα ≤ φα(ξα;ϑ) ≤ φα(ξ;ϑ), ∀ξ ∈ R and ∀ϑ ∈ Θ. (4)

With the deductions from Eq.s (3)/(4), we can resort the distributionally robust meta learning160

optimization objective with the probability constraint into a unconstrained optimization objective as161

Eq.(5).162

min
ϑ∈Θ,ξ∈R

ξ +
1

1− α
Ep(τ)

[[
ℓ(DT

τ ,D
C
τ ;ϑ)− ξ

]+]
(5)

163

Sample Average Approximation. For the stochastic programming problem above, it is mostly164

intractable to derive the analytical form of the integral. Hence, we need to perform Monte Carlo165

estimates of Eq. (5) to obtain Eq. (6) for optimization.166

min
ϑ∈Θ,ξ∈R

ξ +
1

(1− α)B
B∑

i=1

[
ℓ(DT

τi ,D
C
τi ;ϑ)− ξ

]+
(6)

167

Remark 2 If ℓ(DT
τ ,D

C
τ ;ϑ) is convex w.r.t. ϑ, then Eq.s (5)/(6) are also convex functions. In this168

case, the optimization objective Eq. (6) of our interest can be resolved with the help of several convex169

programming algorithms (Fan et al., 2017; Meng et al., 2020; Levy et al., 2020).170

4.3 Heuristic Algorithms for Optimization171

Unfortunately, most existing meta learning models’ risk functions (Finn et al., 2017; Garnelo et al.,172

2018a; Santoro et al., 2016; Li et al., 2017; Duan et al., 2016), ℓ(DT
τ ,D

C
τ ;ϑ) are non-convex w.r.t. ϑ,173

bringing difficulties in optimization of Eq.s (5)/(6).174

To this end, we propose a simple yet effective optimization strategy, where the sampled task batch is175

used to approximate the VaRα and the integral in Eq. (5) for deriving Eq. (6). In detail, two stages176

are involved in iterations: (i) approximate VaRα[ℓ(T , ϑ)] ≈ ξ̂α with the meta batch values, which can177

be achieved via either a quantile estimator (Dong and Nakayama, 2018) or other density estimators;178

(ii) optimize ϑ in Eq. (6) via stochastic updates after replacing ξα by the estimated ξ̂α.179

5



...

...

...

...

... ...

Estimation

Surrogate Function
Optimization

Improvement
Guarantee

Figure 2: Optimization Diagram of Distributionally Robust Meta Learning with Surrogate Functions.
From left to right: the meta model parameters ϑ in the middle block are optimized w.r.t. the constructed surrogate
function φ(ξ̂αt ;ϑ) marked in blue in t-th iteration. Under certain conditions in Theorem (1), the distributionally
robust meta learning objective φ(ξα;ϑ) marked in pink can be decreased monotonically until it reaches the
convergence in the H-th iteration.

Proposition 2 Suppose there exists δ ∈ R+ such that |ξα(ϑ)− ξ̂α(ϑ)| < δ with ξ̂α(ϑ) an estimate
of ξα(ϑ). Then there exists a constant κα = max{ 2−α

1−α ,
α

1−α} such that

φα(ξ̂α(ϑ);ϑ)− καδ < Eα(ϑ) ≤ φα(ξ̂α(ϑ);ϑ).

The performance gap resulting from VaRα approximation error is estimated in Proposition (2). For180

ease of implementation, we adopt crude Monte Carlo methods (Kroese and Rubinstein, 2012) to181

obtain a consistent estimator of ξα.182

Theorem 1 (Improvement Guarantee) Under assumptions (1)/(2)/(3), suppose that the estimate183

error with the crude Monte Carlo holds: |ξ̂αt
− ξαt

| ≤ λ
βℓ(1−α)2 ,∀t ∈ N+, with the subscript t the184

iteration number, λ the learning rate in stochastic gradient descent, βℓ the Lipschitz constant of185

the risk cumulative distribution function, and α the confidence level. Then the proposed heuristic186

algorithm with the crude Monte Carlo can produce at least a local optimum for distributionally187

robust fast adaptation.188

Note that Theorem (1) indicates that under certain conditions, using the above heuristic algorithm has189

the performance improvement guarantee, which corresponds to Fig. (2). The error resulting from the190

approximate algorithm is further estimated in Appendix Theorem (2).191

4.4 Instantiations & Implementations192 Meta Learning

Fast Adaptation

Figure 3: Diagram of Distributionally Ro-
bust Fast Adaptation for Model Agnostic
Meta Learning (Finn et al., 2017). For ex-
ample, with the size of the meta batch 5 and
α = 40%, 5 ∗ (1 − α) tasks in gray with
the worst fast adaptation performance are
screened for updating meta initialization.

Our proposed optimization strategy applies to all meta193

learning methods and has the improvement guarantee in194

Theorem (1). Here we take two representative meta learn-195

ing methods, MAML (Finn et al., 2017) and CNP (Garnelo196

et al., 2018a), as examples and show how to robustify them197

through the lens of risk distributions. Note that the forms198

of ℓ(DT
τ ,D

C
τ ;ϑ) sometime differ in these methods. Also,199

the detailed implementation of the strategy relies on spe-200

cific meta learning algorithms and models.201

Example 1 (DR-MAML) With the task distribution p(τ)202

and model agnostic meta learning (Finn et al., 2017), the203

distributionally robust MAML treats the meta learning204

problem as a bi-level optimization with a VaRα relevant205

constraint.206

min
ϑ∈Θ
ξ∈R

ξ +
1

1− α
Ep(τ)

[[
ℓ(DT

τ ;ϑ− λ∇ϑℓ(D
C
τ ;ϑ))− ξ

]+]
(7)

The gradient operation ∇ϑℓ(D
C
τ ;ϑ) corresponds to the inner loop with the learning rate λ.207
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The resulting distributionally robust MAML (DR-MAML) is still a optimization-based method,208

where a fixed percentage of tasks are screened for the outer loop. As shown in Eq. (7), the objective209

is to obtain a robust meta initialization of the model parameter ϑ.210

Example 2 (DR-CNP) With the task distribution p(τ) and the conditional neural process (Gar-211

nelo et al., 2018a), the distributionally robust conditional neural process learns the functional212

representations with a CVaRα constraint.213

min
ϑ∈Θ
ξ∈R

ξ +
1

1− α
Ep(τ)

[[
ℓ(DT

τ ; z, θ2))− ξ
]+]

s.t. z = hθ1(D
C
τ ) with ϑ = {θ1, θ2}

(8)

Here hθ1 is a set encoder network with θ2 the parameter of the decoder network.214

The resulting distributionally robust CNP (DR-CNP) is to find a robust functional embedding to215

induce underlying stochastic processes. Still, in Eq. (8), a proportion of tasks with the worst functional216

representation performance are used in meta training.217

Moreover, we convey the pipelines of optimizing these developed distributionally robust models in218

Appendix Algorithms (1)/(2).219

5 Experimental Results and Analysis220

This section presents experimental results and examines fast adaptation performance in a distributional221

sense. Without loss of generality, we take DR-MAML in Example (1) to run experiments.222

Benchmarks. The same as work in (Collins et al., 2020), we use two commonly-seen downstream223

tasks for meta learning experiments: few-shot regression and image classification. Besides, ablation224

studies are included to assess other factors’ influence or the proposed strategy’s scalability.225

Baselines & Evaluations. Since the primary investigation is regarding risk minimization principles,226

we consider the previously mentioned expected risk minimization, worst-case minimization, and227

expected tail risk minimization for meta learning. Hence, MAML (empirical risk), TR-MAML228

(worst-case risk), and DR-MAML (expected tail risk) serve as examined methods. We evaluate these229

methods’ performance based on the Average, Worst-case, and CVaRα metrics. For the confidence230

level to meta train DR-MAML, we empirically set α = 0.7 for few-shot regression tasks and α = 0.5231

image classification tasks without external configurations.232

5.1 Sinusoid Regression233

Table 1: Test average mean square errors (MSEs) with reported standard
deviations for sinusoid regression (5 runs). We respectively consider 5-shot
and 10-shot cases with α = 0.7. The results are evaluated across the 490
meta-test tasks, as in (Collins et al., 2020). The best results are in bold.

5-shot 10-shot
Method Average Worst CVaRα Average Worst CVaRα

MAML (Finn et al., 2017) 1.02±0.10 3.89±0.83 2.25±0.15 0.66±0.16 2.57±0.70 1.15±0.19

TR-MAML (Collins et al., 2020) 1.09±0.08 2.28±0.35 1.79±0.06 0.77±0.11 1.68±0.43 1.27±0.28

DR-MAML (Ours) 0.89±0.04 2.91±0.46 1.76±0.02 0.54±0.01 1.70±0.17 0.96±0.01

Following (Finn et al.,234

2017; Collins et al., 2020),235

we conduct experiments in236

sinusoid regression tasks.237

The mission is to approxi-238

mate the function f(x) =239

a sin(x − b) with K-shot240

randomly sampled function241

points, where the task is de-242

fined by a and b. In the sine function family, the target range, amplitude range, and phase range are243

respectively [−5.0, 5.0] ⊂ R, a ∈ [0.1, 5.0] and b ∈ [0, 2π]. In the setup of meta training and testing244

datasets, a distributional shift exists: numerous easy tasks and several difficult tasks are generated to245

formulate the training dataset with all tasks in the space as the testing one. Please refer to Appendix246

(J) for a detailed partition of meta-training, testing tasks, and neural architectures.247

Result Analysis. We list meta-testing MSEs in sinusoid regression in Table (1). As expected, the248

tail risk minimization principle in DR-MAML can lead to an intermediate performance in the worst-249

case. In both cases, the comparison between MAML and DR-MAML in MSEs indicates that such250

probabilistic-constrained optimization in the task space even has the potential to advance average fast251

adaptation performance. In contrast, TR-MAML has to sacrifice more average performance for the252

worst-case improvement.253
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Figure 4: Histograms of Meta-Testing Performance in Sinusoid Regression Problems. With α = 0.7, we
respectively visualize the comparison results, DR-MAMAL-vs-MAML and TR-MAML-vs-MAML in 5-shot
(Two Sub-figures Left Side) and 10-shot (Two Sub-figures Right Side) cases, for a sample trial.

More intuitively, Fig. (4) illustrates MSE statistics on the testing task distribution and further verifies254

the effect of the CVaRα principle in decreasing the proportional worst-case errors. In 5-shot255

cases, the difference in MSE statistics is more significant: the worst-case method tends to increase256

the skewness in risk distributions with many task risk values gathered in regions of intermediate257

performance, which is unfavored in general cases. As for why DR-MAML surpasses MAML in terms258

of average performance, we attribute it to the benefits of external robustness in several scenarios, e.g.,259

the drift of training/testing task distributions.260

Table 2: Average N-way K-shot classification accuracies in Omniglot with reported standard deviations
(3 runs). With α = 0.5, the best results are in bold.

Meta-Training Alphabets Meta-Testing Alphabets
5-way 1-shot 20-way 1-shot 5-way 1-shot 20-way 1-shot

Method Average Worst CVaRα Average Worst CVaRα Average Worst CVaRα Average Worst CVaRα

MAML (Finn et al., 2017) 98.4±0.2 82.4±1.1 96.9±0.5 99.2±0.1 33.9±3.0 80.9±0.7 93.5±0.2 82.5±0.2 91.6±0.6 67.6±2.0 49.7±3.5 60.4±1.7

TR-MAML (Collins et al., 2020) 97.4±0.6 95.0±0.3 96.5±0.4 92.2±0.8 82.4±2.1 87.2±0.9 93.1±1.1 85.3±1.9 91.3±0.9 74.3±1.4 58.4±1.8 68.5±1.2

DR-MAML (Ours) 97.1±0.3 84.0±0.4 95.1±0.3 99.6±0.6 57.9±2.4 84.8±0.7 93.7±0.4 84.1±0.8 92.1±0.5 74.6±1.2 51.0±2.3 66.4±1.4

5.2 Few-Shot Image Classification261

Table 3: Average 5-way 1-shot classification accuracies in mini-
ImageNet with reported standard deviations (3 runs). With α = 0.5,
the best results are in bold.

Eight Meta-Training Tasks Four Meta-Testing Tasks
Method Average Worst CVaRα Average Worst CVaRα

MAML (Finn et al., 2017) 70.1±2.2 48.0±4.5 63.2±2.6 46.6±0.4 44.7±0.7 44.6±0.7

TR-MAML (Collins et al., 2020) 63.2±1.3 60.7±1.6 62.1±1.2 48.5±0.6 45.9±0.8 46.6±0.5

DR-MAML (Ours) 70.2±0.2 63.4±0.2 67.2±0.1 49.4±0.1 47.1±0.1 47.5±0.1

Here we do investigations in few-262

shot image classification. Each263

task is an N-way K-shot clas-264

sification with N the number of265

classes and K the number of la-266

beled examples in one class. The267

Omniglot (Lake et al., 2015) and268

mini-ImageNet (Vinyals et al.,269

2016) datasets work as benchmarks for examination. We retain the setup of datasets in work270

(Collins et al., 2020).271

Result Analysis. The classification accuracies in Omniglot are illustrated in Table (2): In 5-way272

1-shot cases, DR-MAML obtains the best average and CVaRα in meta-testing datasets, while TR-273

MAML achieves the best worst-case performance with a slight degradation of average performance274

compared to MAML in both training/testing datasets. In 20-way 1-shot cases, for training/testing275

datasets, we surprisingly notice that the expected tail risk is not well optimized with DR-MAML, but276

there is an average performance gain; while TR-MAML works best in worst-case/CVaRα metrics.277

When it comes to mini-ImageNet, findings are distinguished a lot from the above one: in Table (3),278

DR-MAML yields the best result in all evaluation metrics and cases, even regarding the worst-case.279

TR-MAML can also improve all metrics in meta-testing cases. Overall, challenging meta-learning280

tasks can reveal more advantages of DR-MAML over others.281

5.3 Ablation Studies282

This part mainly checks the influence of the confidence level α and the meta batch size towards the283

distribution of fast adapted risk values. Apart from examining these factors of interest, additional284

experiments are also conducted in this paper; please refer to Appendix (K) for more details.285

Sensitivity to Confidence Levels α. To deepen understanding of the confidence level α’s effect in286

fast adaptation performance, we vary α to train DR-MAML and evaluate models under previously287
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Figure 5: Meta Testing MSEs of Meta-Trained DR-MAML with Various Confidence Levels α. MAML and
TR-MAML are irrelevant with the variation of α in meta-training. The plots report testing MSEs with standard
error bars in shadow regions.

mentioned metrics. Taking the sinusoid 5-shot regression as an example, we calculate MSEs and288

visualize the fluctuations with additional α-values in Fig. (5). The results in the worst-case exhibit289

higher deviations. The trend in Average/CVaRα metrics shows that with increasing α, DR-MAML290

gradually approaches TR-MAML in average and CVaRα MSEs. With α ≤ 0.8, ours is less sensitive291

to the confidence level and mostly beats MAML/TR-MAML in average performance. Though ours292

aims at optimizing CVaRα, it cannot always ensure such a metric to surpass TR-MAML in all293

confidence levels due to rigorous assumptions in Theorem (1).294
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Figure 6: Meta Testing Average Performance of Meta-Trained DR-MAML with Various Sizes of the Meta
Batch. The plots report average results with standard error bars in shadow regions.

Influence of the Task Batch Size. Note that our optimization strategy relies on the estimate of295

VaRα, and the improvement guarantee relates to the estimation error. Theoretically, the meta batch in296

training can directly influence the optimization result. Here we vary the meta batch size in training,297

and evaluated results are visualized in Fig. (6). In regression scenarios, the average MSEs can298

decrease to a certain level with an increase of meta batch, and then performance degrades. We299

attribute the performance gain with a batch increase to more accurate VaRα estimates; however, a300

meta batch larger than some threshold can worsen the first-order meta learning algorithms’ efficiency,301

similarly observed in (Nichol et al., 2018). As for classification scenarios, there appears no clear302

trend since the meta batch is smaller enough.303

6 Conclusion and Limitations304

Technical Discussions. This work contributes more insights into robustifying fast adaptation in meta305

learning. Our utilized expected tail risk trades off the expected risk minimization and worst-case risk306

minimization, and the two-stage strategy works as the heuristic to approximately solve the problem307

with an improvement guarantee. Our strategy can empirically alleviate the worst-case fast adaptation308

and sometimes even improve average performance.309

Existing Limitations. Though our robustification strategy is simple yet effective in implementations,310

empirical selection of the optimal meta batch size is challenging, especially for first-order optimization311

methods. Meanwhile, the theoretical analysis only applies to a fraction of meta learning tasks when312

risk function values are in a compact continuous domain.313

Future Extensions. Designing a heuristic algorithm with an improvement guarantee is non-trivial314

and relies on the properties of risk functions. This research direction has practical meaning in the era315

of large models and deserves more investigations in terms of optimization methods. Also, establishing316

connections between the optimal meta batch size and specific stochastic optimization algorithms can317

be a promising theoretical research issue in this domain.318
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A Frequently Asked Question512

Here we collected technical questions and suggestions from researchers who helped check out the513

manuscript. We thank these researchers for precious questions and provide more details.514

Novelty & primary findings of this work. Here we mainly summarize two points of novelty in this515

work:516

• Meta Learning Robustification Framework. Though the concept of the expected tail risk517

has emerged for several decades and has been widely employed in financial domains, the518

application to fast adaptation or robustification of meta learning remains limited in literature519

as far as we know.520

• Optimization Strategy & Theoretical Analysis. We theoretically analyze two-stage opti-521

mization strategies as the heuristic algorithm in optimizing the distributionally robust meta522

learning models and demonstrate the improvement guarantee under certain conditions.523

As verified in experimental results in the main paper, placing a probabilistic constraint in the task space524

is meaningful. It circumvents the effect of over-pessimistic consideration (worst-case optimization),525

increases robustness in proportional cases, and mostly retains or even improves average performance.526

Apart from the novelty in the framework and algorithm parts, we have several findings which bring527

crucial insights into meta learning: (i) Not all tasks are necessary to perform fast adaptation. (ii)528

Additional focus on the tail risk has the potential to enhance models’ generalization capability. (iii)529

The tail risk instead of extreme worst-case risk can better advance robustness in challenging datasets.530

Meta risk function values as random variables. In some few-shot learning related work, the context531

and the target dataset are equivalently called the support and query datasets. The definition of a task532

in meta learning is up to application scenarios and specific meta learning algorithms or models. The533

commonly-used sinusoid regression using model-agnostic meta learning (Finn et al., 2017) considers534

the fixed number of context points to induce tasks. In contrast, conditional neural processes (Garnelo535

et al., 2018a) for few-shot regression vary the number of context points to induce tasks. Once the536

context and the target are partitioned and the model parameter is specified, we can obtain a meta risk537

function value. However, the meta risk function values are not in a compact Euclidean subspace in538

several cases.539

The continuity of the meta risk probability density function. This relates to the task distribution540

and meta learning problems. Throughout the few-shot regression task, the meta risk function value541

can be approximately viewed as a continuous random variable. However, when it comes to the542

few-shot image classification mission, the meta risk function value is impossible to cover the entire543

continuous interval. In these scenarios, the probable values of accuracies are finite. This makes544

the theoretical analysis, e.g. Theorem (1), no longer holds. For example, Assumption (2) will be545

unrealistic when there exists a constant gap between two accuracy values. Hence, we leave this part a546

future research direction in theoretical analysis. Regarding the meta risk function, ours shares the547

same setup as that in (Fallah et al., 2021).548

The selection of baselines in robust meta learning. A large body of prior work considers the549

robustness of meta learning in scenarios when the input of a data point, the model parameter, and the550

number of context points are trembled or modified. Robustness in presence of tasks distributions is551

seldom investigated except for the worst-case optimization in (Collins et al., 2020). Hence, we retain552

most of the setups in (Collins et al., 2020) for a fair comparison.553

Influence of risk minimization principles. This paper is primarily devoted to studying the influence554

of the risk minimization principle on meta learning. The empirical risk minimization principle555

corresponds to reducing the Monte Carlo estimate of Average-case Meta Learning in this work.556

In comparison to TR-MAML (Collins et al., 2020), our approach has a couple of advantages as557

follows: (i) easier implementations. Note that min-max optimization is numerically unstable and558

requires a relaxation method for computationally intensive convex optimization, e.g., robust stochastic559

mirror-prox algorithm used in TR-MAML (Collins et al., 2020). (ii) more flexible in terms of560

robustness concept. Theoretically, the worst-case meta learning corresponds to the extreme case561

of the distributionally robust risk minimization principle. (iii) empirically better performance in562

most cases. The expected tail risk minimization preserves a particular property that minimizing563
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proportional worst-case fast adaptation seldom sacrifices the average performance. These advantages564

are also why we call our approach simple yet effective.565

Comparison with Other Heuristic Optimization Strategies. To sum up the proposed optimization566

strategy, we empirically highlight the following points regarding the adopted heuristic strategies.567

There exist a couple of approximate algorithms for CVaRα optimization. In comparison, the crude568

Monte Carlo one is the simplest for VaRα estimates. It has an improvement guarantee under certain569

conditions, leaving it easier to analyze. Besides, we also compare ours to the risk reweighted method570

(Sagawa et al., 2020) in previously used benchmarks, and please take a closer look at that in Section571

(K).572

B Pseudo Algorithms of DR-MAML & DR-CNPs573

Algorithm 1: DR-MAML
Input :Task distribution p(τ); Confidence level α; Task batch size B; Learning rates: λ1 and

λ2.
Output :Meta-trained model parameter ϑ.
Randomly initialize the model parameter ϑ;
while not converged do

Sample a batch of tasks {τi}Bi=1 ∼ p(τ);
// inner loop via gradient descent
for i = 1 to B do

Evaluate the gradient: ∇ϑℓ(D
C
τi ;ϑ) in Eq. (7);

Perform task-specific gradient updates:
ϑi ← ϑ− λ1∇ϑℓ(D

C
τi ;ϑ);

end
// estimate VaRα[ℓ(T , ϑ)] ≈ ξ̂α
Evaluate performance LB = {ℓ(DT

τi ;ϑi)}Bi=1;
Estimate VaRα[ℓ(T , ϑ)] and set ξ = ξ̂α in Eq. (7) with either percentile rank or density

estimators;
// outer loop via gradient descent
Screen the subset LB̂ = {ℓ(DT

τ̂i
;ϑi)}Ki=1 with ξ̂α for meta initialization updates;

ϑ← ϑ− λ2∇ϑ

∑K
i=1 ℓ(D

T
τ̂i
;ϑi) in Eq. (7);

end

574

Algorithm 2: DR-CNP
Input :Task distribution p(τ); Confidence level α; Task batch size B; Learning rate λ.
Output :Meta-trained model parameter ϑ.
Randomly initialize the model parameter ϑ;
while not converged do

Sample a batch of tasks {τi}Bi=1 ∼ p(τ);
// estimate VaRα[ℓ(T , ϑ)]
Evaluate performance LB = {ℓ(DT

τi ; z, ϑi)}Bi=1;
Estimate VaRα[ℓ(T , ϑ)] ≈ ξ̂α with either percentile rank or density estimators;
// execute gradient descent
Screen the subset LB̂ = {ℓ(DT

τ̂i
; z, ϑ)}Ki=1 with ξ̂α for meta initialization updates;

ϑ← ϑ− λ∇ϑ

∑K
i=1 ℓ(D

T
τ̂i
; z, ϑ) in Eq. (8);

end

575
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C Properties of Risk Minimization Principles576

C.1 Stochastic Optimization in the Constrained Form577

In the section above, meta learning optimization objectives are discussed within three different578

principles, respectively the average-case in Eq. (1), the worst-case in Eq. (2) and CVaRα worst-case579

in Eq. (5). This subsection continues this topic and introduces the relaxation variable ξ in the580

optimization objective. In this way, the robust fast adaptation can be reframed in the case of stochastic581

optimization with the probabilistic constraint.582

We can equivalently express the minimization of the worst-case problem (Shalev-Shwartz and Wexler,583

2016) within the following constrained stochastic optimization framework as follows.584

min
ϑ∈Θ,ξ∈R+

ξ

s.t. ℓ(DT
τ ,D

C
τ ;ϑ) ≤ ξ with τ ∈ T

(9)

C.2 SGD Intractability of Meta Learning CVaRα Optimization Objective585

This subsection shows that directly stochastic gradient descent is intractable for meta learning to586

optimize CVaRα. Note that the normalized density distribution function pα(τ ;ϑ) implicitly depends587

on ϑ and α, so we cannot access the exact form of such a distribution.588

∇ϑEα(ϑ) =
∫

pα(τ ;ϑ)
[
ℓ(DT

τ ,D
C
τ ;ϑ)∇ϑ ln pα(τ ;ϑ) +∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)

]
dτ (10a)

≈ 1

K

K∑
k=1

ℓ(DT
τk
,DC

τk
;ϑ)∇ϑ ln pα(τk;ϑ)︸ ︷︷ ︸

Score Function

+∇ϑℓ(D
T
τk
,DC

τk
;ϑ)

 (10b)

As illustrated in Eq. (10), the stochastic gradient estimate is not plausible since pα(τ ;ϑ) has no589

closed form. Hence, heuristic or convex programming algorithms for specific cases are mostly used590

as this domain’s optimization strategy. However, designing optimization strategies for non-convex591

cases is non-trivial in this domain and requires more consideration of theoretical guarantees.592

C.3 Risk-Sensitive Applications & Optimization Strategies593

Related Applications. There are a number of applications concerning robust optimization with594

probabilistic constraints. Most of them are for the sake of safety. The risk principle CVaRα firstly595

occurs in the financial domain as a coherent principle (Rockafellar et al., 2000). It enjoys much596

popularity in portfolio optimization (Quaranta and Zaffaroni, 2008). Gagne and Dayan (2021) adopt597

CVaRα principles to improve the distributional reinforcement learning performance. To robustify598

robotic control, Pinto et al. (2017) varies hyper-parameters of Markov decision processes and599

optimizes proportional worst-case trajectories in policy optimization within the principle of CVaRα.600

In work (Wilder, 2018), a CVaRα related strategy is devised to solve submodular optimization601

problems. Such a risk measure is also included in producing robust options (Hiraoka et al., 2019).602

Regarding probabilistic robust meta learning within CVaRα principles, there exists scarce related603

work until now.604

Optimization Strategies. Concerning the constrained stochastic optimization problem, we partic-605

ularly overview related work in this subsection. In the past few decades, there emerge substantial606

optimization strategies together with theoretical analysis for convex risk functions in CVaRα op-607

timization (Nemirovski et al., 2009; Fan et al., 2017; Meng et al., 2020; Levy et al., 2020; Duchi608

and Namkoong, 2021; Wang et al., 2022). As for the min-max risk minimization principle, which609

focuses on the worst case instead of a propositional worst cases, some researchers have designed610

relaxation or other heuristic algorithms to handle convex or non-convex risk functions (Chen et al.,611

2017; Collins et al., 2020; Jiang et al., 2021; Hsieh et al., 2021). Nevertheless, it remains challenging612

to design algorithms with convergence guarantees for non-convex risk function cases. One of the613

latest CVaRα work on non-convex risk functions is (Sagawa et al., 2020), where a risk reweighted614

algorithm for robust neural networks is proposed to handle distributional shifts. Moreover, most615

CVaRα optimization in non-convex risk functions follows this type of risk reweighted strategies in616

applications.617
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Remarks on Literature Work: Risk functions for robust fast adaptation cases are mostly non-convex,618

and it is non-trivial to design optimization strategies with a convergence guarantee. Meanwhile,619

we also conduct comparison experiments between work in (Sagawa et al., 2020) and ours in meta620

learning downstream tasks. We refer the reader to Appendix (K) for more details and analysis.621

D Computational Complexity622

The primary difference between distributionally robust meta learning and expected risk based meta623

learning lies in that a fixed probabilistic portion of task gradients are considered in meta updates. Such624

an operation drives the optimization procedure to focus more on proportional vulnerable scenarios,625

increasing the robustness in worst cases.626

However, the iteration of the surrogate function φ(ξ̂αt
;ϑ) involves the screening of proportional627

worst cases since our strategies require extra evaluation of fast adaptation. This brings additional628

computational cost with complexity O
(
B log(B)

)
, where B is the number of tasks in each batch. On629

the other hand, the proposed strategy performs sub-gradient updates instead of complete gradient630

updates. This helps reduce computational cost with complexity O
(
αB|M|

)
in each iteration, where631

|M| corresponds to the scale of parameters of meta learning models and α is the confidence level in632

CVaRα optimization.633

Universally analyzing the computational complexity in meta learning is intractable since various634

meta learning methods exist. Some are gradient-based ones, while some are non-parametric ones.635

The exact number of iterations for convergence heavily relies on specific methods. In summary, given636

the same number of iterations and a fixed confidence level, the computational complexity difference637

for CVaRα optimization in meta learning scenarios is O
(
B(α|M| − log(B))

)
.638

To deepen understanding of our method, we explain more via specific examples. The main idea is to639

execute the sub-gradient operation over the batch of task gradients. Here we take the DR-MAML in640

Example (1) to show the operation and how the distributionally robust meta initialization is obtained:641

ϑmeta
t+1 ← ϑmeta

t − λ1

[ B∑
i=1

∇ϑ[δ(τi) · ℓ(DT
τi ;ϑ

τi
t )]

]
,

with ϑτi
t = ϑmeta

t − λ2∇ϑℓ(D
C
τi ;ϑ), τi ∼ p(τ),

(11)

where λ1 is the outer loop learning rate, λ2 is the inner loop learning rate, and δ(τi) is the indicator642

variable. Here δ(τi) = 1 in the case when the ℓ(DT
τi ;ϑ

τi
t ) falls into the (1 − α)-probabilistic643

worst-case region otherwise δ(τi) = 0.644

As for the optimal rate for convergence or the generalization bound, it is up to specific meta learning645

methods and risk minimization principles. For worst-case risk minimization for meta learning,646

there already exists theoretical analysis in previous work, e.g., optimization-based meta learning647

(Collins et al., 2020) when fast adaptation functions hold the convexity property. When it comes to648

more universal cases, considering diverse meta learning methods and optimization strategies, it is649

still challenging to estimate the optimal rate for convergence. Also, our considered scenarios exist650

distributional drift between meta training and meta testing task distributions, which makes it tough to651

derive the generalization bound.652

Finally, note that our developed optimization strategies for meta learning are regardless of meta653

learning methods, and DR-MAMLs and DR-CNPs are merely two examples. For the sake of654

convenience, we only implement DR-MAML to compare with TR-MAML in this work.655

E Proof of Remark (2)656

Remark (2). If ℓ(DT
τ ,D

C
τ ;ϑ) is convex w.r.t. ϑ, then Eq.s (5)/(6) are also convex functions. In657

this case, the optimization objective Eq. (6) of our interest can be resolved with the help of convex658

programming algorithms (Fan et al., 2017; Meng et al., 2020; Levy et al., 2020).659
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Proof: We at first show that
[
ℓ(DT

τ ,D
C
τ ;ϑ)− ξ

]+
:= max{ℓ(DT

τ ,D
C
τ ;ϑ)− ξ, 0} is convex w.r.t ϑ660

if ℓ(DT
τ ,D

C
τ ;ϑ) is convex w.r.t. ϑ: For ease of derivation, let us redenote two functions f1(ξ;ϑ) :=661

ℓ(DT
τ ,D

C
τ ;ϑ)− ξ and f2(ξ;ϑ) := 0.662

With any constant λ ∈ [0, 1] and any two parameters ϑ1 ∈ Θ and ϑ2 ∈ Θ, we can have:663

[
ℓ(DT

τ ,D
C
τ ;λϑ1 + (1− λ)ϑ2)− ξ

]+
= fi(ξ;λϑ1 + (1− λ)ϑ2) [for some i ∈ {1, 2}] (12a)

≤ λfi(ξ;ϑ1) + (1− λ)fi(ξ;ϑ2) (12b)
≤ λmax{fi(ξ;ϑ1)}i=1,2 + (1− λ)max{fi(ξ;ϑ2)}i=1,2 (12c)

≤ λ
[
ℓ(DT

τ ,D
C
τ ;ϑ1)− ξ

]+
+ (1− λ)

[
ℓ(DT

τ ,D
C
τ ;ϑ2)− ξ

]+
, (12d)

which shows that the risk function with slack variables is convex w.r.t. ϑ.664

As φα(ξ;ϑ) = ξ + 1
1−αEp(τ)

[[
ℓ(DT

τ ,D
C
τ ;ϑ)− ξ

]+]
is the convex combination of the above665

mentioned convex function, the resulting φα(ξ;ϑ) is naturally convex w.r.t. ϑ.666

F Proof of Proposition (1)667

Assumption (1): The meta risk function ℓ(DT
τ ,D

C
τ ;ϑ) is βτ -Lipschitz continuous w.r.t. ϑ, which

suggests: there exists a positive constant βτ such that ∀{ϑ, ϑ′} ∈ Θ:

|ℓ(DT
τ ,D

C
τ ;ϑ)− ℓ(DT

τ ,D
C
τ ;ϑ

′)| ≤ βτ ||ϑ− ϑ′||.

Assumption (2): For meta risk function values, the risk cumulative distribution function Fℓ(l;ϑ) is668

βℓ-Lipschitz continuous w.r.t. l, and the implicit normalized probability density function of tasks669

pα(τ ;ϑ) is βθ-Lipschitz continuous w.r.t. ϑ.670

Assumption (3): For any valid ϑ ∈ Θ and corresponding implicit normalized probability density
function of tasks pα(τ ;ϑ), the meta risk function value can be bounded by a positive constant Lmax:

sup
τ∈Ωα

τ

ℓ(DT
τi ,D

C
τi ;ϑ) ≤ Lmax.

Proposition (1): Under Assumptions (1)/(2)/(3), the meta learning optimization objective Eα(ϑ) in671

Eq. (3) is continuous w.r.t. ϑ.672

Proof: Suppose that ∀{ϑ, ϑ′} ∈ Θ and ||ϑ− ϑ′|| < δ, we can have the following inequality based on
Assumption (2): ∣∣∣pα(τ ;ϑ)− pα(τ ;ϑ

′)
∣∣∣ ≤ βθ||ϑ− ϑ′||.

Meanwhile, we can have the following inequality based on Assumption (1):∣∣∣ℓ(DT
τ ,D

C
τ ;ϑ)− ℓ(DT

τ ,D
C
τ ;ϑ

′)
∣∣∣ ≤ βτ ||ϑ− ϑ′||.

Together with the boundness Assumption (3) of meta risk function value:

sup
τ∈Ωα

τ

ℓ(DT
τi ,D

C
τi ;ϑ) ≤ Lmax,
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we can roughly estimate the probabilistic constrained expected meta risk function values as follows:673 ∣∣∣Eα(ϑ)− Eα(ϑ′)
∣∣∣ = ∣∣∣Epα(τ ;ϑ)

[
ℓ(DT

τ ,D
C
τ ;ϑ)

]
− Epα(τ ;ϑ′)

[
ℓ(DT

τ ,D
C
τ ;ϑ

′)
]∣∣∣
(13a)

=
∣∣∣Epα(τ ;ϑ)

[
ℓ(DT

τ ,D
C
τ ;ϑ)

]
− Epα(τ ;ϑ′)

[
ℓ(DT

τ ,D
C
τ ;ϑ)

]
(13b)

+Epα(τ ;ϑ′)

[
ℓ(DT

τ ,D
C
τ ;ϑ)− ℓ(DT

τ ,D
C
τ ;ϑ

′)
]∣∣∣
(13c)

≤
∫ ∣∣∣pα(τ ;ϑ)− pα(τ ;ϑ

′)
∣∣∣ℓ(DT

τ ,D
C
τ ;ϑ)dτ + Epα(τ ;ϑ′)

[∣∣∣ℓ(DT
τ ,D

C
τ ;ϑ)− ℓ(DT

τ ,D
C
τ ;ϑ

′)
∣∣∣]
(13d)

≤ βθ||ϑ− ϑ′|| sup
τ∈Ωα

τ

{ℓ(DT
τ ,D

C
τ ;ϑ)}+ sup

τ∈Ωα
τ

{βτ}||ϑ− ϑ′||

(13e)

=
(
βθLmax + βmax

)
||ϑ− ϑ′||.

(13f)

From the above inequality, we can see that Eα(ϑ) − Eα(ϑ′) is a (βθLmax + βmax)–Lipschitz674

continuous w.r.t. ϑ. As a result, we demonstrate Proposition (1).675

G Proof of Proposition (2)676

Proposition (2): Suppose there exists δ ∈ R+ such that |ξα(ϑ)− ξ̂α(ϑ)| < δ with ξ̂α(ϑ) an estimate
of ξα(ϑ). Then there exists a constant κα = max{ 2−α

1−α ,
α

1−α} such that

φα(ξ̂α(ϑ);ϑ)− καδ < Eα(ϑ) ≤ φα(ξ̂α(ϑ);ϑ).

Proof: Based on the direct deduction in work (Rockafellar et al., 2000), we know that for any ϑ ∈ Θ,677

the inequality holds: φα(ξα;ϑ) ≤ φα(ξ̂α;ϑ).678

In the case when ξ̂α = ξα + δ with δ ∈ R+, the probability space of the task Ωτ can be respectively679

partitioned into three disjoint probability space:680

P−(τ) = P
(
{M−1

ϑ (ℓ)|ℓ(DT
τ ,D

C
τ ;ϑ) ≤ ξα, τ ∈ Ωτ}

)
(14a)

P+(τ) = P
(
{M−1

ϑ (ℓ)|ξα < ℓ(DT
τ ,D

C
τ ;ϑ) ≤ ξα + δ, τ ∈ Ωτ}

)
(14b)

P++(τ) = P
(
{M−1

ϑ (ℓ)|ℓ(DT
τ ,D

C
τ ;ϑ) > ξα + δ, τ ∈ Ωτ}

)
. (14c)

681

As a result, we can estimate the difference between the two terms as follows:682

φα(ξ̂α;ϑ)− φα(ξα;ϑ) = ξ̂α − ξα (15a)

+
1

1− α
Eτ∼P+(τ)

[
ℓ(DT

τ ,D
C
τ ;ϑ)− ξα

]
+

1

1− α
Eτ∼P++(τ)

[
ξα − ξ̂α

]
(15b)

≤ δ +
1

1− α
Eτ∼P+(τ)

[
δ
]
− 1

1− α
Eτ∼P++(τ)

[
δ
]
≤ δ +

1

1− α
δ =

2− α

1− α
δ. (15c)

683
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Similarly, in the case when ξ̂α = ξα − δ with δ ∈ R+, the probability space of the task Ωτ can be684

partitioned into three disjoint space with the probability respectively:685

P−−(τ) = P
(
{M−1

ϑ (ℓ)|ℓ(DT
τ ,D

C
τ ;ϑ) ≤ ξα − δ, τ ∈ Ωτ}

)
(16a)

P−(τ) = P
(
{M−1

ϑ (ℓ)| − δ < ℓ(DT
τ ,D

C
τ ;ϑ)− ξα < 0, τ ∈ Ωτ}

)
(16b)

P+(τ) = P
(
{M−1

ϑ (ℓ)|ℓ(DT
τ ,D

C
τ ;ϑ) ≥ ξα, τ ∈ Ωτ}

)
. (16c)

686

As a result, we can estimate the difference between the two terms as follows:687

φα(ξ̂α;ϑ)− φα(ξα;ϑ) = ξ̂α − ξα (17a)

+
1

1− α
Eτ∼P−(τ)

[
ℓ(DT

τ ,D
C
τ ;ϑ)− ξ̂α

]
+

1

1− α
Eτ∼P+(τ)

[
ξα − ξ̂α

]
(17b)

≤ −δ + 1

1− α
Eτ∼P−(τ)

[
δ
]
+

1

1− α
Eτ∼P+(τ)

[
δ
]
≤ −δ + 1

1− α
δ =

α

1− α
δ. (17c)

Based on the inequalities (15)/(17), we can have κα = max{ 2−α
1−α ,

α
1−α} such that the proposition is688

verified as φα(ξ̂α;ϑ)− καδ < φα(ξα;ϑ).689

H Proof of Improvement Guarantee in Theorem (1)690

Theorem (1): Under assumptions (1)/(2)/(3), suppose that the estimate error with the crude Monte691

Carlo holds: |ξ̂αt
− ξαt

| ≤ λ
βℓ(1−α)2 ,∀t ∈ N+, with the subscript t the iteration number, λ692

the learning rate in stochastic gradient descent, βℓ the Lipschitz constant of the risk cumulative693

distribution function, and α the confidence level. Then the proposed heuristic algorithm with the694

crude Monte Carlo can produce at least a local optimum for distributionally robust fast adaptation.695

Proof: In the main paper, Fig. (2) provides the outline of the improvement guarantee proof. Note696

that ξ̂αt is an estimate of ξαt with the help of Monte Carlo samples, and this depends on the model697

parameters ϑt in optimization. Performing the gradient updates w.r.t. the surrogate function φα(ξ̂α;ϑ),698

we can have the following equation with a small step-size learning rate λ:699

Gradient Descent : ϑt+1 = ϑt − λ∇ϑφα(ξ̂α;ϑ)

⇒ Monotonic Sequence : φα(ξ̂αt ;ϑt+1) ≤ φα(ξ̂αt ;ϑt).
(18)

To verify the improvement guarantee, we need to show that with the meta model parameters derived700

from the surrogate function:701

φα(ξαt+1 ;ϑt+1) ≤ φα(ξαt ;ϑt). (19)

With the previous deduction φα(ξαt+1 ;ϑt+1) ≤ φα(ξαt ;ϑt+1) from the property of CVaRα, the702

demonstration is equivalently reduced to show that:703

φα(ξαt ;ϑt+1) ≤ φα(ξαt ;ϑt). (20)

We can perform the one order Taylor expansion with Peano’s form of remainders w.r.t. φα(ξαt
;ϑ)704

around the point ϑt:705

φα(ξαt
;ϑt+1) = φα(ξαt

;ϑt)− λ
[
∇ϑφα(ξ̂αt

;ϑ)|Tϑ=ϑt
· ∇ϑφα(ξαt

;ϑ)|ϑ=ϑt

]
+O(|ϑt+1 − ϑt|) ≤ φα(ξαt

;ϑt).
(21)

In the case when ξ̂α = ξα + δ with δ ∈ R+, we use the partitioned task probability space in Eq. (14)706

and can derive the gradient estimate:707

∇ϑφα(ξ̂αt
;ϑ)|Tϑ=ϑt

=
1

1− α

[
Eτ∼P+(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]]
+

1

1− α

[
Eτ∼P++(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]]
.

(22)
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With |Fℓ(ξ̂α;ϑ)− Fℓ(ξα;ϑ)| ≤ βℓδ in the Assumption (2),708

−Eτ∼P+(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]T
· Eτ∼P++(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]
(23a)

≤ ||Eτ∼P+(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]
|| · ||Eτ∼P++(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]
||

(23b)

≤ Eτ∼P+(τ)

[
sup
τ∈Ωτ

||∇ϑℓ(D
T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

||
]
· Eτ∼P++(τ)

[
sup
τ∈Ωτ

||∇ϑℓ(D
T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

||
]

(23c)

≤ βℓδ(1− α)

(
sup
τ∈Ωτ

||∇ϑℓ(D
T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

||
)2

= βℓδ(1− α)µ2,

(23d)

where µ defines the supτ∈Ωτ
||∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

||.709

Then we can derive the following inequality with the deduction from Eq. (23):710

φα(ξαt
;ϑt+1) = φα(ξαt

;ϑt) (24a)

−λ
[
∇ϑφα(ξ̂αt

;ϑ)|Tϑ=ϑt
· ∇ϑφα(ξαt

;ϑ)|ϑ=ϑt

]
+O(|ϑt+1 − ϑt|) (24b)

= φα(ξαt
;ϑt) (24c)

− λ

(1− α)2

[
Eτ∼P++(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]T
· Eτ∼P++(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]]
(24d)

− λ

(1− α)2

[
Eτ∼P+(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]T
· Eτ∼P++(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]]
(24e)

+O(|ϑt+1 − ϑt|) (24f)

≤ φα(ξαt ;ϑt)−
λ||ν1||22
(1− α)2

+ βℓδ(1− α)µ2 +O(|ϑt+1 − ϑt|), (24g)

where ν1 = Eτ∼P++(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]
.711

To ensure the existence of improvement guarantee, we need that the following inequality holds:712

φα(ξαt
;ϑt)−

λ||ν1||22
(1− α)2

+ βℓδ(1− α)µ2 +O(|ϑt+1 − ϑt|) ≤ φα(ξαt
;ϑt). (25)

Similarly, in the case when ξ̂α = ξα − δ with δ ∈ R+, we use the probability space of partitioned713

tasks in Eq. (16) and can derive the gradient estimate:714

∇ϑφα(ξ̂αt
;ϑ)|Tϑ=ϑt

=
1

1− α

[
Eτ∼P−(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]
+Eτ∼P+(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]]
.

(26)
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With |Fℓ(ξ̂α;ϑ) − Fℓ(ξα;ϑ)| ≤ βℓδ in the Assumption (2), the following formula can be easily715

verified:716

−Eτ∼P−(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]T
· Eτ∼P+(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]
(27a)

≤ ||Eτ∼P−(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]
|| · ||Eτ∼P+(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]
||
(27b)

≤ Eτ∼P−(τ)

[
sup
τ∈Ωτ

||∇ϑℓ(D
T
τ ,D

C
τ ;ϑ)|ϑ=ϑt ||

]
· Eτ∼P+(τ)

[
sup
τ∈Ωτ

||∇ϑℓ(D
T
τ ,D

C
τ ;ϑ)|ϑ=ϑt ||

]
(27c)

≤ βℓδ(1− α)

(
sup
τ∈Ωτ

||∇ϑℓ(D
T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

||
)2

= βℓδ(1− α)µ2.

(27d)
717

Once again, we can derive the following inequality with the deduction from Eq. (27):718

φα(ξαt
;ϑt+1) = φα(ξαt

;ϑt)− λ
[
∇ϑφα(ξ̂αt

;ϑ)|Tϑ=ϑt
· ∇ϑφα(ξαt

;ϑ)|ϑ=ϑt

]
+O(|ϑt+1 − ϑt|)

(28a)
= φα(ξαt

;ϑt)
(28b)

− λ

(1− α)2

[
Eτ∼P+(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]T
· Eτ∼P+(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]]
(28c)

− λ

(1− α)2

[
Eτ∼P−(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]T
· Eτ∼P+(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]]
(28d)

+O(|ϑt+1 − ϑt|)
(28e)

≤ φα(ξαt ;ϑt)−
λ||ν2||22
(1− α)2

+ βℓδ(1− α)µ2 +O(|ϑt+1 − ϑt|),
(28f)

where ν2 = Eτ∼P+(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]
.719

To ensure the existence of improvement guarantee, we need that the following holds:720

φα(ξαt ;ϑt)−
λ||ν2||22
(1− α)2

+ βℓδ(1− α)µ2 +O(|ϑt+1 − ϑt|) ≤ φα(ξαt ;ϑt). (29)

Considering the above two cases and estimated bounds Eq. (25)/(29), we can roughly estimate the721

upper bound of the required δ to guarantee performance improvement using our developed strategy722

in optimization:723

δ ≤ λ||νm||22
βℓ(1− α)3µ2

, (30)

where λ is the formerly mentioned learning rate, ||νm||22 is max{||ν1||22, ||ν2||22}, and µ is supermum724

of the meta risk function derivatives in the task domain supτ∈Ωτ
||∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt ||.725

With the help of Jensen inequality, ||νi||22 can be roughly bounded as:726

||νi||22 ≤ Eτ∼P+(τ)

[[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]T · [∇ϑℓ(D
T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]]
≤ (1− α)

(
sup
τ∈Ωτ

||∇ϑℓ(D
T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

||
)2

= (1− α)µ2.
(31)
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With Eq.s (30)/(31), we can finally obtain the necessary condition for improvement guarantee:727

δ ≤ λ

βℓ(1− α)2
. (32)

I Proof of Approximation Error in Theorem (2)728

This section is to build up connections between the number of Monte Carlo samples in estimating729

VaRα and the gap of solutions between the approximately derived one and the theoretical one.730

Theorem 2 (Gaps of Optimized Solutions) Suppose Fℓ(l;ϑ) ∈ C2 in l-domain. With meta trained
ϑ∗, the crude Monte Carlo estimate of ξ̂α, the constant κα in Proposition (2), and the sufficiently
large number of the task batch B, andRB = O(B−3/4 lnB), we have the expected error between the
exact optimum and the approximate optimum:

Eα(ϑ∗) ≤ φα(ξ̂α;ϑ∗) + κα

[
α− F̂ℓ(ξ̂α;B, ϑ∗)

dFℓ(ξ;ϑ)
dξ |ξ=ξα

+RB

]
.

Proof: As noted in (Bahadur, 1966), with assumptions that the cumulative distribution function731

Fℓ(l;ϑ)’s second order derivative is continuous in l-domain, namely Fℓ(l;ϑ) ∈ C2, and dFℓ(ξ;ϑ)
dξ |ξ=ξα ,732

the quantile estimate with crude Monte Carlo can be asymptotically written in the form with the help733

of central limit theory (Rosenblatt, 1956):734

ξ̂α − ξα =
α− F̂ℓ(ξ̂α;B, ϑ∗)

dFℓ(ξ;ϑ∗)
dξ |ξ=ξα

+RB, withRB = O(B−3/4 lnB) when B → ∞, (33)

where the empirical cumulative distribution function is computed as follows.735

With the sampled meta risk function values LB = {ℓ(DT
τi ,D

C
τi ;ϑ)}Bi=1, we rank them by values as736

L̂B = {ℓ(DT
τ̂i
,DC

τ̂i
;ϑ)}Bi=1, which means ℓ(DT

τ̂i−1
,DC

τ̂i−1
;ϑ) ≤ ℓ(DT

τ̂i
,DC

τ̂i
;ϑ). Then the empirical737

cumulative distribution function with these order statistics (Barabás, 1987) can be written as:738

F̂ℓ(ξ;B, ϑ) =


0, if ξ ≤ ℓ(DT

τ̂1
,DC

τ̂1
;ϑ)

k
B , if ℓ(DT

τ̂k
,DC

τ̂k
;ϑ) < ξ ≤ ℓ(DT

τ̂k+1
,DC

τ̂k+1
;ϑ) (k = 1, 2, . . . ,B)

1, if ℓ(DT
τ̂B
,DC

τ̂B
;ϑ) < ξ.

(34)

Based on Proposition (2) and κα = max{ 2−α
1−α ,

α
1−α}, we know the inequality holds:739

φα(ξ̂α(ϑ);ϑ)− Eα(ϑ) < καδ. (35)

With Eq. (33)/(35), the following inequality naturally holds when B is large enough:

φα(ξ̂α;ϑ∗) ≤ Eα(ϑ∗) + κα

[
α− F̂ℓ(ξα;B, ϑ∗)

dFℓ(ξ;ϑ)
dξ |ξ=ξα

+RB

]
.

J Experimental Set-up & Implementation Details740

This section is to provide experimental details in this paper. For the implementation of few-shot741

sinusoid regression and few-shot image classification, we respectively refer the reader to TR-MAML’s742

codes (https://github.com/lgcollins/tr-maml) in (Collins et al., 2020) and vanilla MAML’s743

codes (https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch) in (Antoniou744

et al., 2019). And ours is built on top of the above codes except for simple modification of loss745

functions. The learning rates for the inner loop and the outer loop of all methods are the same as the746

above ones.747

To facilitate the use of our heuristic optimization strategy, we leave the pytorch version of loss748

functions within the expected tail risk minimization. The example is provided in the case of mean749

square errors after MAML’s inner loop, which is simple to implement yet effective in robustifying fast750

adaptation, as follows:751
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1 import torch752

2 from torch.nn import MSELoss753

3754

4 def cvar_mse(y_pred ,y_true ,conf_level =0.5):755

5756

6 batch_MSE=MSELoss(reduction='none')757

7 batch_loss=batch_MSE(y_pred ,y_true)758

8759

9 # average risk values over non -task dimensions760

10 batch_avg_loss=torch.mean(batch_loss ,dim=-1)761

11762

12 # crude Monte Carlo to estimate VaR and sub -tasks763

13 topk_mse ,topk_idxs=torch.topk(batch_avg_loss ,int((1- conf_level)*764

y_true.size()[0]))765

14766

15 return torch.mean(topk_mse)767

Listing 1: Loss Functions in Two-Stage Heuristic Algorithm with Crude Monte Carlo

J.1 Meta Learning Datasets & Tasks768

Sinusoid Regression. MAML (Finn et al., 2017), TR-MAML (Collins et al., 2020), and DR-MAML769

are considered in this experiment. We retain the setup in task generation and partition in (Collins770

et al., 2020). More specifically, there exists a distribution drift between the meta-training and the771

meta-testing function families {fm(x) = am sin(x− bm)}Mm=1.772

Numerous easy tasks and a small proportion of difficult tasks are available in meta-training, while773

all tasks in the space are used in the evaluation. The range of the phase parameter is b ∈ [0, π],774

and the amplitude range of the parameter is a ∈ [0.1, 1.05] for easy tasks and a ∈ [4.95, 5.0] for775

difficult tasks. It is noted that the sinusoid task is more challenging to fit with larger amplitudes as the776

resulting function is less smooth. The loss function corresponds to the mean-squared error between777

the predicted value f(x) and the ground truth value. The number of task batches is 50 for 5-shot and778

25 for 10-shot. The optimal selection of the confidence level α is difficult since we need to trade off779

the worst and average performance. Our setup is to minimize CVaRα, which already considers the780

worst-case at some degree, so we watch the average performance in meta training results and set781

α = 0.7 for all few-shot regression tasks. There is no external configuration for this hyper-parameter.782

The maximum number of iterations in meta-training is 70000.783

Few-shot Image Classification. MAML (Finn et al., 2017), TR-MAML (Collins et al., 2020), and784

DR-MAML are considered in this experiment. The N-way K-shot classification corresponds to an785

N-classification problem with K-labeled examples available to the meta learner.786

The Omniglot dataset consists of 1623 handwritten characters from 50 alphabets, with each 20787

examples. The task distribution is uniform for all task instances consisting of characters from one788

specific alphabet. The dataset split follows procedures in (Triantafillou et al., 2019). Finally, 25789

alphabets are used for meta-training, with 20 alphabets for meta-testing. The number of task batches790

is 16. The confidence level α = 0.5 is selected with the same criteria as that in few-shot regression791

tasks. The maximum number of iterations is 60000 in meta-training. As the construction of the792

Omniglot meta dataset is related to specific alphabets and the scale of combination for tasks is huge,793

this indicates randomly sampled meta-training tasks in the evaluation of the main paper Tables may794

not be used in meta-training.795

The mini-ImageNet dataset is pre-processed according to (Larochelle, 2017). In detail, 64 classes796

are used for meta-training, with the remaining 36 classes for meta-testing. Tasks are generated as797

follows: 64 meta-training classes are randomly grouped into 8 meta-train tasks with the class numbers798

{6, 7, 7, 8, 8, 9, 9, 10}, and the 36 meta-testing classes are processed in the same way. Finally, each799

task is built by sampling 1 image from 5 different classes within one task, resulting in a 5-way800

1-shot problem. The number of task batches is 4. The maximum number of iterations is 60000 in801

meta-training.802
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J.2 Neural Architectures & Optimization803

Sinusoid Regression. MAML (Finn et al., 2017), TR-MAML (Collins et al., 2020), and DR-MAML804

are considered in this experiment. We retain the neural architecture for regression problems in (Finn805

et al., 2017; Collins et al., 2020). That is, we deploy a fully-connected neural network with two806

hidden layers of 40 ReLU nonlinear activation units. All methods use one stochastic gradient descent807

step as the inner loop.808

Few-shot Image Classification. We retain the neural architecture for few-shot image classification809

problems in (Finn et al., 2017; Collins et al., 2020). In detail, a four-layer convolutional neural810

network is used for both Omniglot and mini-ImageNet datasets. All methods use one stochastic811

gradient descent step as the inner loop.812

K Additional Experimental Results813

More Quantitative Analysis. Due to the page limit in the main paper, we include the α’s sensitivity814

experimental result in sinusoid 10-shot regression. As illustrated in Fig. (7), the trend is similar to815

that in sinusoid 5-shot regression. Worst-case optimization degrades the average performance of TR-816

MAML. DR-MAML is entangled with MAML in the average performance, while the performance817

gap between them is significant in the worst-case.
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Figure 7: Meta Testing Performance of Meta-Trained DR-MAML with Various Confidence Levels α.
MAML and TR-MAML are irrelevant with the variation of α in meta-training. The plots report testing MSEs
with standard error bars in shadow regions.

818

Regarding few-shot image classification in the mini-ImageNet dataset, we can observe that in Fig.819

(8), the standard error is relatively smaller than in previous regression cases. When the confidence820

level is over a particular value, e.g. α > 0.5, there occurs a significant decline of performance in all821

metrics. Note that when α→ 1.0, the optimization objective approaches the worst-case optimization822

objective. Here we attach two possible reasons for the performance degradation phenomenon: (i) The823

adopted base optimization technique matters in nearly worst-case optimization. The stochastic mirror824

descent-ascent (Juditsky et al., 2011) is utilized in TR-MAML, which is more stable in deriving the825

optimal solution. In comparison, the stochastic gradient descent with sub-gradient operations works826

as the optimization method, and this method can be unstable when the scale of worst-case examples827

is small in the update. (ii) For few-shot image classification, estimates of VaRα can be less precise828

with limited batch sizes and higher α values since the meta risk function value is discontinuous.829

Consequently, we can also attribute the severe degradation of fast adaptation performance in higher α830

value cases to the approximation errors of quantile estimates.831

More Visualization Results. Further, we explore the influence of the expected tail risk minimization832

principle in meta learning. Here the landscape of meta risk values, namely fast adaptation losses, is833

presented in the sinusoid regression problem.834

As exhibited in Fig. (9), the evaluated meta risk values from one random trial are associated with835

hyper-parameters of tasks. The final optimized results can discover some tasks difficult in fast836

adaptations. Meta learning methods are difficult to adapt in task regions with higher amplitudes.837

MAML exhibits higher MSEs in regions with the amplitude a > 2, while DR-MAML minimizes838

a proportion of risks in these regions. In contrast, TR-MAML reduces the risk around task regions839

with a > 2 to a certain extent; however, it shows relatively higher risk values in easy regions. Such840
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Figure 8: Meta Testing Classification Accuracies of Meta-Trained DR-MAML with Various Confidence
Levels α. MAML and TR-MAML are irrelevant with the variation of α in meta-training. The plots report testing
accuracies with standard error bars in shadow regions.
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Figure 9: The Fast Adaptation Risk Landscape of Meta-Trained DR-MAML, TR-MAML and MAML.
Shown is an example of sinusoid 5-shot regression, which corresponds to the function space f(x) = a sin(x−
b). The X-axis denotes the amplitude parameter a, and the Y -axis is the phase parameter b. The confidence
level is α = 0.7 in meta-training. The plots report testing MSEs in the Z-axis with a random trial of generating
tasks.

evidence reflects the interpretability in optimization within the expected tail risk minimization, and841

the landscape of meta risk values is relatively flat and smooth than others.842

Comparison with Other Optimization Strategies. Note that instantiations of distributionally robust843

meta learning methods, such as DR-MAML and DR-CNPs in Examples (1)/(2) are regardless of844

optimization strategies and can be optimized via any heuristic algorithms for CVaRα objectives.845

Additionally, we use DR-MAML as the example and perform the comparison between our two-stage846

algorithm and the risk reweighted algorithm (Sagawa et al., 2020). The intuition of the risk reweighted847

algorithm is to relax the weights of tasks and assign more weights to the gradient of worst cases. The848

normalization of risk weights is achieved via the softmax operator. Though there is an improvement849

guarantee w.r.t. the probabilistic worst group of tasks, the algorithm is not specially designed for850

meta learning or CVaRα objective.851

min
ϑ∈Θ
Eα(ϑ) := Ep(τ ;ϑ)

[pα(τ ;ϑ)
p(τ ;ϑ)

ℓ(DT
τ ,D

C
τ ;ϑ)

]
≈ 1

B
B∑

b=1

ωb(τb;ϑ)ℓ(D
T
τb
,DC

τb
;ϑ) (36)

Meanwhile, the weight of task gradients after normalization is a biased estimator w.r.t. the constrained852

probability pα(τ ;ϑ) in the task space. In other words, the risk reweighted method can be viewed853

as approximation w.r.t. the importance weighted method in Eq. (36). In the importance weighted854

method, for tasks out of the region of (1− α)-proportional worst, the probability of sampling such855

tasks τb is zero, indicating ωb(τb;ϑ) = 0. While in risk reweighted methods, the approximate weight856

is assumed to satisfy ωb(τb;ϑ) ∝ exp
(

ℓ(DT
τb

,DC
τb

;ϑ̂)

τ

)
, where ϑ̂ means last time updated meta model857

parameters and the risk function value is evaluated after fast adaptation.858

In implementations, we keep the setup the same as Risk-Rweighted methods in (Paszke et al.,859

2019) for meta-training. As illustrated in Table (4)/(5), DR-MAML with the two-stage optimization860
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Table 4: Test average mean square errors (MSEs) with reported standard deviations for sinusoid regression
(5 runs). We mainly compare DR-MAML with different optimization algorithms. 5-shot and 10-shot
cases are respectively considered here. The results are evaluated across the 490 meta-test tasks, which is the
same as in (Collins et al., 2020). With α = 0.7 for meta training, the best testing results are in bold.

5-shot 10-shot
Method Average Worst CVaRα Average Worst CVaRα

DR-MAML (Risk-Reweighted, (Sagawa et al., 2020)) 0.91±0.06 3.57±0.56 1.83±0.03 0.61±0.02 1.90±0.11 1.13±0.02

DR-MAML (Two-Stage, Ours) 0.89±0.04 2.91±0.46 1.76±0.02 0.54±0.01 1.70±0.17 0.96±0.01

Table 5: Average 5-way 1-shot classification accuracies in mini-ImageNet with reported standard devia-
tions (3 runs). We mainly compare DR-MAML with different optimization algorithms. With α = 0.5 for
meta training, the best testing results are in bold.

Eight Meta-Training Tasks Four Meta-Testing Tasks
Method Average Worst CVaRα Average Worst CVaRα

DR-MAML (Risk-Reweighted, (Sagawa et al., 2020)) 67.0±0.2 56.6±0.4 61.6±0.2 49.1±0.2 46.6±0.1 47.2±0.2

DR-MAML (Two-Stage, Ours) 70.2±0.2 63.4±0.2 67.2±0.1 49.4±0.1 47.1±0.1 47.5±0.1

strategies consistently outperform that with the risk-weighted ones in both 5-shot and 10-shot861

sinusoid cases regarding all metrics. The performance advantage of using the two-stage ones is not862

significant in mini-ImageNet scenarios. We can hypothesize that the estimate of VaRα in continuous863

task domains, e.g., sinusoid regression, is more accurate, and this probabilistically ensures the864

improvement guarantee with two-stage strategies. Both the VaRα estimate in two-stage strategies865

and the importance weight estimate in the risk-reweighted ones may have a lot of biases in few-shot866

image classification, which lead to comparable performance.867

L Platforms & Computational Tools868

In this research project, we use NVIDIA 1080-Ti GPUs in computation. Pytorch (Paszke et al.,869

2019) works as the deep learning toolkit in implementing few-shot image classification experiments.870

Meanwhile, Tensorflow is the deep learning toolkit for implementing sinusoid few-shot regression871

experiments.872
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