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Abstract

We study the infinite-horizon restless bandit problem with the average reward crite-
rion, in both discrete-time and continuous-time settings. A fundamental goal is to
efficiently compute policies that achieve a diminishing optimality gap as the num-
ber of arms, N , grows large. Existing results on asymptotic optimality all rely on
the uniform global attractor property (UGAP), a complex and challenging-to-verify
assumption. In this paper, we propose a general, simulation-based framework,
Follow-the-Virtual-Advice, that converts any single-armed policy into a pol-
icy for the original N -armed problem. This is done by simulating the single-armed
policy on each arm and carefully steering the real state towards the simulated
state. Our framework can be instantiated to produce a policy with an O(1/

√
N)

optimality gap. In the discrete-time setting, our result holds under a simpler syn-
chronization assumption, which covers some problem instances that violate UGAP.
More notably, in the continuous-time setting, we do not require any additional
assumptions beyond the standard unichain condition. In both settings, our work is
the first asymptotic optimality result that does not require UGAP.

1 Introduction

The restless bandit (RB) problem is a dynamic decision-making problem that involves a number of
Markov decision processes (MDPs) coupled by a constraint. Each MDP, referred to as an arm, has a
binary action space, {passive, active}. At every decision epoch, the decision maker is constrained to
select a fixed number of arms to activate, with the goal of maximizing the expected reward accrued.
The RB problem finds applications across a spectrum of domains, including wireless communication
[ALT19], congestion control [AADJ13], queueing models [ABG09], crawling web content [AB19],
machine maintenance [GMA05], clinical trials [VBW15], to name a few.

In this paper, we focus on infinite-horizon RBs with the average-reward criterion. Since the exact
optimal policy is PSPACE-hard to compute [PT99], it is of great theoretical and practical interest
to focus on policies that approximately achieve the optimal value and compute such policies in an
efficient matter. The optimality gap of a policy is defined as the difference between its average reward
per arm and that of an optimal policy. In a typical asymptotic regime where the number of arms, N ,
grows large, we say that a policy is asymptotically optimal if its optimality gap is o(1) as N →∞.

Prior work and the uniform global attractor property assumption. Prior work has studied the
celebrated Whittle index policy [Whi88] and LP-Priority policies [Ver16] and established sufficient
conditions for their asymptotic optimality [WW90, Ver16, GGY20, GGY22]. One key assumption
underpinning all prior work is the uniform global attractor property (UGAP)—also known as globally
asymptotic stability—which pertains to the mean-field/fluid limit of the restless bandit system in the

∗Corresponding author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Paper Policy Optimality Gap Conditions∗

Discrete-time
setting

[GGY20] Whittle Index O(exp(−cN)) UGAP & Non-singular

[GGY22] LP-Priority O(exp(−cN)) UGAP & Non-degenerate

This paper FTVA(π̄∗) O(1/
√
N) SA

Continuous-
time setting

[WW90] Whittle Index o(1) UGAP

[Ver16] LP-Priority o(1) UGAP

[GGY20] Whittle Index O(exp(−cN)) UGAP & Non-singular

[GGY22] LP-Priority O(exp(−cN)) UGAP & Non-degenerate

This paper FTVA-CT(π̄∗) O(1/
√
N) –

Table 1: Optimality gap results and conditions. ∗All papers require the standard unichain assumption.

asymptotic limit N →∞. UGAP stipulates that the system’s state distribution in the mean-field limit
converges to the optimal state distribution attaining the maximum reward, from any initial distribution.
It has been well recognized that UGAP is a highly technical assumption and challenging to verify:
the primary way to test UGAP is numerical simulations; see [GGY20] for a detailed discussion.

More recent work studies the rate at which the optimality gap converges to zero. The work [GGY20]
and [GGY22] prove a striking O(exp(−cN)) optimality gap for the Whittle index policy and LP-
Priority policies, respectively, where c is a constant. In addition to UGAP, these results require a
non-singularity or non-degenerate condition. We are not aware of any rate of convergence result
without assuming UGAP or non-singularity/degeneracy. See Table 1 for a summary.

Therefore, prior work on average-reward restlest bandit leaves two fundamental questions open:

1. Is it possible to achieve asymptotic optimality without UGAP?

2. Is is possible to establish a non-trivial convergence rate for the optimality gap in the absence of
the non-singular/non-degenerate assumption (and UGAP)?

Our contributions. We consider both the discrete-time and continuous-time settings of the
average-reward restless bandit problem. We propose a general, simulation-based framework,
Follow-the-Virtual-Advice (FTVA) and its continuous-time variant FTVA-CT, which convert any
single-armed policy into a policy for the original N -armed problem, with a vanishing performance
loss. Our framework can be instantiated to produce a policy with an O(1/

√
N) optimality gap, under

the conditions summarized in Table 1, which we elaborate on later.

Under our framework, computing an asymptotically optimal policy is efficient since it reduces to
deriving an optimal single-armed policy, whose complexity is independent of N . The resultant
policy can be implemented with a linear-in-N computational cost and some of its subroutines can be
implemented in a distributed fashion over the arms (see Appendix B for more details).

Our results can also be extended to RBs with heterogeneous arms. See Appendix H for details.

Figure 1: An discrete-time RB problem
that satisfies SA but not UGAP.

We now elaborate on the conditions in Table 1. In the
discrete-time setting, our result holds under a condition
called the Synchronization Assumption (SA), in addition
to the standard unichain assumption required by all prior
work. The SA condition, which is imposed on the MDP
associated with a single arm, admits several intuitive suf-
ficient conditions. While it is unclear whether SA sub-
sumes UGAP, we show that there exist problem instances
that violate UGAP but satisfy SA. Figure 1 shows one
such instance (constructed by [GGY20], described in Ap-
pendix G for ease of reference), in which the Whittle
Index and LP-Priority policies coincide and have a non-
diminishing optimality gap, whereas our policy, named
as FTVA(π̄∗), is asymptotically optimal. In addition, our
O(1/

√
N) bound on the optimality gap does not require a

non-singularity/non-degeneracy assumption.
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More notably, in the continuous-time setting, we completely eliminate the UGAP assumption. We
show that our policy FTVA-CT(π̄∗) achieves an O(1/

√
N) optimality gap under only the standard

unichain assumption (which is required by all prior work).

In both settings, our results are the first asymptotic optimality results that do not require UGAP. We
point out that UGAP is considered necessary for LP-Priority policies [Ver16, GGY22]. Our policy,
FTVA(π̄∗), is not a priority policy. As such, we hope our results open up new directions for developing
new classes of RB algorithms that achieve asymptotic optimality without relying on UGAP.

Intuitions. Our algorithm and many existing approaches solve an LP relaxation of the original
problem. The solution of the LP induces a policy and gives an “ideal” distribution for the system state.
Existing approaches directly apply the LP policy to the current system state, and then perform a simple
rounding of the resulting actions so as to satisfy the budget constraint. When the current system state
is far from the ideal distribution, the actual actions after rounding may deviate substantially from the
LP solution and thus, in the absence of UGAP, would fail to drive the system to the optimum.

Our FTVA framework, in contrast, prioritizes constraint satisfaction. We apply the LP solution to
the state of a simulated system, which is constructed carefully so that the resulting actions satisfy
the constraint after a minimal amount of rounding. Consequently, starting from any initial state, our
policy steers the system towards the ideal distribution and hence approximates the optimal value.

This method is inspired by the approach in [HXW23], which also involves a simulated system, but
for a stochastic bin-packing problem.

Other related work. Another condition extensively discussed in the RB literature is the indexability
condition [Whi88], which is necessary for the Whittle index policy to be well-defined, but not required
by LP-Priority policies [Ver16]. However, indexability alone does not guarantee the asymptotic
optimality of Whittle index.

So far we have discussed prior work on infinite-horizon RBs with average reward. For the related
setting of finite-horizon total reward RBs, a line of recent work has established an O(1/

√
N) opti-

mality gap [HF17, ZCJW19, BS20, GNJT23], and an O(exp(−cN)) gap assuming non-degeneracy
[ZF21, GGY22]. For the infinite-horizon discounted reward setting, [ZF22, GNJT23] propose poli-
cies with O(1/

√
N) optimality gap without assuming indexability and UGAP. While these results

are not directly comparable to ours, it is of future interest to see if our simulation-based framework
can be applied to their settings. For a more detailed discussion of prior work, see Appendix A.

Paper Organization. While our continuous-time result is stronger, the discrete-time setting is more
accessible. Therefore, we first discuss the discrete-time setting, which includes the problem statement
in Section 2, our proposed framework, Follow-the-Virtual-Advice, in Section 3, and our results
on the optimality gap in Section 4. Results for the continuous-time setting are presented in Section 5.
We conclude the paper in Section 6. Proofs and additional discussion are given in the appendices.

2 Problem Setup

Consider the infinite-horizon, discrete-time restless bandit problem with N arms indexed by [N ] ≜
{1, 2, . . . , N}. Each arm is associated with an MDP described by the tuple (S,A, P, r). Here S is
the state space, assumed to be finite; A = {0, 1} is the action set, and we say the arm is activated or
pulled when action 1 is applied; P : S× A× S→ [0, 1] is the transition kernel, where P (s, a, s′) is
the probability of transitioning from state s to state s′ upon taking action a; r = {r(s, a)}s∈S,a∈A is
the reward function, where r(s, a) is the reward for taking action a in state s. Throughout the paper,
we assume that the transition kernel P is unichain [Put05]; that is, under any Markov policy for this
single-armed MDP (S,A, P, r), the induced Markov chain has a single recurrent class. The unichain
assumption is standard in most existing work on restless bandits [WW90, GGY20, GGY22, Ver16].
We will discuss relaxing the unichain assumption in Appendix D.

In the above setting, we are subject to a budget constraint that exactly αN arms must be activated in
each time step, where α ∈ (0, 1) is a given constant and αN is assumed to be an integer for simplicity.
This N -armed RB problem can be represented by the tuple (N, SN ,AN , P, r, αN).

A policy π for the N -armed problem specifies the action for each of the N arms based on the history
of states and actions. Under policy π, let Sπ

i (t) ∈ S denote the state of the ith arm at time t, and we
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call Sπ(t) ≜ (Sπ
i (t))i∈[N ] ∈ SN the system state. Similarly, let Aπ

i (t) ∈ A denote the action applied
to the ith arm at time t, and let Aπ(t) ≜ (Aπ

i (t))i∈[N ] ∈ AN denote the joint action vector.

The controller’s goal is to find a policy that maximizes the long-run average of the total expected
reward from all N arms, subject to the budget constraint, assuming full knowledge of the model:

maximize
policy π

V π
N ≜ lim

T→∞

1

T

T−1∑
t=0

1

N

N∑
i=1

E [r(Sπ
i (t), A

π
i (t))] (1)

subject to
N∑
i=1

Aπ
i (t) = αN, ∀t ≥ 0. (2)

Under the unichain assumption, the value V π
N of any policy π is independent of the initial state. Let

V ∗
N ≜ supπ V

π
N denote the optimal value. The optimality gap of π is defined as V ∗

N − V π
N . We say a

policy π is asymptotically optimal if its optimality gap converges to 0 as N →∞.

Classical theory guarantees that for a finite-state Markov decision process like an RB, there exists an
optimal policy that is Markovian and stationary [Put05]. Nevertheless, the policies we propose are not
Markovian policies; rather, they have internal states. Under such a policy π, the system state Sπ(t)
together with the internal state form a Markov chain, and the action Aπ(t) depends on both the system
and internal states. We design a policy such that this Markov chain has a stationary distribution. Let
Sπ(∞) and Aπ(∞) denote the random elements that follow the stationary distributions of Sπ(t) and
Aπ(t), respectively. Then the average reward of π is equal to V π

N = 1
N

∑N
i=1 E [r(Sπ

i (∞), Aπ
i (∞))].

In later sections, when the context is clear, we drop the superscript π from Sπ
i and Aπ

i .

3 Follow-the-Virtual-Advice: A simulation-based framework

In this section, we present our framework, Follow-the-Virtual-Advice (FTVA). We first describe
a single-armed problem, which involves an “average arm” from the original N -armed problem. We
then use the optimal single-armed policy to construct the proposed policy FTVA(π̄∗).

3.1 Single-armed problem

The single-armed problem involves the MDP (S,A, P, r) associated with a single arm (say arm 1
without loss of generality), where the budget is satisfied on average. Formally, consider the problem:

maximize
policy π̄

V π̄
1 ≜ lim

T→∞

1

T

T−1∑
t=0

E
[
r(Sπ̄

1 (t), A
π̄
1 (t))

]
(3)

subject to lim
T→∞

1

T

T−1∑
t=0

E
[
Aπ̄

1 (t)
]
= α. (4)

The constraint (4) stipulates that the average rate of applying the active action must equal α. Various
equivalent forms of this single-armed problem have been considered in prior work [WW90, GGY20,
GGY22, Ver16].

By virtue of the unichain assumption, the single-armed problem can be equivalently rewritten as the
following linear program, where each decision variable y(s, a) represents the steady-state probability
that the arm is in state s taking action a:

maximize
{y(s,a)}s∈S,a∈A

∑
s∈S,a∈A

r(s, a)y(s, a) (LP)

subject to
∑
s∈S

y(s, 1) = α (5)∑
s′∈S,a∈A

y(s′, a)P (s′, a, s) =
∑
a∈A

y(s, a), ∀s ∈ S (6)

∑
s∈S,a∈A

y(s, a) = 1, y(s, a) ≥ 0, ∀s ∈ S, a ∈ A. (7)
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Algorithm 1 Follow-the-Virtual-Advice (FTVA): A simulation-based framework
Input: N -armed problem (N, SN ,AN , P, r, αN), initial states S(0), single-armed policy π̄

Initialize: Virtual states Ŝ(0) are N i.i.d. samples following the stationary distribution of π̄
1: for t = 0, 1, 2, . . . do
2: Independently sample Âi(t)← π̄(·|Ŝi(t)) for each arm i ∈ [N ] ▷ Generate virtual actions
3: if

∑N
i=1 Âi(t) ≥ αN then ▷ Select a set A of αN arms to activate

4: A ← a set of αN arms chosen from {i : Âi(t) = 1} (any tie-breaking)
5: else
6: B ← a set of αN −

∑N
i=1 Âi(t) arms chosen from {i : Âi(t) = 0} (any tie-breaking)

7: A ← {i : Âi(t) = 1} ∪ B
8: Apply Ai(t) = 1 and observe Si(t+ 1) for each arm i ∈ A
9: Apply Ai(t) = 0 and observe Si(t+ 1) for each arm i /∈ A

10: for i = 1, 2, 3, . . . N do ▷ Progress virtual processes
11: if Ŝi(t) = Si(t) and Âi(t) = Ai(t) then ▷ Couple virtual and real states
12: Ŝi(t+ 1)← Si(t+ 1)
13: else
14: Independently sample Ŝi(t+ 1) from the distribution P (Ŝi(t), Âi(t), ·)

Here (5) corresponds to the relaxed budget constraint, (6) is the flow balance equation, and (6)–(7)
guarantee that y(s, a)’s are valid steady-state probabilities.

By standard results for average reward MDPs [Put05], an optimal solution {y∗(s, a)}s∈S,a∈A to (LP)
induces an optimal policy π̄∗ for the single-armed problem via the following formula:

π̄∗(a|s) =
{
y∗(s, a)/(y∗(s, 0) + y∗(s, 1)), if y∗(s, 0) + y∗(s, 1) > 0,

1/2, if y∗(s, 0) + y∗(s, 1) = 0.
for s ∈ S, a ∈ A. (8)

Let V rel
1 = V π̄∗

1 be the optimal value of (LP) and the single-armed problem.

(LP) can be viewed as a relaxation of the N -armed problem. To see this, take any N -armed
policy π and set y(s, a) to be the fraction of arms in state s taking action a in steady state under π,
i.e., y(s, a) = E

[
1
N

∑N
i=1 1{Sπ

i (∞)=s,Aπ
i (∞)=a}

]
. Whevener π satisfies the budget constraint (2),

{y(s, a)} satisfies the relaxed constraint (5) and the consistency constraints (6)–(7). Therefore, the
optimal value of (LP) is an upper bound of the optimal value of the N -armed problem: V rel

1 ≥ V ∗
N .

3.2 Constructing the N -armed policy

We now present Follow-the-Virtual-Advice, a simulation-based framework for the N -armed
problem. FTVA takes as input any single-armed policy π̄ that satisfies the relaxed budget constraint
(4) and converts it into a N -armed policy, denoted by FTVA(π̄). Of particular interest is when π̄ is an
optimal single-armed policy, which leads to our result on the optimality gap. Below we introduce the
general framework of FTVA without imposing any restriction on the input policy π̄.

The proposed policy FTVA(π̄) has two main components:

• Virtual single-armed processes. Each arm i simulates a virtual single-armed process, whose state
is denoted as Ŝi(t), with action Âi(t) chosen according to π̄. To make the distinction conspicuous,
we sometimes refer to the state Si(t) and action Ai(t) in the original N -armed problem as the real
state/action. The virtual processes associated with different arms are independent.

• Follow the virtual actions. At each time step t, we choose the real actions Ai(t)’s to best match
the virtual actions Âi(t)’s, to the extent allowed by the budget constraint

∑N
i=1 Ai(t) = αN .

FTVA is presented in detail in Algorithm 1. Note that we use an appropriate coupling in Algorithm 1
to ensure that the virtual processes (Ŝi(t), Âi(t))’s are independent and each follows the Markov
chain induced by the single-armed policy π̄. FTVA is designed to steer the real states to be close to
the virtual states, thereby ensuring a small conversion loss V π̄

1 − V
FTVA(π̄)
N . Here recall that V π̄

1 is the
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Figure 2: Time evolution of the fraction of arms in each state under LP-Priority (upper), or after
switching to FTVA(π̄∗) (lower) since time slot 250. The x-axis represents the time slot, which ranges
from 250 to 289; the y-axis represents the states; the color represents the fraction of arms in each
state at each time slot. The colors and magnitudes of the arrows represent the average directions and
rates at which the arms move away from each state.

average reward achieved by the input policy π̄ in the single-armed problem, and that V FTVA(π̄)
N is the

average reward per arm achieved by policy FTVA(π̄) in the N -armed problem.

3.3 Discussion on FTVA and the role of virtual processes

In this subsection, we provide insights into the mechanism of FTVA and explain the crucial role of the
virtual processes. In particular, we contrast FTVA with the alternative approach of directly using the
real states to choose actions, e.g., by applying the single-armed policy π̄∗ to each arm’s real state. We
note that existing policies are essentially real-state-based, so the insights here can also explain why
UGAP is necessary for existing policies to have asymptotic optimality.

We first observe that the above two approaches are equivalent in the absence of the budget constraint.
In particular, even if the initial virtual state and real state of an arm i are different, they will synchronize
(i.e., become identical) in finite time by chance under mild assumptions (see Section 4.1). After
this event, if there were no constraint, each arm i will consistently follow the virtual actions, i.e.,
Ai(t) = Âi(t) = π̄

(
Ŝi(t)

)
for all t, and the virtual states will remain identical to real states.

In the presence of the budget constraint, the arms may not remain synchronized, so the virtual pro-
cesses become crucial: they guarantee that the virtual actions Âi(t) = π̄

(
Ŝi(t)

)
nearly satisfy budget

constraint, which allows the real system to approximately follow the virtual actions to remain syn-
chronized. To see this, note that regardless of the current real states, the N virtual states Ŝ1, . . . , ŜN

independently follow the single-armed policy π̄∗, so, in the long run, each (Ŝi(∞), Âi(∞)) is dis-
tributed per y∗(·, ·), the optimal solution to (LP). For large N , the sum

∑N
i=1 Âi(∞) concentrates

around its expectation N
∑

s∈S y
∗(s, 1) = αN and thus tightly satisfy the budget constraint. In

contrast, the actions generated by applying π̄ to the real states are likely to significantly violate the
constraint, especially when the empirical distribution of the current real states deviates from y∗(·, ·).
An example. We provide a concrete example illustrating the above arguments. Suppose the state
space for each arm is S = {0, 1, . . . , 7}. We label action 1 as the preferred action for states 0, 1, 2, 3,
and action 0 for the other states. For an arm in state s, applying the preferred action moves the arm
to state (s+ 1) mod 8 with probability ps,R, and applying the other action moves the arm to state
(s− 1)+ with probability ps,L; the arm stays at state s otherwise. One unit of reward is generated
when the arm goes from state 7 to state 0. We assume that the budget is N/2 and set {ps,R, ps,L}
such that the optimal solution of (LP) is y∗(s, 1) = 1/8 for s = 0, 1, 2, 3 and y∗(s, 0) = 1/8 for
s = 4, 5, 6, 7. That is, the optimal state distribution is uniform(S), and the optimal single-armed
policy π̄∗ always takes the preferred action so as to traverse state 7 as often as possible.
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To see why this MDP makes the corresponding N -armed system tricky to control, consider the
situation where ps,L >> ps,R and most arms are in state 0. Those arms prefer actions 1 to move
towards state 7. However, there are only N/2 units of budget. If we break ties uniformly at random,
each arm is not pulled with probability 1/2 in each time slot and is likely to return to 0 before they
leave {0, 1, 2, 3}. This phenomenon can be seen from Figure 7b in Appendix G.

Figure 3: Comparing policies based
on virtual states and real states

A similar phenomenon can be observed for LP-Priority poli-
cies. Here we consider an LP-Priority in [HF17, BS20,
GGY22] that breaks ties based on the Lagrangian-optimal
index. In Figure 2, we generate and visualize a sample path
under LP-Priority from time 250 to 289, and contrast it with
the sample path if the system switches to FTVA(π̄∗) from
time 250 onwards. We can see that under LP-Priority, al-
though the arms have a strong tendency to move up from
state 4 to state 5, they move back when they reach state 5
and thus get stuck at state 4. In contrast, when switching
to FTVA(π̄∗), the arrows gradually change to the correct di-
rection, which helps the arms to escape from state 4 and
converge to the uniform distribution over the state space.
Intuitively, under FTVA(π̄∗), an increasing number of arms
couple their real states with virtual states over time, which allows these arms to consistently apply the
preferred actions afterward. In Appendix G.4, we include more visualizations of the policies.

In Figure 3, we compare the average reward of FTVA(π̄∗) with those of the random tie-breaking
policy and the LP-Priority policy discussed above. We can see that FTVA(π̄∗) is near-optimal, while
the other two policies have nearly zero rewards. Further details are provided in Appendix G. Note
that while a different tie-breaking rule may solve this particular example with real states, currently
there is no known rule that works in general.

4 Theoretical result on optimality gap

In this section, we present our main theoretical result, an upper bound on the conversion loss
V π̄
1 − V

FTVA(π̄)
N for any given single-armed policy π̄. Setting π̄ to be an optimal single-armed policy

π̄∗ then leads to an upper bound on the optimality gap of our N-armed policy FTVA(π̄∗). Our result
holds under the Synchronization Assumption (SA), which we formally introduce below.

4.1 Synchronization Assumption

SA is imposed on a given single-armed policy π̄. To describe SA, we first define a two-armed system
called the leader-and-follower system, which consists of a leader arm and a follower arm. Each arm
is associated with the MDP (S,A, P, r). At each time step t ≥ 1, the leader arm is in state Ŝ(t) and
uses the policy π̄ to chooses an action Â(t) based on Ŝ(t); the follower arm is in state S(t), and it
takes the action A(t) = Â(t) regardless of S(t). The state transitions of the two arms are coupled as
follows. If S(t) = Ŝ(t), then S(t+ 1) = Ŝ(t+ 1). If S(t) ̸= Ŝ(t), then S(t+ 1) and Ŝ(t+ 1) are
sampled independently from P (S(t), A(t), ·) and P (Ŝ(t), Â(t), ·), respectively. Note that once the
states of the two arms become identical, they stay identical indefinitely.

Given the initial states and actions (S(0), A(0), Ŝ(0), Â(0)) = (s, a, ŝ, â) ∈ S × A × S × A, we
define the synchronization time as the first time the two states become identical:

τ sync(s, a, ŝ, â) ≜ min{t ≥ 0: S(t) = Ŝ(t)}. (9)

Assumption 1 (Synchronization Assumption (SA) for a policy π̄). We say that a single-armed policy
π̄ satisfies the Synchronization Assumption (SA) if for any initial states and actions (s, a, ŝ, â) ∈
S× A× S× A, the synchronization time τ sync(s, a, ŝ, â) is a stopping time and satisfies

E [τ sync(s, a, ŝ, â)] <∞. (10)

We view SA as an appealing alternative to UGAP for two reasons. First, there are some instances that
satisfy SA but not UGAP. Two such examples are given in Figures 1 and 3. [GGY20] provides more
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examples that violate UGAP, all of which can be verified to satisfy SA. Second, SA is easier to verify
than UGAP. It has been acknowledged in many prior papers that UGAP lacks intuitive sufficient
conditions and can only be checked numerically. In contrast, SA can be efficiently verified in several
ways, which is discussed in Appendix C.

4.2 Bounds on conversion loss and optimality gap

We are now ready to state our main theorem.
Theorem 1. Consider an N -armed RB problem (N, SN ,AN , P, r, αN) under the single-armed
unichain assumption. Let π̄ be any single-armed policy satisfying SA. For any N ≥ 1, the conversion
loss of FTVA satisfies the upper bound

V π̄
1 − V

FTVA(π̄)
N ≤ rmaxτ

sync
max√

N
, (11)

where rmax ≜ maxs∈S,a∈A |r(s, a)| and τ sync
max ≜ max(s,a,ŝ,â)∈S×A×S×A E [τ sync(s, a, ŝ, â)].

Consequently, given any optimal single-armed policy π̄∗ satisfying SA, for all any N ≥ 1 the
optimality gap of FTVA(π̄∗) is upper bounded as

V ∗
N − V

FTVA(π̄∗)
N ≤ V π̄∗

1 − V
FTVA(π̄∗)
N ≤ rmaxτ

sync
max√

N
. (12)

Proof sketch. The proof of Theorem 1 is given in Appendix E. Here we sketch the main ideas of
the proof, whose key step involves bounding the conversion loss V π̄

1 − V
FTVA(π̄)
N using a fundamental

tool from queueing theory, the Little’s Law [Kle75]. Specifically, we start with the upper bound

V π̄
1 − V

FTVA(π̄)
N =

1

N
E

[
N∑
i=1

r
(
Ŝi(∞), Âi(∞)

)
−

N∑
i=1

r
(
Si(∞), Ai(∞)

)]

≤ 2rmax

N
E

[
N∑
i=1

1

{(
Ŝi(∞), Âi(∞)

)
̸=
(
Si(∞), Ai(∞)

)}]
, (13)

which holds since the virtual process
(
Ŝi(t), Âi(t)

)
of each arm i follows the single-armed policy π̄.

We say an arm i is a bad arm at time t if
(
Ŝi(t), Âi(t)

)
̸=
(
Si(t), Ai(t)

)
, and a good arm otherwise.

Then E
[∑N

i=1 1

{(
Ŝi(∞), Âi(∞)

)
̸=
(
Si(∞), Ai(∞)

)}]
= E

[
# bad arms

]
in steady state.

By Little’s Law, we have the following relationship:

E [# bad arms] = (rate of generating bad arms)× E [time duration of a bad arm] .

It suffices to bound the two terms on the right hand side. Note that the virtual actions Âi(t)’s are i.i.d.
with mean E[Âi(t)] = α; a standard concentration inequality shows that at most

∣∣∑N
i=1 Âi(t) −

αN
∣∣ ≈ O(

√
N) bad arms are generated per time slot. On the other hand, each bad arm stays bad

until its real state becomes identical to its virtual state, which occurs in O(1) time by virtue of SA.

5 Continuous-time restless bandits

In this section, we consider the continuous-time setting. The setup, policy, and theoretical results for
this setting parallel those for the discrete-time setting, except that we no longer require SA. Detailed
proofs are provided in Appendix F.

Problem setup. The continuous-time restless bandit (CTRB) problem is similar to its discrete-time
counterpart (cf. Section 2), except that each single-armed MDP runs in continuous time. In particular,
an N -armed CTRB is given by a tuple (N, SN ,AN , G, r, αN), where S is the finite state space and
A = {0, 1} is the action space of a single arm. In continuous time, each arms dynamics is governed
by the transition rates (rather than probabilities) G = {G(s, a, s′)}s,s′∈S,a∈A, where G(s, a, s′) is
the rate of transitioning from state s to state s′ ̸= s upon taking action a. We again assume that the
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transition kernel G of each arm is unichain. Given the states and actions of all arms, the transitions
of different arms are independent from each other. Similarly, r(s, a) is the instantaneous rate of
accumulating reward while taking action a in state s. The budget constraint now requires that at any
moment of time, the total number of arms taking the active action 1 is equal to αN .

The objective is again maximizing the long-run average reward, that is,

maximize
policy π

V π
N ≜ lim

T→∞

1

T

∫ T

0

1

N

N∑
i=1

E [r(Sπ
i (t), A

π
i (t))] dt (14)

subject to
N∑
i=1

Aπ
i (t) = αN ∀t ≥ 0. (15)

Let V ∗
N = supπ V

π
N denote the optimal value of the above optimization problem.

Single-armed problem. The single-armed problem for CTRB is defined analogously as its discrete-
time counterpart (3)–(4). This single-armed problem can again be written as a linear program, where
the decision variable y(s, a) represents the steady-state probability of being in state s taking action a:

maximize
{y(s,a)}s∈S,a∈A

∑
s∈S,a∈A

r(s, a)y(s, a) (LP-CT)

subject to
∑
s∈S

y(s, 1) = α (16)∑
s′∈S,a∈A

y(s′, a)G(s′, a, s) = 0 ∀s ∈ S (17)

∑
s∈S,a∈A

y(s, a) = 1; y(s, a) ≥ 0 ∀s ∈ S, a ∈ A. (18)

In (17), we use the convention that G(s, a, s) = −G(s, a) ≜ −
∑

s′ ̸=s G(s, a, s′). Again, the optimal
value of (LP-CT) upper bounds the optimal value for the N -armed problem, i.e., V rel

1 = V π̄∗

1 ≥ V ∗
N ,

where π̄∗ is any optimal single-armed policy and can be computed using the same formula in (8).
Note that in continuous time, the optimal policy π̄∗ is carried out through uniformization [Put05].

Our policy. Our framework for the CTRB, Follow-the-Virtual-Advice-CT (FTVA-CT), is
presented in Algorithm 2. FTVA-CT works in a similar fashion as its discrete-time counterpart. It
takes a single-armed policy π̄ as input, and each arm i independently simulates a virtual single-armed
process (Ŝi(t), Âi(t)) following π̄. FTVA-CT then chooses the real actions Ai(t)’s to match the
virtual actions Âi(t)’s to the extent allowed by the budget constraint

∑N
i=1 Ai(t) = αN .

To run FTVA-CT in continuous time for the N -armed problem, we use the following uniformization
to set discrete decision epochs {tk}k=0,1,... for updating the actions and virtual processes. We
uniformize at rate 2Ngmax with gmax = maxs∈S,a∈A G(s, a), which is an upper bound on the
total transition rate of the real and virtual states in an N -armed system. We generate a decision
epoch either when a real state transitions, or when an independent exponential timer with rate
2Ngmax −

∑N
i=1 G(Si(t), Ai(t)) ticks.

The definitions of conversion loss, optimality gap, and asymptotic optimality are the same as the
discrete-time setting.

Conversion loss and optimality gap. For a given single-armed policy π̄, we consider a continuous-
time version of the leader-and-follower system (cf. Section 4.1). For technical reasons, the initial
actions are specified differently from the discrete-time setting. Specifically, we assume that the initial
action Â(0) of the leader arm is chosen by π̄ based on Ŝ(0), and the follower’s initial action A(0)

equals Â(0). As before, the follower arm always takes the same action as the leader arm regardless
of its own state. Given initial states (S(0), Ŝ(0)) = (s, ŝ), the synchronization time is defined as

τ sync(s, ŝ) ≜ inf{t ≥ 0: S(t) = Ŝ(t)}. (19)

We no longer need to impose the Synchronization Assumption, since the unichain assumption
automatically implies E [τ sync(s, ŝ)] <∞ in continuous time—see Lemma 5 in Appendix F.

9



Algorithm 2 Follow-the-Virtual-Advice-CT (FTVA-CT)
Input: (N, SN ,AN , G, r, αN), initial states S(0), single-armed policy π̄, max transition rate gmax

Initialize: Virtual states Ŝ(0) are N i.i.d. samples following the stationary distribution of π̄; t0 = 0

1: for k = 0, 1, 2, . . . do
2: Independently sample Âi(tk)← π̄(·|Ŝi(tk)) for each arm i ∈ [N ] ▷ Generate virtual actions
3: if

∑N
i=1 Âi(tk) ≥ αN then ▷ Select a set A of αN arms to activate

4: A ← a set of αN arms chosen from {i : Âi(tk) = 1} (any tie-breaking)
5: else
6: B ← a set of αN −

∑N
i=1 Âi(tk) arms chosen from {i : Âi(tk) = 0} (any tie-breaking)

7: A ← {i : Âi(tk) = 1} ∪ B
8: Apply Ai(tk) = 1 for each arm i ∈ A, and apply Ai(tk) = 0 for each arm i /∈ A
9: ▷ The section below progresses the system to the next decision epoch and updates states

10: greal
k ←

∑N
i=1 G(Si(tk), Ai(tk))

11: t̃k+1 ← tk+ a sample from the distribution Exp(2Ngmax − greal
k )

12: if there is an arm i∗ whose real state transitions before t̃k+1 then
13: (tk+1, Si∗(tk+1))← (transition time, new real state)
14: if Ŝi∗(tk) = Si∗(tk) and Âi∗(tk) = Ai∗(tk) then ▷ Couple virtual and real states
15: Ŝi∗(tk+1)← Si∗(tk+1)

16: else ▷ No transitions or transitions of virtual states of uncoupled arms
17: tk+1 ← t̃k+1

18: gvirtual
k ←

∑N
i=1 G(Ŝi(tk), Âi(tk))1

{
Ŝi(tk) ̸= Si(tk) or Âi(tk) ̸= Ai(tk)

}
19: With probability 1− gvirtual

k

2Ngmax−greal
k

, continue

20: Sample a pair (i∗, s′) ∈ [N ]× S with probability
G(Ŝi∗ (tk),Âi∗ (tk), s

′)·1{Ŝi∗ (tk) ̸=s′}
2Ngmax−greal

k

21: if Ŝi∗(tk) ̸= Si∗(tk) or Âi∗(tk) ̸= Ai∗(tk) then Ŝi∗(tk+1)← s′

22: Other real and virtual states stay unchanged

Theorem 2. Consider an N -armed CTRB (N, SN ,AN , G, r, αN) under the single-armed unichain
assumption. For any single-armed policy π̄, the conversion loss of FTVA-CT is upper bounded as

V π̄
1 − V

FTVA-CT(π̄)
N ≤ rmax(1 + 2gmaxτ

sync
max)√

N
, ∀N ≥ 1, (20)

where rmax = maxs∈S,a∈A |r(s, a)|, τ sync
max = maxs∈S,ŝ∈S E [τ sync(s, ŝ)].

Consequently, for any optimal single-armed policy π̄∗, the optimality gap of FTVA-CT(π̄∗) satisfies

V ∗
N − V

FTVA-CT(π̄∗)
N ≤ V π̄∗

− V
FTVA-CT(π̄∗)
N ≤ rmax(1 + 2gmaxτ

sync
max)√

N
, ∀N ≥ 1. (21)

Theorem 2 establishes an O(1/
√
N) optimality gap without requiring UGAP or any additional

assumptions beyond the standard unichain condition.

6 Conclusion

In this paper, we study the average-reward restless bandit problem. We propose a simulation-based
framework called Follow-the-Virtual-Advice that converts a single-armed optimal policy into
a policy in the original N -arm system with an O(1/

√
N) optimality gap. In the discrete-time setting,

our results hold under the Synchronization Assumption (SA), a mild and easy-to-verify assumption
that covers some problem instances that do not satisfy UGAP. In the continuous-time setting, our
results do not require any additional assumptions beyond the standard unichain condition. In both
settings, our work is the first to achieve asymptotic optimality without assuming UGAP. It will
be interesting in future work to explore the possibility of achieving optimality gaps smaller than
O(1/

√
N) without relying on UGAP or the non-degenerate condition.
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Appendices

A More related work

In this section, we provide additional discussion on related work.

Relationship between the infinite-horizon average-reward setting and the finite-horizon to-
tal-reward/infinite-horizon discounted-reward setting. While infinite-horizon average-reward
RBs, finite-horizon total-reward RBs, and infinite-horizon discounted-reward RBs are three different
settings, one may think that the approaches in the other two settings apply to the infinite-horizon
average-reward setting by taking a large enough horizon in the finite-horizon setting or letting
the discount factor to go to 1 in the infinite-horizon discounted-reward setting. Here we briefly
discuss the fundamental difference between the infinite-horizon average-reward setting and the
other two settings for RB problems. For simplicity, we will refer to the other two settings as the
finite-horizon/discounted-reward setting.

From the algorithm design perspective, the finite-horizon/discounted-reward setting focuses on
optimizing the transient performance, while the infinite-horizon average reward setting focuses
on optimizing the steady-state performance. This distinction has a big impact on the algorithm
design and the complexity. To see this, we note that both the finite-horizon/discounted-reward
setting [HF17, ZCJW19, BS20, GNJT23, ZF21, ZF22, GGY22] and the infinite-horizon average-
reward setting [Whi88, WW90, Ver16, GGY20, GGY22] utilize certain forms of linear programming
(LP) relaxations to design algorithms. However, the LPs utilized differ substantially. In the finite-
horizon/discounted-reward setting, the LP optimizes the future trajectory for a predetermined number
of time steps. In contrast, in the infinite-horizon average-reward setting, the LP solves for the optimal
state-action frequency in steady state, which can be seen as a fixed point rather than a trajectory. As
a result, the number of variables and constraints of the LP for the finite-horizon/discounted-reward
setting scales with the number of time steps, which is not the case for the infinite-horizon average-
reward setting. On the other hand, because the LP relaxation for the infinite-horizon average-reward
setting does not take into account the transient behavior, it provides less information, making the
algorithm design more tricky. Consequently, the policies in prior work require the strong assumption
of UGAP to achieve asymptotic optimality.

From the analysis perspective, the infinite-horizon average-reward setting requires a more careful
analysis of the long-term effect of actions. To see this, note that the optimality gap bounds in the
finite-horizon/discounted-reward setting have at least a quadratic dependency on the (effective)
horizon [see, e.g. ZF22, GGY22]. Consequently, when translated to the bounds on the optimality gap
of average reward per time slot, those bounds diverge to infinity as the time horizon goes to infinity.

Relationship between the RB problem and other bandit problems. While the exact optimality
of the RB problem is in general intractable, there is a special case that has been solved optimally.
Specifically, consider the case when an arm stays in the same state when it is not pulled, and only one
arm is pulled at a time. The optimal policy for this special case is the celebrated Gittins index policy
[GJ74, Git79]. A more recent reference on this topic is [GGW11].

The RB problem falls within the broader class of bandit problems, for which different formulations
exist including stochastic bandits, adversarial bandits, and Bayesian bandits. The common theme
in these formulations is to find a reward-maximizing strategy of pulling arms in the presence of
uncertainty in the arms’ rewards; see the book [LS20] for a comprehensive overview. Among these
formulations, closely related to RBs is the Bayesian bandit problem, where Bayesian posteriors are
used to model knowledge of unknown reward distributions. The Bayesian posterior can be seen as
a state with known transition probabilities, hence the Bayesian bandit problem can be analyzed by
applying tools from RBs. Examples demonstrating this connection can be found in [BS20].

B Discussion on the computational costs of FTVA

FTVA defined in Algorithm 1 can be computed and implemented efficiently.

First, computing FTVA requires solving (LP) once. Given that (LP) does not depend on N , the
computational cost here is a constant.
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Next, we examine the computational cost of implementing FTVA.

• Each arm simulates a virtual process. Because the computation required for each simulation
does not scale with N , the overall computational cost here is linear in N .

• In each time step, FTVA selects arms from a subset of arms to determine the real actions.
The computational cost for this selection process scales linearly with N .

Combining these components, we can see that the computational cost of implementing FTVA is linear
in N .

Additionally, we note that the simulation of the virtual processes is independent across the arms, so
they can be implemented in a fully distributed manner. However, when taking real actions, the policy
needs to know the virtual actions from all arms, so this step cannot be implemented distributedly.

C Sufficient conditions for Synchronization Assumption (SA)

Recall that for the discrete-time setting, our bound on the conversion loss in Theorem 1 holds when
the input single-armed policy π̄ satisfies the Synchronization Assumption (SA). SA stipulates that the
two arms in the leader-and-follower system (cf. Section 4.1) under the policy π̄ will reach the same
state in finite expected time. All other existing work requires the UGAP assumption, which pertains
to the global behavior of a non-linear dynamic system and has no known sufficient conditions that are
easily checkable. In comparison, SA is a reachability assumption imposed on a finite state Markov
chain and thus substantially simpler.

To provide a more intuitive understanding of SA, in this section we present several sufficient conditions
for SA to hold. These conditions involve the recurrent classes in the Markov chains induced by
certain single-armed policies as well as the existence of self-loops or cycles in the corresponding
transition diagrams. Such conditions can be verified, often in a straightforward manner, by inspecting
the transition probabilities. As self-loops and cycles are common in many classes of MDPs, these
conditions showcase that SA is a relatively mild assumption. We emphasize that the sufficient
conditions presented in this section are not exhaustive. They serve as illustrative examples of when
SA holds and offer insights on the nature of synchronization.

The discussion in this section pertains to the discrete-time setting. We reiterate that our results for the
continuous-time setting do not require SA.

C.1 Preliminaries

Before presenting the sufficient conditions, we first prove a few preliminary facts. The first one is a
basic property of unichain MDPs.
Proposition 1. Consider two arbitrary Markovian policies π̄ and π̄′ for the unichain MDP
(S,A, P, r). Let the recurrent classes of the two policies π̄ and π̄′ be S and S ′, respectively. Then
S ∩ S ′ ̸= ∅.

Proof. We prove this proposition by contradiction. Suppose S ∩ S ′ = ∅. We define a new policy π̄′′

as

π̄′′(a|s) =
{
π̄(a|s), if s ∈ S,
π̄′(a|s), otherwise.

for s ∈ S, a ∈ A.

Then S and S ′ are two distinct recurrent classes under π̄′′, because by definition of π̄′′, an arm with
the initial state in S remains in S, so it cannot reach S ′; similarly an arm cannot reach S from S ′.
The existence of two recurrent classes under π̄′′ contradicts the unichain condition. Therefore, we
must have S ∩ S ′ ̸= ∅.

The next proposition provides a convenient way for verifying SA and is used for establishing other
sufficient conditions.
Proposition 2. Consider the leader-and-follower system under the policy π̄. If there exists some
t <∞ such that for all initial states and actions (s, a, ŝ, â) ∈ S× A× S× A,

P (τ sync(s, a, ŝ, â) < t) > 0,

then Synchronization Assumption holds for the policy π̄.
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Proof. We claim that for any (s, a, ŝ, â) ∈ S× A× S× A,

P (τ sync(s, a, ŝ, â) ≥ kt) ≤
(

max
s′,a′,ŝ′,â′

P (τ sync(s′, a′, ŝ′, â′) ≥ t)
)k

, (22)

where the maxs′,a′,ŝ′,â′ is taken over S× A× S× A. We prove this claim by induciton on k. The
base case of k = 1 is given. Suppose we have proved (22) for a certain k, then

P (τ sync(s, a, ŝ, â) ≥ (k + 1)t)

= P (τ sync(s, a, ŝ, â) ≥ kt) · P (τ sync(s, a, ŝ, â) ≥ (k + 1)t | τ sync(s, a, ŝ, â) ≥ kt)

= P (τ sync(s, a, ŝ, â) ≥ kt) · P
(
τ sync(S(kt), A(kt), Ŝ(kt), Â(kt)) ≥ t | S(kt) ̸= Ŝ(kt)

)
≤ P (τ sync(s, a, ŝ, â) ≥ kt) · max

s′,a′,ŝ′,â′
P (τ sync(s′, a,′ ŝ′, â′) ≥ t)

≤
(

max
s′,a′,ŝ′,â′

P (τ sync(s′, a′, ŝ′, â′) ≥ t)
)k+1

.

where in the second equality we have used the Markov property of the system, and in the last
inequality we apply the induction hypothesis. We have proved (22).

The bound on the expectation E [τ sync(s, a, ŝ, â)] follows by summing the tail bound (22) over k:

E [τ sync(s, a, ŝ, â)] ≤
∞∑
k=0

tP (τ sync(s, a, ŝ, â) ≥ kt)

≤ t

1−maxs′,a′,ŝ′,â′ P (τ sync(s′, a′, ŝ′, â′) ≥ t)

=
t

mins′,a′,ŝ′,â′ P (τ sync(s′, a′, ŝ′, â′) < t)
<∞.

We have established SA and thereby finished the proof.

Remark 1. Proposition 2 implies that SA only requires that the Markov chain of the leader-and-
follower system, (S(t), Ŝ(t)), can reach the subset of states {(s, ŝ) ∈ S2 : s = ŝ} from any initial
state. As a result, SA can be efficiently verified using path-finding graph algorithms on the state
transition diagram of the Markov chain.

C.2 Sufficient conditions based on self-loops

The unichain condition and Proposition 1 guarantee that there are some states that the leader arm and
the follower arm will both visit for a positive fraction of times.2 If we can further show that the two
arms have a positive probability to visit one of those states at the same time, then Proposition 2 can
be applied to verify SA. A natural sufficient condition is the existence of self-loops, which guarantees
that with a positive probability, the arm reaching those states first will wait for the other arm to come
to the same state.

Proposition 3. Consider the single-armed problem with the unichain MDP (S,A, P, r) and budget
α ∈ (0, 1). Let π̄ be a single-armed policy with recurrent class S . If P (s, 0, s) > 0 and P (s, 1, s) > 0
for all s ∈ S, then Synchronization Assumption holds for the policy π̄.

Proposition 3 assumes that all states in the recurrent class of the policy π̄ have self-loops. We can
actually require fewer self-loops if we can characterize the recurrent states of the follower arm. In
particular, let π̄1 denote the all-one policy, the policy that applies action 1 in all states. Observe that
if the leader arm applies action 1 for a sufficiently long time, the follower arm will also apply action
1 and effectively follows π̄1. The recurrent class of the policy π̄1 must intersect the recurrent class
of π̄, so it suffices to have self-loops in the intersection of these two recurrent classes. The idea is
formalized in Proposition 4.

2Although the follower arm does not follow a Markovian policy since it copies actions from the leader arm,
by standard results on average reward MDP, the set of states in which the follower arm spends a positive fraction
of time is the same as the recurrent class of some Markovian policy (cf. Chapter 8.9 of [Put05]). This class of
states must intersect with S by Proposition 1 and the unichain condition.
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Figure 4: The illustration of the positive probability sample paths that lead to synchronization in
Proposition 4 (left) and Proposition 5 (right). In each figure, the dotted arrows correspond to the
sample path of the leader arm’s state, while the solid arrows correspond to the sample path of the
follower arm’s state. The numbers near the arrows denote the temporal order of the transition events.

Proposition 4. Consider the single-armed problem with the unichain MDP (S,A, P, r) and budget
α ∈ (0, 1). Let π̄ be a single-armed policy with recurrent class S. Let the recurrent class of the
all-one policy π̄1 be denoted as S1. If the following conditions hold:

1. There exists sa ∈ S such that π̄(1|sa) > 0 and P (sa, 1, sa) > 0;

2. There exists sb ∈ S ∩ S1 such that P (sb, 0, sb) > 0 and P (sb, 1, sb) > 0,

then Synchronization Assumption holds for the policy π̄.

Proposition 5 below gives another sufficient condition, which only requires one self-loop. Note that
this condition does not subsume the one in Proposition 4.
Proposition 5. Consider the single-armed problem with the unichain MDP (S,A, P, r) and budget
α ∈ (0, 1). Let π̄ be a single-armed policy with recurrent class S. Let the recurrent class of
the all-one policy π̄1 be denoted as S1. If there exists s∗ ∈ S ∩ S1 such that π̄(1|s∗) > 0 and
P (s∗, 1, s∗) > 0, then Synchronization Assumption holds for the policy π̄.

We remark that Propositions 4 and 5 have analogous versions that are stated in terms of the all-zero
policy π̄0, the policy that applies action 0 in all states. We omit the details.

Now we prove the above propositions. Note that Proposition 3 is strictly weaker than Proposition 4:
because the single-armed policy π̄ satisfies the budget constraint with α ∈ (0, 1), there must be a
state sa ∈ S such that π̄(1|sa) > 0. Therefore, we only need to prove Propositions 4 and 5.

Proof of Proposition 4. Given any initial states and actions (S(0), A(0), Ŝ(0), Â(0)) = (s, a, ŝ, â) ∈
S× A× S× A, we construct a sequence of positive probability events that leads to S(t) = Ŝ(t):

1. The leader arm reaches the state sa ∈ S after t1 time slots;

2. The leader arm stays in state sa and keeps applying action 1 for t2 times slots; meanwhile,
the follower arm also applies action 1 and reaches the state sb ∈ S ∩ S1;

3. The leader arm reaches the state sb in another t3 time slots; meanwhile, the follower arm
stays in the state sb, so the two arms synchronize.

The transitions of the two arms during the above sequence of events are illustrated in Figure 4. We
argue that there exists suitably large t1, t2, t3 such that the above three events happen with a positive
probability. The first event can happen for a suitably large t1 because the leader arm follows the
policy π̄, and sa is in the recurrent class of π̄. In the second event, the leader arm can stay in state sa

and keep applying action 1 because π̄(1|sa) > 0 and P (sa, 1, sa) > 0. The follower arm can reach
sb after a suitably large t2 time slots because it keeps applying action 1 and sb is in the recurrent
class of the all-one policy π̄1. In the third event, the leader arm can reach sb after a suitably large t3
time slots because sb is also in the recurrent class of π̄. Meanwhile, the follower arm can stay in sb

because P (sb, 0, sb) > 0 and P (sb, 1, sb) > 0. Therefore, we have proved that for any (s, a, ŝ, â),

P (τ sync(s, a, ŝ, â) ≤ t1 + t2 + t3) > 0.
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By Proposition 2, we establish SA.

Proof of Proposition 5. Given any initial states and actions (S(0), A(0), Ŝ(0), Â(0)) = (s, a, ŝ, â) ∈
S× A× S× A, we construct a sequence of positive probability events that leads to S(t) = Ŝ(t):

1. The leader arm reaches the state s∗ after t1 time slots;

2. The leader arm stays in the state s∗ and keeps applying action 1 for t2 time slots; meanwhile,
the follower arm also applies action 1 and reaches the state s∗, so the two arms synchronize.

The transitions of the two arms during the above sequence of events are illustrated in Figure 4. We
argue that there exists suitable t1 and t2 such that the above two events happen with a positive
probability. The first event can happen for a suitably large t1 because s∗ is in the recurrent class of
π̄. In the second event, the leader arm can stay in the state s∗ and keeps applying action 1 because
π̄(1|s∗) > 0 and P (s∗, 1, s∗) > 0. Meanwhile, the follower arm can reach s∗ after a suitably large
t2 time slots because s∗ is also in the recurrent class of the all-one policy π̄1. Therefore, we have
proved that for any (s, a, ŝ, â),

P (τ sync(s, a, ŝ, â) ≤ t1 + t2) > 0.

By Proposition 2, we establish SA.

C.3 Sufficient conditions based on cycles

The above sufficient conditions are based on self-loops, which can be viewed as cycles of minimal
length. These conditions can be generalized to longer cycles, formally defined below.

Definition 1 (Cycle). Consider the MDP (S,A, P, r). We call an ordered set of states C =
(s0, s1, . . . , sL) a cycle under the Markovian policy π̄ if there is a positive probability of transi-
tioning from sj to sj+1 for all j under the policy π̄ (we identify sL+1 with s0). We call the ordered
set C a cycle under any policy if there is a positive probability of transitioning from sj to sj+1 for all
j under any policy. In both cases, we call L the length of the cycle C.

We give two sufficient conditions based on cycles. These conditions are relaxations of the conditions
in Proposition 4 and 5.

Proposition 6. Consider the single-armed problem with the unichain MDP (S,A, P, r) and budget
α ∈ (0, 1). Let π̄ be a single-armed policy with recurrent class S. Let the recurrent class of the
all-one policy π̄1 be denoted as S1. If the following conditions hold:

1. There exists a cycle Ca under the policy π̄ in S, and π̄(1|s) > 0 for all s ∈ Ca;

2. There exists cycle Cb under any policy in S ∩ S1;

3. The lengths of the two cycles Ca and Cb are relatively prime.

then Synchronization Assumption holds for the policy π̄.

Proposition 7. Consider the single-armed problem with the unichain MDP (S,A, P, r) and budget
α ∈ (0, 1). Let π̄ be a single-armed policy with recurrent class S. Let the recurrent class of the
all-one policy π̄1 be denoted as S1. If the following conditions hold:

1. There exists a cycle C∗ under the policy π̄ in S ∩ S1, and π̄(1|s) > 0 for all s ∈ Ca;

2. The policy π̄1 is aperiodic,

then Synchronization Assumption holds for the policy π̄.

Similarly to Propositions 4 and 5, Propositions 6 and 7 have analogous version that are stated in terms
of the all-zero policy π̄0. We omit the details.

Now we prove Propositions 6 and 7.
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Figure 5: The illustration of the positive probability sample paths that lead to synchronization in
Proposition 6 (left) and Proposition 7 (right). In each figure, the dotted arrows correspond to the
sample path of the leader arm’s state, while the solid arrows correspond to the sample path of the
follower arm’s state. The numbers near the arrows denote the temporal order of the transition events.

Proof of Proposition 6. Given any initial states and actions (S(0), A(0), Ŝ(0), Â(0)) = (s, a, ŝ, â) ∈
S× A× S× A, we construct a sequence of positive probability events that leads to S(t) = Ŝ(t):

1. The leader arm reaches the cycle Ca after t1 time slots;

2. The leader arm transitions along the cycle and keeps applying action 1; meanwhile, the
follower arm also applies action 1 and reaches the cycle Cb; this happens in t2 times slots;
let the states of the leader and follower arm at this moment be sa and sb;

3. The leader arm transitions along the cycle Ca for another c laps, for some positive integer
c, and then spends another t3 time slots to go from sa to sb; meanwhile, the follower arm
transitions along the cycle Cb for another d laps, for some positive integer d.

The transition of the arms during the sequence of events are as illustrated in Figure 5. We argue that
there exists some suitable t1, t2, t3, c, and d such that the above four events happen with a positive
probability, and the two arms synchronize after the four events.

The first event happens with a positive probability for suitably large t1 because Ca is in S. The
second event can happen for suitably large t2 because π(1|s) > 0 for all s ∈ Ca, and Cb is in S1.

After the first two events, suppose the state of the leader arm is sa, and the state of the follower arm
is sb, then sa ∈ Ca and sb ∈ Cb. Because both cycles are in S, there exists a positive probability
path from sa to sb under π̄. Let t3 be the length of the path. Let La and Lb be the length of cycles
Ca and Cb. Because La and Lb are relatively prime, we can take c and d such that dLb − cLa = t3.
With this choice of c, d, and t3, the two arms will synchronize after the third and fourth events.

Now we argue that the third and fourth events happen with a positive probability. Because Ca is a
cycle under the policy π̄, the leader arm can transition along the cycle for an arbitrary number of
time slots. Similarly, because Cb is a cycle under any policy, the follower arm can transition along
the cycle for an arbitrary number of time slots; the leader arm can reach sb from sa because of the
positive probability path described in the last paragraph.

Therefore, we have proved that for any (s, a, ŝ, â),

P (τ sync(s, a, ŝ, â) ≤ t1 + t2 + cLa + t3) > 0.

By Proposition 2, we establish SA.

Proof of Proposition 7. Given any initial states and actions (S(0), A(0), Ŝ(0), Â(0)) = (s, a, ŝ, â) ∈
S× A× S× A, we construct a sequence of positive probability events that leads to S(t) = Ŝ(t):

1. The leader arm reaches the cycle C∗ after t1 time slots;

2. The leader arm transitions along the cycle and keeps applying action 1; meanwhile, the
follower arm also applies action 1 and reaches the same state as the leader arm after t2 time
slots.
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The transition of the arms during the sequence of events are as illustrated in Figure 5. We argue
that the above two events happen with a positive probability for suitable t1 and t2. The first event
can happen for suitably large t1 because the leader arm follows the policy π̄ the cycle C∗ is in the
recurrent class of π̄. After reaching C∗, the leader arm can remain on C∗ because C∗ is a cycle under
the policy π̄, and π̄(1|s) > 0 for all s ∈ C∗. The follower arm can reach the same state as the leader
arm because the cycle C∗ is also in the recurrent class of π̄1, and π̄1 is aperiodic. Therefore, we have
proved that for any (s, a, ŝ, â),

P (τ sync(s, a, ŝ, â) ≤ t1 + t2) > 0.

By Proposition 2, we establish SA.

D On relaxing the unichain condition

Throughout this paper, we have imposed the (all-policy) unichain condition, i.e., all Markovian
single-armed policies have a single recurrent class. Making this blanket assumption simplifies our
presentation, but it can be substantially relaxed for many of our results, as we discuss below.

The main change caused by dropping the unichain assumption is the definition of the single-armed
problem, because there could be multiple recurrent classes under a single-armed policy, each cor-
responding to a different long-run average reward. To adapt to this change, we can let both the
single-armed policy π̄ and the initial state distribution µ be optimization variables of the single-armed
problem. We denote the average reward given π̄ and µ as V π̄,µ

1 . We still denote the optimal value
of the single-armed problem as V rel

1 . Note that the single-armed problem can still be solved by the
same linear program in (LP) or (LP-CT): The optimal initial state distribution µ∗ can be taken as the
optimal stationary state distribution (y∗(s, 1) + y∗(s, 0))s∈S, given the optimal solution of LP, y∗.

The definitions of FTVA and FTVA-CT do not require any change, considering that they are already
using the stationary distribution of π̄ to initialize the virtual states. The conversion losses, now denoted
as V π̄,µ

1 − V
FTVA(π̄,µ)
N and V π̄,µ

1 − V
FTVA-CT(π̄,µ)
N , have the same bound as what we currently have in

equation (11) in Theorem 1 for discrete-time RBs and equation (20) in Theorem 2 for continuous-time
RBs. These bounds hold as long as the given input policy π̄ has finite expected synchronization times,
which can be seen by inspecting the proofs of the theorems given in Appendix E and Appendix F.

The optimality gap bounds in (12) in Theorem 1 and (21) in Theorem 2 still follow from the
conversion loss bounds when the unichain assumption is dropped. To see this, for each of the
discrete-time and continuous-time settings, consider an optimal single-armed policy π̄∗ and optimal
initial state distribution µ∗. Note that V π̄∗,µ∗

1 = V rel
1 ≥ V ∗

N . If V π̄∗,µ∗

1 − V
FTVA(π̄∗,µ∗)
N = O(1/

√
N),

then V ∗
N − V

FTVA(π̄∗,µ∗)
N = O(1/

√
N); if V π̄∗,µ∗

1 − V
FTVA-CT(π̄∗,µ∗)
N = O(1/

√
N), then V ∗

N −
V

FTVA-CT(π̄∗,µ∗)
N = O(1/

√
N).

In the discrete-time setting, our sufficient conditions for finite expected synchronization times,
presented in Propositions 4, 5, 6 and 7, are valid as long as each of the two policies π̄ and π̄1 has
a single recurrent class and the two classes intersect. Similarly, Lemma 5 in Appendix F, which
establishes finite expected synchronization times for the continuous-time setting, holds under the
same condition on π̄ and π̄1.

E Proofs for discrete-time RBs

E.1 Overview

In this section, we focus on proving the bound (11) on the conversion loss V π̄
1 − V

FTVA(π̄)
N for

any single-armed policy π̄ . The asymptotic optimality result (12) in Theorem 1 will be a direct
consequence of (11) if we take π̄ to be any optimal single-armed policy π̄∗.

We first show that under FTVA(π̄) defined in Algorithm 1, each virtual process is an independent
Markov chain induced by applying π̄ to the single-armed system (S,A, P, r), as stated in Lemma 1
below. We will rigorously prove it in the next subsection.
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Lemma 1. Under FTVA(π̄) given in Algorithm 1, for each t = 0, 1, 2 . . . , i ∈ [N ], ŝ ∈ SN , and
â ∈ AN ,

P
(
Â(t) = â

∣∣∣Ŝ(t), . . . , Ŝ(0)) =
∏

i∈[N ]

π̄
(
âi|Ŝi(t)

)
(23)

P
(
Ŝ(t+ 1) = ŝ

∣∣∣Ŝ(t), Â(t), . . . , Ŝ(0), Â(0)
)
=
∏

i∈[N ]

P
(
Ŝi(t), Âi(t), ŝi

)
. (24)

Let (y(s, a))s∈S,a∈A be the steady-state state-action distribution of the single-armed system under π̄.
By (23)(24), for each t ≥ 0, (Ŝi(t), Âi(t)) for i ∈ [N ] are i.i.d. with the distribution (y(s, a))s∈S,a∈A.

Next, as sketched in Section 4.2, we bound V π̄
1 − V

FTVA(π̄)
N as

V π̄
1 − V

FTVA(π̄)
N =

1

N
E

[
N∑
i=1

r(Ŝi(∞), Âi(∞))−
N∑
i=1

r(Si(∞), Ai(∞))

]

≤ 2rmax

N
E

[
N∑
i=1

1

{
(Ŝi(∞), Âi(∞)) ̸= (Si(∞), Ai(∞))

}]
. (13)

We say an arm i is a bad arm at time t if
(
Ŝi(t), Âi(t)

)
̸=
(
Si(t), Ai(t)

)
, and a good arm otherwise.

Then E
[∑N

i=1 1

{(
Ŝi(∞), Âi(∞)

)
̸=
(
Si(∞), Ai(∞)

)}]
= E

[
# bad arms

]
in steady state.

By Little’s Law, we have the following relationship:

E [# bad arms] = (rate of generating bad arms)× E [time duration of a bad arm] .

To make the quantities in the above expression precise, we make the following definitions.

We say there is a disagreement event of the arm i happening at time t if Âi(t) ̸= Ai(t). The
disagreement events are the only cause that turns good arms into bad arms because otherwise by the
construction of our algorithm, Ŝi(t) will remain the same as Si(t). The number of disagreement
events in each time slot is determined by how much the budget required by virtual actions violates
the constraint. We call the expected number of disagreement events when the virtual states are ŝ the
instantaneous disagreement rate, denoted as d(ŝ).

We also define disagreement period of the arm i as a continuous period of time when arm i is a bad
arm, separated by disagreement events. Formally,

Definition 2 (Disagreement period). Given a sample path of the arm i’s real states and virtual states
(Si(t), Ŝi(t))t≥0, we define the disagreement period of the arm i as a time interval [tbegin, tend − 1]
such that

Ai(tbegin) ̸= Âi(tbegin);

Ai(t) = Âi(t) and Si(t) ̸= Ŝi(t) ∀t ∈ [tbegin + 1, tend − 1];

Ai(tend) ̸= Âi(tend) or Si(tend) = Ŝi(tend).

We use Davg to denote the long-run average length of the disagreement periods, i.e., the average of
tend − tbegin of all disagreement periods.

With the definitions, we can state Little’s Law in the context of disagreement periods. We omit its
proof since it is a direct consequence of Little’s Law.

Lemma 2 (Little’s Law for disagreement periods).

E

[
N∑
i=1

1

{
(Ŝi(∞), Âi(∞)) ̸= (Si(∞), Ai(∞))

}]
= E

[
d(Ŝ(∞))

]
·Davg, (25)

where d(ŝ) denotes the instantaneous disagreement rate when the virtual states are Ŝ(t) = ŝ; Davg
denotes the long-run average length of the disagreement periods.
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E.2 Lemmas and the proof of Theorem 1

In this section, we will prove Theorem 1. We first rigorously prove Lemma 1.

Proof of Lemma 1. The first equation (23) is obvious because each virtual action Âi(t) is sampled
from π̄(·|Ŝi(t)) independent of anything else. We only need to show (24). Recall that by the
definition of FTVA(π̄), Ŝi(t+ 1) could either be equal to Si(t+ 1) if (Ŝi(t), Âi(t)) = (Si(t), Ai(t)),
or generated afresh independent of anything else if (Ŝi(t), Âi(t)) ̸= (Si(t), Ai(t)). Let Igood(t) =

{i : (Ŝi(t), Âi(t)) = (Si(t), Ai(t))}. Then

P
(
Ŝ(t+ 1) = ŝ

∣∣∣Ŝ(t), Â(t), . . . , Ŝ(0), Â(0)
)

=
∏

i∈Igood(t)

P
(
Si(t+ 1) = ŝi

∣∣∣Si(t), Ai(t)
) ∏

i/∈Igood(t)

P
(
Ŝi(t+ 1) = ŝi

∣∣∣Ŝi(t), Âi(t)
)

=
∏

i∈Igood(t)

P
(
Si(t), Ai(t), ŝi

) ∏
i/∈Igood(t)

P
(
Ŝi(t), Âi(t), ŝi

)
=
∏

i∈[N ]

P
(
Ŝi(t), Âi(t), ŝi

)
,

where the last equality is by the definition of Igood(t).

Combining (23) and (24), we have confirmed that each virtual process is an independent single-
armed process with transition kernel P and policy π̄. Because the initial virtual states {Ŝi(0)}i∈[N ]

are sampled i.i.d. from the stationary distribution of π̄, {Ŝi(t)}i∈[N ] are also i.i.d. with the same
distribution. Therefore, {(Ŝi(t), Âi(t))}i∈[N ] are i.i.d. with distribution (y(s, a))s∈S,a∈A.

The next two lemmas bound the two quantities in Lemma 2, the long-run average disagreement rate
and the long-run average length of the disagreement periods.
Lemma 3 (Average disagreement rates). The instantaneous disagreement rate is equal to

d(ŝ) = E

[∣∣∣∣∣
N∑
i=1

Âi(t)− αN

∣∣∣∣∣ | Ŝ(t) = ŝ

]
. (26)

The long-run average disagreement rate is bounded as

E
[
d(Ŝ(∞))

]
≤ 1

2

√
N. (27)

Proof. We first prove the expression of instantaneous disagreement rate in (26). By definition, the
instantaneous disagreement rate is equal to the expected number of arms such that Ai(t) ̸= Âi(t)

conditioning on the virtual states being ŝ. Because FTVA tries to match as many Ai(t)’s to Âi(t)
′s as

possible, there are exactly |
∑N

i=1 Âi(t)− αN | arms such that Ai(t) ̸= Âi(t). This proves (26).

To bound the average disagreement rate, letting ŝ = Ŝ(∞) in (26) and taking expectation, we have

E
[
d(Ŝ(∞))

]
= E

[∣∣∣∣∣
N∑
i=1

Âi(∞)− αN

∣∣∣∣∣
]

≤

(
E

[( N∑
i=1

Âi(∞)− αN
)2])1/2

. (28)

By Lemma 1, the virtual actions Âi(∞)’s are i.i.d. binomial random variables such that P(Âi(∞) =

1) =
∑

s∈S y(s, 1) = α,
∑N

i=1 Âi(∞) has distribution Binomial(N,α), whose mean and variance

are αN and Nα(1−α) ≤ N/4. Therefore the expression in (28) is equal to Var
[∑N

i=1 Âi(∞)
]1/2

=
√
N/2.
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Lemma 4 (Average length of disagreement periods).

Davg ≤ τ sync
max. (29)

Proof. To bound Davg, it suffices to bound the expected length of a disagreement period with
arbitrary initial states. Without loss of generality, consider a disagreement period on arm i that
starts at time tbegin = 0, with initial states (Si(0), Ai(0), Ŝi(0), Âi(0)) = (s, a, ŝ, â). During the
disagreement period, the i-th arm can be seen as a leader-and-follower system, where the real
state-action pair (Si(t), Ai(t)) corresponds to the follower arm and the virtual state-action pair
(Ŝi(t), Âi(t)) corresponds to the leader arm. By Assumption 1, the leader arm and the follower
arm will synchronize in a finite expected time. When they synchronize, the disagreement period
stops, which means tend ≤ τ sync(s, a, ŝ, â). Therefore, the expected length of the disagreement period
satisfies

E [tend − tbegin] = E [tend] ≤ E [τ sync(s, a, ŝ, â)] ≤ τ sync
max.

This holds for arbitrary initial states (s, a, ŝ, â), so Davg ≤ τ sync
max.

Given the three lemmas above, we can prove Theorem 1.

Proof of Theorem 1. Combining Lemma 2, 4 and 3, we have

E

[
N∑
i=1

1

{
(Ŝi(∞), Âi(∞)) ̸= (Si(∞), Ai(∞))

}]
≤ 1

2
τ sync
max

√
N.

Plugging the above inequality into the bound on conversion loss in (13), we get

V π̄
1 − V

FTVA(π̄)
N =

1

N
E

[
N∑
i=1

r(Ŝi(∞), Âi(∞))−
N∑
i=1

r(Si(∞), Ai(∞))

]

≤ 2rmax

N
E

[
N∑
i=1

1

{
(Ŝi(∞), Âi(∞)) ̸= (Si(∞), Ai(∞))

}]

≤ rmaxτ
sync
max√

N
.

This finishes the proof.

F Proofs for continuous-time RBs

F.1 Preliminary: finite synchronization time

In this section, we prove that the synchronization time has a finite expectation in the continuous-time
setting. Unlike the discrete-time setting, we do not need to make any additional assumptions other
than the standard unichain condition. Our proof is based on the observation that the holding time
distribution of a continuous-time Markov chain has support on the whole positive real line, so an
arbitrary number of transitions can happen in any time interval, which, from the uniformization
perspective, implies self-loops in all states. We can thus prove that synchronization time has a finite
expectation using similar logic as in the proof of Proposition 3 and 4.

Lemma 5 (Synchronization in continuous time). Consider the single-armed policy π̄ and the
corresponding leader-and-follower system. Given the initial states (S(0), Ŝ(0)) = (s, ŝ), the
synchronization time is bounded as

E [τ sync(s, ŝ)] <∞.

Proof of Lemma 5. Consider the always-1 policy π̄1 given by

π̄1(a|s) =
{
1, if a = 1,

0, if a = 0.
for s ∈ S, a ∈ A.
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By the unichain property, π̄1 only has a single recurrent class, which we denote as S1. We denote the
recurrent class under π̄ as S.

We first prove by contradiction that S ∩ S1 ̸= ∅. Suppose S ∩ S1 = ∅. Then we define a new policy
π̄′ as

π̄′(a|s) =
{
π̄(a|s), if s ∈ S,
π̄1(a|s), otherwise.

for s ∈ S, a ∈ A.

Then S and S1 are two distinct recurrent classes under π̄′. This is because by definition of π̄′, an arm
with the initial state in S remains in S, so it cannot reach S1; similarly an arm cannot reach S from
S1. The existence of two recurrent classes contradicts the unichain condition. Therefore, we must
have S ∩ S1 ̸= ∅.
We show that given any pair of initial states s, ŝ ∈ S, the probability that τ sync(s, ŝ) < 3 is positive.
We construct a sequence of positive probability events that leads to S(t) = Ŝ(t) before time 3:

1. The leader arm reaches a state sa such that π̄(1|sa) > 0 by time 1 and chooses action 1;

2. The leader arm has no transition during [1, 2], so Ŝ(t) = sa and Â(t) = 1 for all t ∈ [1, 2];

3. The follower arm applies the same action as the leader arm during [1, 2], so A(t) = 1 for all
t ∈ [1, 2]; and reaches the state sb by time 2 for some sb ∈ S ∩ S1;

4. The follower arm stays at sb during [2, 3], and the leader arm reaches sb by time 3, so the
two arms synchronize.

The first two events have positive probabilities because the policy π̄ applies action 1 with a positive
fraction of time. To see why the third event has a positive probability, observe that the follower arm
applies action 1 for all t ∈ [1, 2] regardless of its state, so it is effectively under policy π̄1 and could
traverse all states in S1. The fourth event has a positive probability because the leader arm under π̄
can traverse all states in S . Note that in the above arguments, we are implicitly assuming that the two
arms do not synchronize in the middle of the four events, because otherwise we are done. Also, we
use the fact that in a continuous-time Markov chain, there can be an arbitrary number of transitions
during any time interval. Therefore, we have proved that for all s, ŝ ∈ S,

P (τ sync(s, ŝ) < 3) > 0.

Now we prove by induction that for all s, ŝ ∈ S and k = 0, 1, 2, . . . ,

P (τ sync(s, ŝ) ≥ 3k) ≤
(
max
s′,ŝ′∈S

P (τ sync(s′, ŝ′) ≥ 3)
)k
. (30)

The base case of k = 1 is already known. Suppose we have proved (30) for a certain k, then
P (τ sync(s, ŝ) ≥ 3(k + 1)) = P (τ sync(s, ŝ) ≥ 3k) · P (τ sync(s, ŝ) ≥ 3(k + 1) | τ sync(s, ŝ) ≥ 3k)

= P (τ sync(s, ŝ) ≥ 3k) · P
(
τ sync(S(3k), Ŝ(3k)) ≥ 3 | S(3k) ̸= Ŝ(3k)

)
≤ P (τ sync(s, ŝ) ≥ 3k) · max

s′,ŝ′∈S
P (τ sync(s′, ŝ′) ≥ 3)

≤
(
max
s′,ŝ′∈S

P (τ sync(s′, ŝ′) ≥ 3)
)k+1

.

where in the second equality we have used the Markov property of the system, and in the last
inequality we apply the induction hypothesis. This proves (30).

The bound on the expectation E [τ sync(s, ŝ)] follows summing the tail bound (30) over k = 0, 1, 2, . . . :

E [τ sync(s, ŝ)] ≤
∞∑
k=0

3P (τ sync(s, ŝ) ≥ 3k)

≤ 3

1−maxs′,ŝ′∈S P (τ sync(s′, ŝ′) ≥ 3)

<∞,

where the second inequality is due to (30) and the fact that maxs′,ŝ′∈S P (τ sync(s′, ŝ′) ≥ 3) ≤ 1 −
mins′,ŝ′∈S P (τ sync(s′, ŝ′) < 3) < 1. This finishes the proof.
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F.2 Overview of the proof of Theorem 2

In this section, we focus on proving the bound (20) on the conversion loss V π̄
1 − V

FTVA-CT(π̄)
N for

any single-armed policy π̄. The asymptotic optimality result (21) in Theorem 2 will be a direct
consequence of (20) if we take π̄ to be any optimal single-armed policy π̄∗.

We first show that under FTVA-CT(π̄) defined in Algorithm 2, {(S(t), Ŝ(t))}t≥0 is a continuous-time
Markov chain and each virtual process is an independent Markov chain induced by applying π̄ to the
single-armed system, as stated in Lemma 6 below. We will prove it in the next subsection.

Lemma 6. Under the FTVA-CT(π̄) defined in Algorithm 2, we have the following:

(1) {(S(t), Ŝ(t))}t≥0 is a continuous-time Markov chain.

(2) {Ŝi(t)}t≥0 for i ∈ [N ] are N independent Markov chains, whose transition rate from state
s to s′ is

∑
a∈A G(s, a, s′)π̄(a|s), for s, s′ ∈ S s.t. s ̸= s′.

Let (y(s, a))s∈S,a∈A be the steady-state state-action distribution of the single-armed system under π̄.
Then the second result above implies that for each t ≥ 0, (Ŝi(t), Âi(t)) for i ∈ [N ] are i.i.d. with the
distribution (y(s, a))s∈S,a∈A.

Next, we can upper bound the conversion loss V π̄
1 − V

FTVA-CT(π̄)
N as

V π̄
1 − V

FTVA-CT(π̄)
N =

1

N
E

[
N∑
i=1

r(Ŝi(∞), Âi(∞))−
N∑
i=1

r(Si(∞), Ai(∞))

]

≤ 2rmax

N
E

[
N∑
i=1

1

{
(Ŝi(∞), Âi(∞)) ̸= (Si(∞), Ai(∞))

}]

≤ 2rmax

N
E

[
N∑
i=1

1

{
Ŝi(∞) ̸= Si(∞)

}
+

N∑
i=1

1

{
Âi(∞) ̸= Ai(∞)

}]
. (31)

The bound is slightly different from the (13) since we want to separately deal with the number of
arms whose real and virtual states do not agree and those whose real and virtual actions do not agree,
as shown in the lemma below.

Lemma 7. It holds that

E

[
N∑
i=1

1

{
Ŝi(∞) ̸= Si(∞)

}]
≤ 2gmaxτ

sync
maxE

[∣∣∣∣∣
N∑
i=1

Âi(∞)− αN

∣∣∣∣∣
]

(32)

E

[
N∑
i=1

1

{
Âi(∞) ̸= Ai(∞)

}]
= E

[∣∣∣∣∣
N∑
i=1

Âi(∞)− αN

∣∣∣∣∣
]

(33)

Before showing the proof of Lemma 7, we will first use Lemma 7 to prove Theorem 2.

Proof of Theorem 2. Combining (31) and Lemma 7, we have

V π̄
1 − V

FTVA-CT(π̄)
N ≤ 2rmax

N
(1 + 2gmaxτ

sync
max)E

[∣∣∣∣∣
N∑
i=1

Âi(∞)− αN

∣∣∣∣∣
]
.

By Lemma 6, the virtual actions Âi(∞)’s are i.i.d. binomial random variables such that P(Âi(∞) =

1) =
∑

s∈S y(s, a) = α, so the distribution of
∑N

i=1 Âi(∞) is Binomial(N,α), whose mean and
variance are αN and Nα(1− α) ≤ N/4. Therefore,

E

[∣∣∣∣∣
N∑
i=1

Âi(∞)− αN

∣∣∣∣∣
]
≤

(
E

[( N∑
i=1

Âi(∞)− αN
)2])1/2
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= Var

[
N∑
i=1

Âi(∞)

]1/2
≤ 1

2

√
N.

Combining the above calculations, we get

V π̄
1 − V

FTVA-CT(π̄)
N ≤ rmax(1 + 2gmaxτ

sync
max)√

N
.

F.3 Proof of Lemma 6

Proof. We first show that {(S(t), Ŝ(t))}t≥0 is a continuous-time Markov chain. Observe that
{(S(t), Ŝ(t))}t≥0 is piecewise constant between decision epochs {tk}k=0,1,..., so it suffices to
consider the time between the decision epochs tk+1 − tk and the states at the decision epochs
(S(tk), Ŝ(tk)) for k = 0, 1, 2, . . .

We claim that at each decision epoch tk, the time until the next decision epoch tk+1 − tk is expo-
nentially distributed conditioned on (S(tk), Ŝ(tk)). Observe from the pseudo-code in Algorithm 2
that at the decision epoch tk, conditioned on (S(tk),A(tk), Ŝ(tk)), the time until the next deci-
sion epoch tk+1 is the minimum of two independent exponential random variables, correspond-
ing to the exponential timer and the transition of real states. The rates of the two exponential
random variables are 2Ngmax − greal

k and greal
k , where greal

k =
∑N

i=1 G(Si(tk), Ai(tk)). There-
fore, conditioned on (S(tk),A(tk), Ŝ(tk)), tk+1 − tk has an exponential distribution with rate
2Ngmax − greal

k + greal
k = 2Ngmax. Because the rate 2Ngmax is a constant, if we take expectation

over A(tk) and only conditioned on (S(tk), Ŝ(tk)), the time until the next decision epoch tk+1 − tk
is still exponentially distributed with rate 2Ngmax.

Also, it is obvious from the pseudo-code in Algorithm 2 that conditioned on (S(tk), Ŝ(tk)), the
distribution of (S(tk+1), Ŝ(tk+1)) is independent of tk+1−tk and (S(t), Ŝ(t)) for t < tk. Therefore,
we conclude that {(S(t), Ŝ(t))}t≥0 is a continuous-time Markov chain.

Next, we show that the {Ŝi(t)}t≥0 for i ∈ [N ] are N independent Markov chains, whose tran-
sition rate from state s to s′ is

∑
a∈A G(s, a, s′)π̄(a|s) for s′ ̸= s. Because we have shown that

{(S(t), Ŝ(t))}t≥0 is a continuous-time Markov chain with a constant transition rate, it suffices to
focus on the embedded chain {(S(tk), Ŝ(tk))}k=0,1,... and examine the probability of the transitions
that change the virtual states Ŝ(tk). Note that between two decision epochs tk and tk+1, there is at
most one i such that Ŝi(t) changes. Let Igood(tk) = {i ∈ [N ] : Ŝi(tk) = Si(tk), Âi(tk) = Ai(tk)}.
For any arm i ∈ Igood(tk), the transitions of its virtual and real states are coupled, which implies
that the probability that Ŝi(tk+1) = s′ is the same as the probability that Si(tk+1) = s′, for any
s′ ̸= Ŝi(tk), conditioned on the states and actions at tk. Formally,

P
(
Ŝi(tk+1) = s′

∣∣∣S(tk),A(tk), Ŝ(tk), Â(tk)
)
1{i ∈ Igood(tk)}

= P
(
Si(tk+1) = s′

∣∣∣S(tk),A(tk), Ŝ(tk), Â(tk)
)
1{i ∈ Igood(tk)}

=
G(Si(tk), Ai(tk), s

′)

2Ngmax
1{i ∈ Igood(tk)}

=
G(Ŝi(tk), Âi(tk), s

′)

2Ngmax
1{i ∈ Igood(tk)} , (34)

where the second equality uses the fact that the transition probability after uniformization is equal to
the ratio between the transition rate and the uniformization rate; the last equality is by the definition
of Igood(tk). For i /∈ Igood(tk) and s′ ̸= Ŝi(tk), we have Ŝi(tk+1) = s′ only when the exponential
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clock ticks and the pair (i, s′) is sampled, so

P
(
Ŝi(tk+1) = s′

∣∣∣S(tk),A(tk), Ŝ(tk), Â(tk)
)
1{i /∈ Igood(tk)}

= E

[
2Ngmax − greal

k

2Ngmax

G(Ŝi(tk), Âi(tk), s
′)

2Ngmax − greal
k

∣∣∣∣∣S(tk),A(tk), Ŝ(tk), Â(tk)

]
1{i /∈ Igood(tk)}

=
G(Ŝi(tk), Âi(tk), s

′)

2Ngmax
1{i /∈ Igood(tk)} . (35)

Summing up (34)(35), we have that for any i ∈ [N ] and s′ ̸= Ŝi(tk),

P
(
Ŝi(tk+1) = s′

∣∣∣S(tk),A(tk), Ŝ(tk), Â(tk)
)
=

G(Ŝi(tk), Âi(tk), s
′)

2Ngmax
. (36)

Because Âi(tk) is independently sampled from the distribution π̄(·|Ŝi(tk)), taking expectation over
(A(tk), Â(tk)) in the above equation, we get

P
(
Ŝi(tk+1) = s′

∣∣∣S(tk), Ŝ(tk)) =

∑
a∈A G(Ŝi(tk), a, s

′)π̄
(
a|Ŝi(tk)

)
2Ngmax

, (37)

for any i ∈ [N ] and s′ ̸= Ŝi(tk). Because the uniformization rate is 2Ngmax, the rate for Ŝi(t) to
transition to s′ is equal to

∑
a∈A G(Ŝi(t), a, s

′)π̄
(
a|Ŝi(t)

)
conditioned on (S(t), Ŝ(t)). Observe

that this transition rate only depends on Ŝi(t), which implies that Ŝi(t)’s for i ∈ [N ] are N i.i.d.
Markov chains.

Finally, recall that we initialize the virtual states Ŝi(0)’s as N i.i.d. samples from the stationary
distribution of the single-armed system under the policy π̄. Since we have proved that {Ŝi(t)}t≥0’s
are N i.i.d. Markov chains induced by applying π̄ to the single-armed systems, for each t ≥ 0, Ŝi(t)’s
remain stationary and i.i.d. Therefore, for each t ≥ 0, (Ŝi(t), Âi(t))’s are i.i.d., and for each i, the
distribution of (Ŝi(t), Âi(t)) is equal to the steady-state state-action distribution (y(s, a))s∈S,a∈A.

F.4 Proof of Lemma 7

In this section, we prove the key intermediate result, Lemma 7. The second equation (33) in Lemma 7
is obvious from the definition of the policy. We can therefore focus on proving (32), i.e., bounding
the long-run average number of arms whose real states are not equal to their virtual states. We call
such arms bad arms, and the rest of the arms good arms.

We will use a similar approach as Section E: we invoke Little’s Law to write the average number
of bad arms as a product of the average disagreement rate and the average length of disagreement
periods, based on a suitable definition of the disagreement events.

We define the disagreement event in a different way than in the discrete-time RB setting, because
unlike in the discrete-time RB setting where Ai(t) ̸= Âi(t) can immediately cause Si(t) ̸= Ŝi(t), in
the continuous-time RB setting, actions that last for only a short time may not have an effect on the
states. Therefore, we say a disagreement event for arm i happens at time t only when arm i behaves
differently than it would have behaved if Ai(t) = Âi(t).

Specifically, the disagreement event of a good arm can be defined as having a state transition that turns
it into a bad arm, since a good arm is supposed to remain good if we always have Ai(t) = Âi(t); for
bad arms, how the arm “would have behaved” need to be defined with the help of an extra structure,
namely, exponential timers, as described below.
Definition 3 (Exponential timers for simulating the leader-and-follower system). For each i ∈ [N ],
we run a timer for each arm i that ticks every random amount of time. When the timer of arm
i starts, it decides the time of its next tick based on the i-th arm (Si(t), Ai(t), Ŝi(t), Âi(t)): if
Si(t) ̸= Ŝi(t) and Ai(t) ̸= Âi(t), the timer ticks after a time that is exponentially distributed with
rate G(Si(t), Âi(t)); otherwise, the timer pauses. The timer restarts when it ticks or when there is
any event happening in the system.
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The purpose of the exponential timer is to simulate the transition time of the leader-and-follower
system, which characterizes how the arm would have behaved if Ai(t) = Âi(t). Specifically, when
arm i has Si(t) ̸= Ŝi(t) (so it is a bad arm) and Ai(t) ̸= Âi(t), we construct an imaginary leader-
and-follower system whose state-action pairs are (Si(t), Âi(t), Ŝi(t), Âi(t)). We let the transition
times of the virtual state Ŝi(t) in the two systems be identical, and the transition times of the real state
Si(t) in the two systems be independent. Then the transition time of Si(t) in the leader-and-follower
system has an exponential distribution with rate G(Si(t), Âi(t)), which is equal to the time that the
exponential timer ticks.

Therefore, there are two ways that the transition of arm i with Si(t) ̸= Ŝi(t) and Ai(t) ̸= Âi(t) can
deviate from the leader-and-follower system described above: either arm i itself has a transition
in the real state Si(t), or when the exponential timer ticks. This statement is actually also true if
Si(t) = Ŝi(t) and Ai(t) ̸= Âi(t) because in that case, the exponential timer pauses.

We can thus formally define the disagreement event of arm i as below.
Definition 4 (Disagreement event for continuous-time RBs). For each i ∈ [N ], a disagreement
event of arm i happens when its real state Si(t) transitions or its exponential timer ticks, while
Ai(t) ̸= Âi(t).

After defining the disagreement events, we can define the disagreement period of arm i as the period
of time when Si(t) ̸= Ŝi(t), separated by disagreement events, formally stated below.
Definition 5 (Disagreement period for continuous-time RBs). Given a sample path of the arm i’s real
states and virtual states (Si(t), Ŝi(t)), and an exponential timer, we define the disagreement period
of the arm i as a time interval [tbegin, tend) such that

There is a disagreement event at tbegin;

There is no disagreement event during (tbegin, tend), and Si(t) ̸= Si(t) for t ∈ (tbegin, tend);

There is a disagreement event at tend or Si(tend) = Si(tend).

We let d(s, ŝ) be the instantaneous rate of disagreement events (instantaneous disagreement rate)
when the system has real and virtual states (S(t), Ŝ(t)) = (s, ŝ). Let Davg be the long-run average
length of the disagreement periods.

Observe that the number of bad arms (the arms such that Si(t) ̸= Ŝi(t)) is the number of arms in
disagreement periods, so we can apply Little’s Law to the number of bad arms.
Lemma 8 (Little’s Law for disagreement periods, continuous-time version). It holds that

E

[
N∑
i=1

1

{
Ŝi(∞) ̸= Si(∞)

}]
= E

[
d(S(∞), Ŝ(∞))

]
·Davg, (38)

where d(s, ŝ) denotes the instantaneous disagreement rate when the virtual states are Ŝ(t) = ŝ;
Davg denotes the long-run average length of the disagreement periods.
Lemma 9 (Average disagreement rates). The instantaneous disagreement rate is equal to

d(s, ŝ) ≤ 2gmaxE

[∣∣∣∣∣
N∑
i=1

Âi(t)− αN

∣∣∣∣∣ | Ŝ(t) = ŝ

]
. (39)

Proof. For each arm i such that Ai(t) ̸= Âi(t), a disagreement event happens if its real state
transitions, which happens at the rate G(Si(t), Ai(t)), or if its exponential timer ticks, which happens
at the rate 0 (if it is a good arm) or G(Si(t), Âi(t)) (if it is a bad arm). Therefore, the rate that
disagreement events happen at arm i is no more than

G(Si(t), Ai(t)) +G(Si(t), Âi(t)) ≤ 2gmax.

By the definition of the policy, there are in expectation E
[∣∣∣∑N

i=1 Âi(t)− αN
∣∣∣ | Ŝ(t) = ŝ

]
arms

with Ai(t) ̸= Âi(t), so the instantaneous disagreement rate of the system is as given in (39).
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Lemma 10 (Average length of disagreement periods). It holds that

Davg ≤ τ sync
max. (40)

Proof. To bound Davg, it suffices to bound the expected length of a disagreement period with arbitrary
initial states. Without loss of generality, consider a disagreement period on arm i that starts at time
tbegin = 0, with initial states (Si(0), Ŝi(0)) = (s, ŝ). During the disagreement period, there is no
disagreement event, so as argued in the paragraph after Definition 3, the transitions of the i-th arm is
identical to a leader-and-follower system. Therefore, we either have Si(t) = Ŝi(t) after τ sync(s, ŝ)
amount of time, or have a disagreement event before that. In either case, tend ≤ τ sync(s, ŝ). Therefore,
the expected length of the disagreement period satisfies

E [tend − tbegin] = E [tend] ≤ E [τ sync(s, ŝ)] ≤ τ sync
max.

This holds for arbitrary initial states (s, ŝ), so Davg ≤ τ sync
max.

Proof of Lemma 7. Combining Lemma 8, 9, and 10, we have

E

[
N∑
i=1

1

{
Ŝi(∞) ̸= Si(∞)

}]
= E

[
d(S(∞), Ŝ(∞))

]
·Davg

≤ 2gmaxτ
sync
maxE

[∣∣∣∣∣
N∑
i=1

Âi(∞)− αN

∣∣∣∣∣
]
.

This proves (32).

Observe that by the definition of our algorithm, at any time t,
N∑
i=1

1

{
Âi(t) ̸= Ai(t)

}
=

∣∣∣∣∣
N∑
i=1

Âi(t)− αN

∣∣∣∣∣ a.s.

Taking the steady-state expectation, we get (33).

G Experiment details and additional experiments

In this section, we include the details of the experiments in the main body, as well as some additional
experiments. In Appendix G.1 and G.2, we describe the details of the experiments of Figure 1 and
3. We conduct the simulations of these two experiments with different initial points and present the
results in Appendix G.3. To give an intuitive understanding of the difference between these policies,
we also display more visualization of the sample paths under different policies in Appendix G.4. 3

G.1 Experiment details of Figure 1

Restless bandits setting In Figure 1, we consider the discrete-time N -arm restless bandits repre-
sented by the tuple (N, SN ,AN , P, r, αN). We vary the number of arms N , and keep the rest of the
parameters fixed. The state space of each arm is S = {1, 2, 3}. The action space is A = {0, 1}. The
transition kernel P is given by

P (·, 0, ·) =

[
0.02232142 0.10229283 0.87538575
0.03426605 0.17175704 0.79397691
0.52324756 0.45523298 0.02151947

]
,

P (·, 1, ·) =

[
0.14874601 0.30435809 0.54689589
0.56845754 0.41117331 0.02036915
0.25265570 0.27310439 0.4742399

]
,

where the number in s-th row and s′-th column in each matrix represents P (s, 0, s′) or P (s, 1, s′),
for s, s′ ∈ {1, 2, 3}. The reward function r is given by

r(·, 0) = [0 0 0] ,

3Our simulation code can be found in the link https://github.com/YigeHong/rb-break-ugap-ftva.
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r(·, 1) = [0.37401552 0.11740814 0.07866135] ,

where the s-th entry of each vector represents r(s, 0) or r(s, 1), for s ∈ {1, 2, 3}. The budget
parameter α = 0.4, so 0.4N arms are pulled in each time slot. This setting is taken from the
Appendix E of [GGY20] as a counterexample to the UGAP assumption. We note that this RB
problem obviously satisfies Synchronization Assumption for any policy: observe that P (s, a, s′) > 0
for all s, s′ ∈ S, a ∈ A, so two arms with any initial states have a positive probability of synchronizing
in the next time slot, which implies finite synchronization time by Proposition 2.

Simulation setting We plot the long-run average reward against the number of arms for different
policies. The number of arms N varies from 100, 200, . . . , 1000. Three policies are considered:
our policy FTVA(π̄∗), the Whittle’s index policy [Whi88], and an LP-Priority policy [Ver16]. For
each data point, we obtain the long-run average reward and its confidence interval by simulating
50 independent trajectories, each with a length of 1000 time slots. The initial states of all arms
are simply chosen to be 1, because simulation results do not quite depend on the initial states (see
Appendix G.3).

Detail of policies We implement Whittle index policy and LP-Priority in the standard way. The
resulting priorities of both policies turn out to be 1 > 2 > 3 (state 1 has the highest priority). This is
not a coincidence given that the solution of the single-armed problem (LP) is:

y∗(·, ·) =

[
0 0.29943

0.23768 0.10057
0.36232 0

]
,

where the s-th row represents y∗(s, 0) and y∗(s, 1), for s ∈ {1, 2, 3}. This solution implies that a
reasonable policy should almost always pull arms in state 1, pull arms in state 2 for a certain fraction
of time, and almost never pull arms in state 3. Therefore the only reasonable priority in this RB
setting is 1 > 2 > 3.

Our policy FTVA(π̄∗) is implemented according to the pseudocode in Section 3. The non-trivial detail
here is the tie-breaking rule for selecting the set of arms to activate based on the virtual actions.
Our tie-breaking rule is to select Ai(t)’s such that the number of good arms, i.e., the arms such
that Si(t) = Ŝi(t) and Ai(t) = Âi(t), is maximized. We have experimented with alternative tie-
breaking rules, whose performance matches our theoretical results, though sometimes their asymptotic
optimality requires larger values of N to be observed. The relationship between various tie-breaking
rules and their impact on finite-N performances remains unclear in the present analysis, leaving it as
a topic for future investigation.

G.2 Experiment details of Figure 3

Restless bandits setting In Figure 3, we consider the discrete-time N -arm bandits constructed as
below. Suppose the state space for each arm is S = {0, 1, . . . , 7}. Each state has a preferred action,
which is action 1 for states 0, 1, 2, 3, and action 0 otherwise. For an arm in state s, applying the
preferred action moves the arm to state (s+ 1) mod 8 with probability ps,R, and applying the other
action moves the arm to state (s − 1)+ with probability ps,L.4 The probabilities p·,R and p·,L are
given by

p·,R = [0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1] ,

p·,L = [1.0 1.0 0.48 0.47 0.46 0.45 0.44 0.43] .

When the arm transitions from 7 to 0, one unit of reward is generated. Equivalently, if we consider
the expected reward of applying an action at a certain state, we can define the reward function as
r(7, 0) = p7,R, and r(s, a) = 0 for all other s ∈ S, a ∈ A. The parameter α = 1/2, so N/2 arms are
activated in each time slot.

Simulation setting We plot the long-run average reward against the number of arms for different
policies. The number of arms N varies from 100, 200, . . . , 1000. Three policies are considered: our
policy FTVA(π̄∗), a random tie-breaking policy, and a particular LP-Priority policy that prioritizes
arms with larger Lagrangian optimal indices (see the definition of Lagrangian optimal indices in

4Here the subscript L means “left”, and R means “right”. We are imagining the arms being lined up in a row
from state 0 to state 7, and the preferred action moves an arm to the right.
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[HF17, BS20, GGY22]). This particular LP-Priority policy is also referred to as the LP-Index policy
in the literature. But for simplicity, we just refer to it as LP-Priority in this paper. For each data point,
we obtain the long-run average reward and its confidence interval by simulating 50 independent
trajectories, each with a length of 1000 time slots. The initial states for the simulations are fixed: N/3
arms are in state 1 and 2N/3 arms are in state 2. Note that we fix this initial point in the simulation
of Figure 3 in order to demonstrate that both the random tie-breaking and LP-Priority can get nearly
zero rewards in this example. For other choices of fixed points, there is also a strong separation
between the performance of FTVA(π̄∗) and random tie-breaking or LP-Priority, which we will show
in the next section.

Details of policies The optimal solution of (LP) is y∗(s, 1) = 1/8 for s = 0, 1, 2, 3, y∗(s, 0) = 1/8
for s = 4, 5, 6, 7, and y∗(s, a) = 0 for other s ∈ S and a ∈ A. Note that the same y∗ remains optimal
even if we remove the budget constraint. The optimal LP solution suggests that a reasonable policy
should almost always pull arms in states 0, 1, 2, 3, and almost never pull arms in states 4, 5, 6, 7.

The random tie-breaking policy that we consider prioritizes arms whose states are in {0, 1, 2, 3} over
arms whose states are in {4, 5, 6, 7}, and it breaks ties uniformly at random when there are more than
N/2 arms in either of the two sets.

The LP-Priority policy we consider prioritizes arms with larger Lagrangian optimal indices [BS20,
GGY22]. Specifically, it involves solving the Lagrangian relaxation of the original LP, which replaces
the budget constraint with a penalty term determined by the optimal Lagrange multiplier. In our
setting, because the optimal solution y∗ remains optimal even without the budget constraint, we can
simply remove the budget constraint to get the Lagrangian relaxation. 5 The resulting Lagrangian
optimal indices are given by:

[0.0125 0.1375 0.0725 0.07125 −0.07− 0.06875 −0.0675 −0.06625] ,
and the priority is 1 > 2 > 3 > 0 > 7 > 6 > 5 > 4.

The implementation of our policy FTVA(π̄∗) is the same as in the last experiment.

Further discussions of the policies As shown in Figure 3, the random tie-breaking policy and
the LP-Priority policy get nearly zero rewards. We have discussed why this happens for the random
tie-breaking policy in Section 3.3. For the LP-Priority policy based on the Lagrangian optimal index,
the reason why it does not work is less obvious. Some sample paths suggest that under this policy, the
arms will concentrate on {3, 4, 5} most of the time and thus cannot get a reward. Here is a possible
explanation for why arms cannot easily escape from {3, 4, 5}: when some of the arms transition to
state 6, by the priority 6 > 5 > 4, those arms in state 6 are likely to be activated. Because states 6 do
not prefer action 1, those arms will transition back to state 5 and thus get trapped.

In addition to the numerical results, we also note that our policy FTVA(π̄∗) is provably asymptotically
optimal in this RB problem even though its transition kernel is not unichain. This stems from the fact
that the optimal single-armed policy π̄∗ has a single recurrent class S, and satisfies Synchronization
Assumption. See Appendix D for the discussion on the conditions under which Synchronization
Assumption and Theorem 1 hold when unichain is not assumed.

G.3 Varying the initial points of the Figure 1 and 3 examples

In Figure 1 and Figure 3, we have fixed one initial point for each simulation, for the ease of
presentation. In this section, we rerun the simulations for these two settings with more initial points.
For the simulations of each setting, we generate initial states in the following way.

• We first choose a probability distribution on the state space S from all the possible probability
distributions on S uniformly at random. Let π(s) denote the probability of state s under
the chosen distribution. This distribution is chosen independently across the 20 sets of
simulations.

• For each N -armed problem, we set the initial state such that N · π(s) arms are in state s for
each s, with proper rounding.

• For each N -armed problem, we run all the policies with this initial state.
5A nuance is that the optimal Lagrange multiplier for the budget constraint is not unique in this setting, so

there can be different Lagrange relaxations. We focus on the simplest one.
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(a) The experiment of Figure 1 (b) The experiment of Figure 3

Figure 6: We re-run the two experiments of Figure 1 and 3 with 20 sets of simulation with randomly
generated initial points. For FTVA, we calculate the minimum average reward over the 20 sets; for the
other policies, we calculate the maximum average reward over the 20 sets.

We illustrate the results of the 20 sets of simulations in the Figure 6a and 6b in the following way: For
FTVA(π̄∗), for each N , we take the minimum average reward over the 20 sets of simulations and plot
them in the figure; For other policies, for each N , we take the maximum average reward over the 20
sets of simulations. We can see that the min curve for FTVA(π̄∗) still approaches the optimal value as
N increases, whereas the max curves for other policies are strictly separated from the optimal value.

G.4 Visualization of the policies

In Figure 2 of Section 3.3, we illustrate what LP-Priority and FTVA(π̄∗) does differently by visualizing
their sample paths. Here we include more such figures.

We still use the same example defined in Section 3.3. To recap, this example has 8 states, numbered
as {0, 1, 2, 3, 4, 5, 6, 7}. The optimal single-armed policy always chooses the preferred action in each
state, which is 1 for states 0, 1, 2, 3, and 0 for states 4, 5, 6, 7. Under the optimal single-armed policy,
each arm moves from state s to (s+ 1) mod 8 with probability 0.1 or stays at s with probability 0.9.
The optimal distribution for the single-armed system is uniform over the 8 states.

When simulating the policies in the N -armed system, we can tell that a policy is good if the fraction
of arms in each state is roughly uniform, and bad if the arms concentrate on a small number of states.
We can also see why this happens by looking at whether the preferred action is chosen, and whether
the arms are moving from s to (s+ 1) mod 8.

The three heatmaps in Figure 7a illustrate how the fractions of arms in each state change over time
under the three policies: random tie-breaking, LP-Priority, and FTVA(π̄∗). The x-axis represents the
time slot, which ranges from 0 to 499; the y-axis represents the states; the brighter color represents a
larger fraction of arms in this state at this time, and the specific value represented by each color can
be found in the color bar on the right.

We can see that under the random tie-breaking, the arms concentrate around state 0; under LP-
Priority, the arms concentrate around states {3, 4, 5} after a burn-in period; under FTVA(π̄∗), the arms
uniformly spread out over the 8 states.

In Figure 7b, we take a closer look at the sample path of the random tie-breaking policy from time
250 to 289 and contrast it with the sample path if the system uses FTVA(π̄∗) from time 250 onwards.
We also add some arrows indicating the drift of the arms, i.e., the average direction that the arms in
this state are moving into. The colors of the arrows represent the direction: the blue arrow implies
that the arm takes the preferred action and moves in the correct direction, while the red arm implies
that the arm takes the non-preferred action and moves in the wrong direction. The magnitudes of the
arrows represent how fast they are moving.

We can see that under random tie-breaking, although the arms have a strong tendency to move up
from state 0 to state 1, they move back when they reach state 1 and thus get stuck at state 0. In
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(a) Time evolution of the fractions of arms in each state under the three policies during the first 500 time slots.
Top to bottom: Random Tie-Breaking, LP-Priority, and FTVA(π̄∗).
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(b) Time evolution of the fraction of arms in each state under Random Tie-Breaking (upper), or after switching to
FTVA(π̄∗) (lower) since time slot 250. The color and magnitude of the arrows represent the average movement
of the arms in each state.

Figure 7: Visualization of the sample paths under different policies for the example in Section 3.3.

contrast, when switching to FTVA(π̄∗), most arrows point in the right direction, which implies that
the arms consistently apply the preferred actions. As a result, FTVA(π̄∗) helps the arms to escape
from state 0 and converge to the uniform distribution over the state space.

Figure 8a illustrates the fraction of arms in state s taking action a in a few time slots after 250 in the
same sample path of the random tie-breaking policy in Figure 7a. For each s and a. The upper bar
plot is under the random tie-breaking policy, while the lower bar plot is after switching to FTVA(π̄∗).
The x-axis represents the state; the y-axis represents the fraction; there are four bars in each state,
corresponding to 4 time-steps. Each bar has two segments, where the length of the blue segment
indicates the fraction of arms taking the preferred action in this state, and the length of the red segment
indicates the fraction of arms taking the non-preferred action in this state; the lower segment of the
bar corresponds to action 0, and the higher segment of the bar corresponds to action 1.

We can see that under FTVA(π̄∗), more arms choose the preferred actions for state 1 than under the
random tie-breaking policy, which prevents the arms in state 1 from moving back to state 0 as we see
in Figure 7b under the random tie-breaking policy.

Figure 8b is similar to Figures 8a, except that the random tie-breaking policy is replaced by the
LP-Priority policy. We can again see that under LP-Priority there is a force that causes the arms to
concentrate on a state, whereas switching to FTVA(π̄∗) helps the system to escape from that state.
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(a) The fraction of arms in each state taking each action
in the 4 time steps following time 250, under Ran-
dom Tie-Breaking (upper plot) or after switching to
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(b) The fraction of arms in each state taking each ac-
tion in the 4 time steps following time 250, under LP-
Priority (upper plot) or after switching to FTVA(π̄∗)
(lower plot).

Figure 8: Actions taken by different policies for the example in Section 3.3. In each bar plot, the
X-axis represents the states; the Y-axis represents the fractions. Each state has bars for the 4 time
steps. The blue segment of each bar is the fraction of arms taking the preferred action; the red segment
corresponds to the non-preferred action. The lower segment of each bar corresponds to action 0; the
higher segment corresponds to action 1.

The common failure mode for random tie-breaking and LP-Priority in this setting is that the arms
concentrate on a bad state s, which prevents the arms on state (s+ 1) from applying the preferred
action due to the budget constraint. This causes a livelock where the arms move back and forth
between state s and (s+ 1), and fail to gain a reward by moving past state 7. FTVA(π̄∗) solves this
issue by letting more arms in state (s+ 1) follow the preferred action, which breaks the livelock and
helps all arms converge to the optimal distribution.

H Generalization to heterogeneous arms

In this section, we show how FTVA and its analysis can be extended to the case with heterogenous
arms. We focus on the discrete-time case for simplicity. The continuous-time case can be analyzed in
a similar fashion.

H.1 Setting and algorithm

Suppose the arms are divided into K types, with βkN arms in each type k ∈ {1, 2, . . . ,K} ≜ [K],
and each type is associated with an MDP. The transition kernels and reward functions can be different
across types. Suppose each arm is indexed by i ∈ [N ], and we denote the type of the i-th arm as
k(i). For any type k arm, we let Pk(s, a, s

′) be its probability of transitioning from state s to s′ upon
taking action a, and let rk(s, a) be its reward for taking action a in state s.

Consider the linear program below, whose variables yk(s, a) represents the steady-state probability
that a type k arm is in state s taking action a, for k ∈ [K], s ∈ S, a ∈ A.

maximize
{yk(s,a)}k∈[K],s∈S,a∈A

∑
k

∑
s,a

βkrk(s, a)yk(s, a) (LP-Het)

subject to
∑
k

∑
s

βkyk(s, 1) = α, (41)
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∑
s′,a

yk(s
′, a)Pk(s

′, a, s) =
∑
a

yk(s, a), ∀k ∈ [K], s ∈ S, (42)

∑
s,a

yk(s, a) = 1 ∀k ∈ [K];

yk(s, a) ≥ 0, ∀k ∈ [K], s ∈ S, a ∈ A.
(43)

where the three constraints (41), (42), and (43) correspond to (5), (6), and (7) in (LP); when writing
summations, we omit ∈ [K], ∈ S and ∈ A for simplicity.

(LP-Het) can be viewed as a relaxation of the N -armed problem. To see this, take any N -armed
policy π and set yk(s, a) to be the fraction of arms in state s taking action a among type k arms in
steady state under π, i.e.,

yk(s, a) =
1

βkN
E
[ ∑
k(i)=k

1{Sπ
i (∞)=s,Aπ

i (∞)=a}
]
.

Whevener π satisfies the budget constraint (2), {yk(s, a)}k∈[K],s∈S,a∈A satisfies (41)–(43). Therefore,
the optimal value of (LP-Het), which we denote as V rel

1 , is an upper bound of the optimal value of the
N -armed problem, i.e., V rel

1 ≥ V ∗
N .

The optimal solution to (LP-Het), {y∗k(s, a)}k∈[K],s∈S,a∈A, induces a optimal single-armed policy
π̄∗
k for each type k ∈ [K]:

π̄∗
k(a|s) =

{
y∗k(s, a)/(y

∗
k(s, 0) + y∗k(s, 1)), if y∗k(s, 0) + y∗k(s, 1) > 0,

1/2, if y∗k(s, 0) + y∗k(s, 1) = 0.
for s ∈ S, a ∈ A.

(44)
Standard argument in [Put05] show that if a type k arm runs π̄∗

k, it achieves the steady-state expected
reward

∑
s,a rk(s, a)y

∗
k(s, a), and requires

∑
s y

∗
k(s, 1) unit of budget in steady-state. If each type k

arm could independently run the optimal single-armed policy of its type, since the fraction of type
k arms in the N -armed system is βk, in steady state, the expected reward per arm would be V rel

1 ,
and the budget requirement per arm would be

∑K
k=1

∑
s y

∗
k(s, 1) = α, which is analogous to the

homogeneous case where the optimal policy of the relaxed problem in (3) achieves V rel
1 reward and

requires α expected budget in steady-state.

To convert from the single-armed policies to an N -armed policy, FTVA lets each arm of type k
independently simulate a virtual single-armed process following π̄∗

k. Lines 3-14 of Algorithm 1 stay
the same. We denote the resulting policy as FTVA({π̄∗

k}k∈[K]). The resulting policy can be proved
to achieve O(1/

√
N) optimality gap, under the assumption that Synchronization Assumption is

satisfied for each π̄∗
k, as stated below:

Theorem 3. In restless bandits with heterogeneous arms, let {π̄∗
k}k∈[K] be the optimal single-armed

policies induced by (LP-Het). Assume that for each k ∈ [K], π̄∗
k satisfies Synchronization Assumption

with the synchronization times {τ sync
k (s, a, ŝ, ŝ)}(s,a,ŝ,â)∈S×A×S×A. For any N ≥ 1, the optimality

gap of FTVA({π̄∗
k}k∈[K]) is upper bounded as

V ∗
N − V

FTVA({π̄∗
k}k∈[K])

N ≤ rmaxτ
sync
max√

N
, (45)

where rmax ≜ maxs∈S,a∈A |r(s, a)| and τ sync
max ≜ maxk∈[K],(s,a,ŝ,â)∈S×A×S×A E

[
τ sync
k (s, a, ŝ, â)

]
.

H.2 Proof for Theorem 3

In this section, we prove Theorem 3.

Since V rel
1 ≥ V ∗

N , it suffices to show that

V rel
1 − V

FTVA({π̄∗
k}k∈[K])

N ≤ rmaxτ
sync
max√

N
. (46)

We start with an inequality that has the same form as (13) in the homogeneous case:

V rel
1 − V

FTVA({π̄∗
k}k∈[K])

N =
1

N
E

[
N∑
i=1

r
(
Ŝi(∞), Âi(∞)

)
−

N∑
i=1

r
(
Si(∞), Ai(∞)

)]
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≤ 2rmax

N
E

[
N∑
i=1

1

{(
Ŝi(∞), Âi(∞)

)
̸=
(
Si(∞), Ai(∞)

)}]
, (47)

where in the first equality, we used the fact that the virtual processes are independently running the
single-armed policy of the corresponding types, so they achieve the average reward V rel

1 .

Defining the disagreement events, disagreement periods, and disagreement rates in the same way as
Appendix E and applying Little’s law, we have

E

[
N∑
i=1

1

{
(Ŝi(∞), Âi(∞)) ̸= (Si(∞), Ai(∞))

}]
= E

[
d(Ŝ(∞))

]
·Davg, (48)

where d(ŝ) is the instantaneous disagreement rate, and Davg is the long-run average length of

disagreement periods. With (47) and (48), it remains to bound E
[
d(Ŝ(∞))

]
and Davg.

By the definition of the policy, we have E
[
d(Ŝ(∞))

]
= E

[∣∣∣∑N
i=1 Âi(∞)− αN

∣∣∣], Âi(∞)’s are

independent Bernoulli random variables, and E
[
Âi(∞)

]
= y∗k(s, 1) if arm i is of type k. As a result,

E

[
N∑
i=1

Âi(∞)

]
=
∑
k

βkN
∑
s,a

y∗k(s, 1) = αN.

Using the same Cauchy-Schwartz argument as in the proof of the homogeneous case in Appendix E,
it is not hard to show that E

[
d(Ŝ(∞))

]
≤
√
N/2.

As for Davg, it is not hard to see from the definition that the length of each disagreement period of a
type k arm is stochastically dominated by τ sync

k (s, a, ŝ, â), where (s, a, ŝ, â) are the initial states and
actions of that disagreement period. Therefore, the average length of disagreement period is bounded
by

Davg ≤ max
k∈[K],(s,a,ŝ,â)∈S×A×S×A

E
[
τ sync
k (s, a, ŝ, â)

]
= τ sync

max.

Combining the above calculations, we get (46), which finishes the proof.
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