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Abstract

Spectral embedding is a powerful graph embedding technique that has received a lot
of attention recently due to its effectiveness on Graph Transformers. However, from
a theoretical perspective, the universal expressive power of spectral embedding
comes at the price of losing two important invariance properties of graphs, sign
and basis invariance, which also limits its effectiveness on graph data. To remedy
this issue, many previous methods developed costly approaches to learn new
invariants and suffer from high computation complexity. In this work, we explore a
minimal approach that resolves the ambiguity issues by directly finding canonical
directions for the eigenvectors, named Laplacian Canonization (LC). As a pure
pre-processing method, LC is light-weighted and can be applied to any existing
GNNs. We provide a thorough investigation, from theory to algorithm, on this
approach, and discover an efficient algorithm named Maximal Axis Projection
(MAP) that works for both sign and basis invariance and successfully canonizes
more than 90% of all eigenvectors. Experiments on real-world benchmark datasets
like ZINC, MOLTOX21, and MOLPCBA show that MAP consistently outperforms
existing methods while bringing minimal computation overhead. Code is available
at https://github.com/PKU-ML/LaplacianCanonization.

1 Introduction

Despite the popularity of Graph Neural Networks (GNNs) for graph representation learning [55,
56, 54, 27, 13], it is found that many existing GNNs have limited expressive power and cannot
tell the difference between many non-isomorphic graphs [57, 35]. Existing approaches to improve
expressive power, such as high-order GNNs [35] and subgraph aggregation [9], often incur significant
computation costs over vanilla GNNs, limiting their use in practice. In comparison, a simple but
effective strategy is to use discriminative node identifiers. For example, GNNs with random features
can lead to universal expressive power [44, 1]. However, these unique node identifiers often lead
to the loss of the permutation invariance property of GNNs, which is an important inductive bias
of graph data that matters for sample complexity and generalization [24]. Therefore, during the
pursuit of more expressive GNNs, we should also maintain the invariance properties of graph data.
Balancing these two conflicting demands presents a significant challenge for the development of
advanced GNNs.

Spectral embedding (SE) is a classical approach to encode node positions using eigenvectors U of
the Laplacian matrix L, which has the advantage of being expressive and permutation equivariant.
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Table 1: Comparison between prior works and our method. n is the number of nodes, m is the
exponent of the feature dimension of BasisNet [29, 33].

Method pre-processing
time universality permutation

invariance
addresses sign

ambiguity
addresses basis

ambiguity
feature

dimension

LapPE [17] O(n3) ✘ ✔ ✘ ✘ n
RandSign [17] O(n3) ✘ ✔ ✔ ✘ n
SAN [25] O(n4) ✔ ✔ ✔ ✘ 3n
SignNet [29] O(n3) ✔ ✔ ✔ ✘ 2n
BasisNet [29] O(n3) ✔ ✔ ✔ ✔ nm

MAP (ours) O(n3) ✔ ✔ ✔ ✔ n

GNNs using SE can attain universal expressive power (distinguishing any pair of non-isomorphic
graphs) even under simple architectures (results in Section 2). However, spectral embedding faces
two additional challenges in preserving graph invariance: sign ambiguity and basis ambiguity, due to
the non-uniqueness of eigendecomposition. These ambiguities could lead to inconsistent predictions
for the same graph under different eigendecompositions.

Many methods have been proposed to address sign and basis ambiguities of spectral embedding. A
popular heuristic is RandSign [17] which randomly flips the signs of the eigenvectors during training.
Although it is simple to use, this data augmentation approach does not offer any formal invariance
guarantees and can lead to slower convergence due to all possible 2n sign flips. An alternative involves
using sign-invariant eigenfunctions to attain sign invariance [25], which significantly increases the
time complexity to O(n4). Another solution is to design extra GNN modules for sign and basis
invariant embeddings, e.g., SignNet and BasisNet [29], which can also add a substantial computational
burden. Therefore, as summarized in Table 1, existing spectral embedding methods are all detrimental
in a certain way that either hampers sign and basis invariance, or induces large computational
overhead. More discussions about the related work can be found in Appendix B.

In this work, we explore a new approach called Laplacian Canonization (LC) that resolves the
ambiguities by identifying a unique canonical direction for each eigenvector, amongst all its sign
and basis equivalents. Although it is relatively easy to find a canonization rule that work for certain
vectors, up to now, there still lacks a rigorous understanding of what kinds of vectors are canonizable
and whether we could find a complete algorithm for all canonizable features. In this paper, we
systematically answer this problem by developing a general theory for Laplacian canonization and
characterizing the sufficient and necessary conditions for sign and basis canonizable features.

Based on these theoretical properties, we propose a practical canonization algorithm for sign and
basis invariance, called Maximal Axis Projection (MAP), that adopts the permutation-invariant
axis projection functions to determine the canonical directions. We theoretically characterize the
conditions under which MAP can guarantee sign and basis canonization, and empirically verify
that this condition holds for most synthetic and real-world graphs. It is worth noting that LC is a
lightweight approach since it is only a pre-processing method and does not alter the dimension of the
spectral embedding. Empirically, we show that employing the MAP-canonized spectral embedding
yields significant improvements over the vanilla RandSign approach, and even matches SignNet on
large-scale benchmark datasets like OGBG [20]. We summarize our contributions as follows:

• We explore Laplacian Canonization (LC), a new approach to restoring the sign and basis
invariance of spectral embeddings via determining the canonical direction of eigenvectors
in the pre-processing stage. We develop a general theoretical framework for LC and
characterize the canonizability of sign and basis invariance.

• We propose an efficient algorithm for Laplacian Canonization, named Maximal Axis Pro-
jection (MAP), that works well for both sign and basis invariance. In particular, we show
that MAP-sign is capable of canonizing all sign canonizable eigenvectors and thus is com-
plete. The assessment of its feasibility shows that MAP can effectively canonize almost all
eigenvectors on random graphs and more than 90% eigenvectors on real-world datasets.

• We evaluate the MAP-canonized spectral embeddings on graph classification benchmarks
including ZINC, MOLTOX21 and MOLPCBA, and obtain consistent improvements over
previous spectral embedding methods while inducing the smallest computational overhead.
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2 Benefits and Challenges of Spectral Embedding for GNNs

Denote a graph as G = (V,E,X) where V is the vertex set of size n, E is the edge set, and X ∈ Rn×d

are the input node features. We denote A as the adjacency matrix, and let Â = D− 1
2 ÃD− 1

2 =

D− 1
2 (I +A)D− 1

2 be the normalized adjacency matrix, where I denotes the augmented self-loop,
D is the diagonal degree matrix of Ã defined by Di,i =

∑n
j=1 Ãi,j . A graph function f([X, Â])

is permutation invariant if for all permutation matrix P ∈ Rn×n, we have f([PX,PÂP⊤]) =
f([X, Â]). Similarly, f is permutation equivariant if f([PX,PÂP⊤]) = P f([X, Â]).

Spectral Embedding (SE). Considering the limited expressive power of MP-GNNs, recent works
explore more flexible GNNs like graph Transformers [58, 62, 16, 25, 42]. These models bypass
the explicit structural inductive bias in MP-GNNs while encoding graph structures via positional
embedding (PE). A popular graph PE is spectral embedding (SE), which uses the eigenvectors U
of the Laplacian matrix L = I − Â with eigendecomposition L = UΛU⊤, where Λ = diag(λ)
is the diagonal matrix of ascending eigenvalues λ1 ≤ · · · ≤ λn, and the i-th column of U is the
eigenvector corresponding to λi. It is easy to see that spectral embedding is permutation equivariant:
for any node permutation P of the graph, PU is the spectral embedding of the new Laplacian since
PLP⊤ = (PU)Λ(PU)⊤. Therefore, a permutation-invariant GNN (e.g., DeepSets [63], GIN [57],
Graph Transformer [16]) using the SE-augmented input features X̃ = [X,U ] remains permutation
invariant.

Reweighted Spectral Embedding (RSE). Previous works have shown that using spectral embedding
improves the expressive power of MP-GNNs [6]. Nonetheless, we find that SE alone is insufficient
to approximate an arbitrary graph function, as it does not contain all information about the graph,
in particular, the eigenvalues. Consider two non-isomorphic graphs whose Laplacian matrices have
identical eigenvectors but different eigenvalues. As their SE is the same, a network only using SE
cannot tell them apart. To resolve this issue, we propose reweighted spectral embedding (RSE)
that additionally reweights each eigenvector ui with the square-root of its corresponding eigenvalue
λi, i.e., URSE = UΛ

1
2 . With the reweighting technique, RSE incorporates eigenvalue information

without need extra dimensions.

Universality of RSE. In the following theorem, we prove that with RSE, any universal network on
sets (e.g., DeepSets [63] and Transformer [61]) is universal on graphs while preserving permutation
invariance. All proofs are deferred to Appendix K.

Theorem 1. Let Ω ⊂ Rn×d×Rn×n be a compact set of graphs, [X, Â] ∈ Ω. Let NN be a universal
neural network on sets. Given any continuous invariant graph function f defined over Ω and arbitrary
ε > 0, there exist a set of NN parameters such that for all graphs [X, Â] ∈ Ω,

|NN([X,URSE])− f([X, Â])| < ε.

As far as we know, this theorem is the first to show that, with the help of graph embeddings like RSE,
even an MLP network like DeepSets [63] (composed of a node-wise MLP, a global pooling layer, and
a graph-level MLP) can achieve universal expressive power to distinguish any pair of non-isomorphic
graphs. Notably, it does not violate the NP-hardness of graph isomorphism testing, since training
NN itself is known to be NP-hard [10]. Actually, it is not always necessary to use all spectra of the
graph. Existing studies find that high-frequency components are often unhelpful, or even harmful for
representation learning [5, 19]. Thus, in practice, we only use the first k low-frequency components of
RSE. An upper bound on the approximation error of truncated RSE can be found in Appendix K.10.

Ambiguities of eigenvectors. Although RSE enables universal GNNs, there exist two types of
ambiguity in eigenvectors that hinder their applications. The first one, known as sign ambiguity,
arises when an eigenvector uλi

corresponding to eigenvalue λi is equally valid with its sign flipped,
i.e., −uλi

is also an eigenvector corresponding to λi. The second one, termed basis ambiguity,
occurs when eigenvalues with multiplicity degree di > 1 can have any other orthogonal basis in
the subspace spanned by the corresponding eigenvectors as valid eigenvectors. To be specific, for
multiple eigenvalues with multiplicity degree di > 1, the corresponding eigenvectors Uλi ∈ Rn×di

form an orthonormal basis of a subspace. Then any orthonormal matrix Q ∈ Rdi×di can be applied
to Uλi to generate a new set of valid eigenvectors for λi. Because of these ambiguities, we can
get distinct GNN outputs for the same graph, resulting in unstable and suboptimal performance
[17, 25, 18, 29]. In Appendix A, we elaborate the challenges posed by these ambiguities.
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Table 2: The ratio of uncanonizable eigenvectors w.r.t. each invariance property with our MAP
algorithm on three real-world datasets: ZINC, MOLTOX21, and MOLPCBA.

Invariance ZINC MOLTOX21 MOLPCBA

Sign 2.46 % 3.04 % 2.24 %
Basis 1.59 % 3.31 % 7.37 %
Total 4.05 % 6.35 % 9.61 %

3 Laplacian Canonization for Sign and Basis Invariance

Rather than incorporating additional modules to learn new sign and basis invariants [25, 29], we
explore a straightforward, learning-free approach named Laplacian Canonization (LC). The general
idea of LC is to determine a unique direction for each eigenvector u among all its sign and basis
equivalents. In this way, the ambiguities can be directly addressed in the pre-processing stage. For
example, for two sign ambiguous vectors u and −u, we aim to find an algorithm that determines
a unique direction among them to obtain sign invariance. Despite some naïve canonization rules
(discussed in Appendix G.1), there still lacks a systematical understanding of the following key
questions of LC:

1. What kind of canonization algorithm should we look for? (Section 3.1)
2. What kind of eigenvectors are canonizable or non-canonizable? (Section 3.2)
3. Is there an efficient canonization algorithm for all canonizable features? (Section 3.3)

In this section, we answer the three problems by establishing the first formal theory of Laplacian
canonization and characterizing the canonizability for sign and basis invariance; based on these
analyses, we also propose an efficient algorithm named MAP for LC that is guaranteed to canonize
all sign canonizable features. To get a glimpse of our final results, Table 2 shows that MAP can
resolve both sign and basis ambiguities for more than 90% of all eigenvectors on real-world data.

3.1 Definition of Canonization

To begin with, we first find out what properties a desirable canonization algorithm should satisfy. The
ultimate goal of canonization is to eliminate ambiguities by selecting a canonical form among these
ambiguous outputs. Generally speaking, we can characterize ambiguity as a multivalued function
f : X → Y , i.e., there could be multiple outputs y1, . . . , yn corresponding to the same input x. In our
sign/basis ambiguity case, f refers to a mapping from a graph x ∈ X to the eigenvectors of a certain
eigenvalue via the ambiguous eigendecomposition. The ambiguous eigenvectors are not independent;
they are related by a sign/basis transformation. In general, we can assume that all possible outputs
y1, . . . , yn of any x belong to the same equivalence class induced by some group action g ∈ G, where
G acts on Y . That is, if f(x) = y1 = y2, then there exists g ∈ G such that y1 = gy2. Moreover,
eigenvectors of graphs obey a fundamental symmetry: permutation equivariance. In general, we
assume that f is equivariant to a group H acting on X and Y . That is, for any h ∈ H , if y1, . . . , yn
are all possible outputs of x, then hy1, . . . , hyn are all possible outputs of hx.

Specifically, for the goal of canonizing ambiguous eigenvectors, i.e., Laplacian canonization, we are
interested in algorithms invariant to sign/basis transformations in the corresponding orthogonal group
G (O(1) for sign invariance and O(d) for basis invariance). Meanwhile, to preserve the symmetry of
graph data, this algorithm should also maintain the permutation equivariant property of eigenvectors
(Section 2) w.r.t. the permutation group H . Third, it also should still be discriminative enough
to produce different canonical forms for different graphs (like the original spectral embedding).
Combining these desiderata, we have a formal definition of canonization.
Definition 1. A mapping A : Y → Y is called a (f,G,H)-canonization when it satisfies:

• A is G-invariant: ∀y ∈ Y, g ∈ G, A(y) = A(gy);

• A is H-equivariant: ∀x ∈ X , h ∈ H , A
(
f(hx)

)
= hA

(
f(x)

)
;

• A is universal: ∀x ∈ X , h ∈ H , x ̸= hx⇒ A
(
f(x)

)
̸= A

(
f(hx)

)
.
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Accordingly, for any x ∈ X , if there exists a canonization A for x, we say x is canonizable.

3.2 Theoretical Properties of Canonization

Following Definition 1, we are further interested in the question that whether any eigenvector u is
canonizable, i.e.,, there exists a canonization that can determine its unique direction. Unfortunately,
the answer is NO. For example, the vector u = (1,−1) cannot be canonized by any canonization
algorithm, since a permutation of u gives (−1, 1) that equals to −u3. But as long as there is only a
small number of uncanonizable eigenvectors like u, a canonization algorithm can still resolve the
ambiguity issue to a large extent.

Therefore, we are interested in the fundamental question of which eigenvectors are canonizable. The
following theorem establishes a general necessary and sufficient condition of the canonizability for
general groups G,H , which may be of independent interest.
Theorem 2. An input x ∈ X is canonizable on the embedding function f iff there does not exist
h ∈ H and g ∈ G such that x ̸= hx and f(hx) = gf(x).

This theorem states that for inputs from the same equivalence class in X (induced by H), as long as
they are not mapped to the same equivalence class in Y (induced by G), these inputs are canonizable.
In particular, by applying Theorem 2 to the specific group G induced by sign/basis invariance, we can
derive some simple rules to determine whether there exists a canonizable rule for given eigenvector(s).
Corollary 1 (Sign canonizability). A vector u ∈ Rn is canonizable under sign ambiguity iff there
does not exist a permutation matrix P ∈ Rn×n such that u = −Pu.
Corollary 2 (Basis canonizability). The base eigenvectors U ∈ Rn×d of the eigenspace V are
canonizable under basis ambiguity iff there does not exist a permutation matrix P ∈ Rn×n such that
U ̸= PU and span(PU) = span(U) = V .
Remark. From a probabilistic view, almost all eigenvectors are canonizable. Let U ∈ Rn×d be
basis vectors sampled from a continuous distribution in Rn, then Pr{U is canonizable} = 1.

In the next subsection, we will further design an efficient algorithm to canonize all sign and basis
canonizable eigenvectors in the pre-processing stage, so the network does not have to bear the
ambiguities of these eigenvectors.

3.3 MAP: A Practical Algorithm for Laplacian Canonization

Built upon theoretical properties in Section 3.2, we aim to design a general, powerful, and efficient
canonization to resolve both sign and basis ambiguities for as many eigenvectors as possible. Here, we
choose to adopt axis projection as the basic operator in our canonization algorithm named Maximal
Axis Projection (MAP). The key observation is that the standard basis vectors (i.e., the axis) of the
Euclidean space ei ∈ Rn are permutation equivariant, and in the meantime, the eigenspace spanned
by the eigenvectors V = span(U) are also permutation equivariant. This means that when projecting
the axis to the eigenspace, the obtained angles are also permutation equivariant, based on which we
could apply permutation invariant functions (such as max) to obtain permutation invariant statistics
that can be used for canonization. Meanwhile, due to the generality of projection, it can be applied to
both sign ambiguity (for a single eigenvector) and basis ambiguity (for the eigenspace with multiple
eigenvectors). We provide illustrative examples to help understand this algorithm in Appendix F.

Preparation step: Axis projection. Consider unit eigenvector(s) U ∈ Rn×d corresponding to an
eigenvalue λ with geometric multiplicity d ≥ 1. These eigenvectors span a d-dimensional eigenspace
V = span(U) with the projection matrix P = UU⊤. To start with, we calculate the projected
angle between V and each standard basis (i.e., the axis) of the Euclidean space ei (a one-hot vector
whose i-th element is 1), i.e., αi = |Pei|, i = 1, . . . , n. Assume that there are k distinct values in
{αi, i = 1, . . . , n}, according to which we can divide all basis vectors {ei} into k disjoint groups Bi
(arranged in descending order of the distinct angles). Each Bi represents an equivalent class of axes
that ui has the same projection on. Then, we define a summary vector xi for the axes in each group
Bi as their total sum xi =

∑
ej∈Bi

ej + c, where c is a tunable constant. Next, we introduce how to
adopt these summary vectors to canonize the eigenvectors for sign and basis invariance, respectively.

3In this case, sign invariance conflicts with permutation equivariance: making u and −u output the same
vector violates permutation equivariance, and vice versa.
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3.3.1 Sign Canonization with MAP

Step 1. Find non-orthogonal axis. For sign canonization, we calculate the angles between the
eigenvalue u and each summary vector xi one by one, and terminate the procedure as long as we
find a summary vector xh with non-zero angle αh = u⊤xh ̸= 0, and return <none> otherwise.

xh =

{
mini Φ, if Φ ̸= ∅,

<none>, if Φ = ∅,
where Φ = {i | u⊤xi ̸= 0}. (1)

Assumption 1. There exists a summary vector xh that is non-orthogonal to u, i.e., u⊤xh ̸= 0,

Step 2. Sign canonization. As long as Assumption 1 holds, we can utilize xh to determine the
canonical direction u∗ by requiring its projected angle to be positive, i.e.,

u∗ =

{
u, if u⊤xh > 0,

−u, if u⊤xh < 0.
(2)

We call this algorithm MAP-sign, and summarize it in Algorithm 1 in Appendix C.1. The following
theorem proves that it yields a valid canonization for sign invariance under Assumption 1.
Theorem 3. Under Assumption 1, our MAP-sign algorithm gives a sign-invariant, permutation-
equivariant and universal canonization of u.

One would wonder how restrictive the non-orthogonality condition (Assumption 1) is for sign
canonization. In the following theorem, we establish a strong result showing that sign canonizability
is equivalent to non-orthogonality. In other words, any sign canonizable eigenvectors can be canonized
by MAP-sign. Due to this equivalence, MAP-sign can also serve as a complete algorithm to determine
sign canonizability: a vector u is sign canonizable iff xh is not <none> in equation 1.
Theorem 4. A vector u ∈ Rn is sign canonizable iff there exists a summary vector xh s.t. u⊤xh ̸= 0.
Remark. Theorem 3 is proved in Appendix K.5 and experimentally verified in Appendix C.2.
We also show that MAP is not the only complete canonization algorithm for sign sinvariance by
proposing another polynomial-based algorithm in Appendix K.9. We observe that most eigenvectors
in real-world datasets are sign canonizable. For instance, on the ogbg-molhiv dataset, the ratio of
non-canonizable eigenvectors is only 2.8%. A thorough discussion on the feasibilty of Assumption 1
is in Appendix G.1. For the left non-canonizable eigenvectors, we could apply previous methods
(like RandSign, SAN, and SignNet) to further eliminate their ambiguity, which could save more
compute since there are only a few non-canonizable eigenvectors. In practice, we also obtain good
performance by simply ignoring these non-canonizable features.

3.3.2 Basis Canonization with MAP

We further extend MAP-sign to solve the more challenging basis ambiguity with multiple eigenvectors,
named MAP-basis. Now, MAP relies on two conditions to produce canonical eigenvectors. The first
one requires there are enough distinctive summary vectors to determine d canonical eigenvectors.
Assumption 2. The number of distinctive angles k (i.e., the number of summary vectors {xi}) is
larger or equal to the multiplicity d, i.e., k ≥ d.

Under this condition, we can determine each ui iteratively with the corresponding summary vector
xi. At the i-th step where u1, . . . ,ui−1 have already been determined, we choose ui to be the vector
that is closest to the summary vector xi in the orthogonal complement space of ⟨u1, . . . ,ui−1⟩ in V :

ui = argmax
u

u⊤xi,

s.t. u ∈ ⟨u1, . . . ,ui−1⟩⊥, |u| = 1.
(3)

With a compact feasibility region, the maximum is attainable, and we can further show that the
solution ui is unique (c.f., the proof of Theorem 5). Equation 3 can be directly solved using the
projection matrix of ⟨u1, . . . ,ui−1⟩⊥ (see details in Algorithm 3 in Appendix C.1). Repeating this
process gives us a canonical basis of V . We also require non-orthogonality condition at each step to
obtain a valid eigenvector.
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Assumption 3. For any 1 ≤ i ≤ d, xi is not perpendicular to ⟨u1, . . . ,ui−1⟩⊥.

We summarize MAP-basis in Algorithm 2 in Appendix C.1. In Theorem 5, we prove under Assump-
tion 2 and Assumption 3, MAP-basis gives a basis-invariant, permutation-equivariant and universal
canonization of U . Though, in this scenario, MAP-basis cannot canonize all basis canonizable
features, and whether such an algorithm exists remains an open problem for future research.

Theorem 5. Under Assumption 2 and Assumption 3, our MAP-basis algorithm gives a basis-invariant,
permutation-equivariant and universal canonization of U .

Remark. Assumption 2 and Assumption 3 exclude some symmetries of the eigenspace, which we
discuss in details in Appendix G.2. For random orthonormal matrices, the possibility that either
assumption is violated is equal to 0, which we verify with random simulation in Appendix C.3. For
real-world datasets, these assumptions are not restrictive either. For instance, on the large ogbg-
molpcba dataset, the eigenvalues violating Assumption 2 or Assumption 3 make up 0.87% of all
eigenvalues. More statistics and discussions are provided in Appendix G.2.

3.3.3 Summary

We provide the complete pseudo-code of MAP to address both sign and basis invariance in Ap-
pendix C.1, along with a detailed time complexity analysis. Overall, the extra complexity introduced
by MAP is O(n2 log n), which is better than eigendecomposition itself with O(n3). It only needs to
be computed once per dataset and can be easily incorporated with various GNN architectures.

Combining Theorem 1, Theorem 3 and Theorem 5 gives us the universality of first-order GNNs [33]
such that it respects all graph symmetries under certain assumptions (Assumptions 1, 2 & 3). We
show that the probability of violating these assumptions asymptotically converges to zero on random
graphs (see Appendix H). We also count the ratio of violation in real-world datasets in Table 2, and
observe that the ratio of uncanonizable eigenvectors is less than 10% on all datasets. Thus, MAP
greatly eases the harm caused by sign and basis ambiguities.

So far only GNNs using higher-order tensors have achieved universality while respecting all graph
symmetries [33, 24], but they are typically computationally prohibitive in practice. It is still an open
problem whether it is also possible for first-order GNNs. The proposed Laplacian Canonization
presents a new approach in this direction trying to alleviate the harm of sign and basis ambiguities in
a minimalist approach. By establishing universality-invariance results for first-order GNNs under
certain assumptions, LC could hopefully could bring some insights to the GNN community.

4 Experiments

We evaluate the proposed MAP positional encoding on sparse MP-GNNs and Transformer GNNs
using PyTorch [40] and DGL [53]. For sparse MP-GNNs we consider GatedGCN [11] and PNA [15],
and for Transformer GNNs we consider SAN [25] and GraphiT [34]. We conduct experiments on
three standard molecular benchmarks—ZINC [22], OGBG-MOLTOX21 and OGBG-MOLPCBA
[20]. ZINC and MOLTOX21 are of medium scale with 12K and 7.8K graphs respectively, whereas
MOLPCBA is of large scale with 437.9K graphs. Details about these datasets are described in
Appendix L. We follow the same protocol as in Lim et al. [29], where we replace their SignNet with
a normal GNN and the Laplacian eigenvectors with our proposed MAP. We fairly compare several
models on a fixed number of 500K model parameters on ZINC and relax the model sizes to larger
parameters for evaluation on the two OGB datasets, as being practised on their leaderboards [20]. We
also compare our results with GNNs using LapPE and random sign (RS) [17], GNNs using SignNet
[29], and GNNs with no PE. For a fair comparison, all models use a limited number k of eigenvectors
for positional encodings. The results of all our experiments are presented in Table 3, 4 & 5. Further
implementation details are included in Appendix M.

4.1 Performance on Benchmark Datasets

As shown in Table 3, 4 & 5, using MAP improves the performance of all GNNs on all datasets,
demonstrating that removing ambiguities of the eigenvectors is beneficial for graph-level tasks. First,
by comparing models with LapPE and RS with models with no PE, we observe that the use of LapPE
significantly improves the performance on ZINC, showing the benefits of incorporating expressive
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PEs with GNNs, especially with MP-GNNs whose expressive power is limited by the 1-WL test.
However, on MOLTOX21 and MOLPCBA, using LapPE has no significant effects. This is because
unlike ZINC, OGB-MOL* datasets contain additional structural features that are informative, e.g.,
if an atom is in ring, among others [18]. Thus the performance gain by providing more positional
information is less obvious. Second, MAP outperms LapPE with RS by a large margin especially
on ZINC. Although RS also alleviates sign ambiguity by randomly flipping signs during training,
MAP removes such ambiguity before training, enabling the network to focus on the real meaningful
features and achieves a better performance. Third, we also observe that MAP and SignNet achieve
comparable performance. This is because both methods aim at the same goal—eliminating ambiguity.
However, SignNet does so in the training stage while MAP does so in the pre-processing stage, thus
the latter is more computationally efficient. Lastly, we would also like to highlight that as a kind
of positional encoding, MAP can be easily incorporated with any GNN architecture by passing the
pre_transform function to the dataset class with a single line of code.

Table 3: Results on ZINC. All scores are averaged over 4 runs with 4 different seeds.
Model PE k #Param MAE ↓

GatedGCN None 0 504K 0.251 ± 0.009
GatedGCN LapPE + RS 8 505K 0.202 ± 0.006
GatedGCN SignNet (ϕ(v) only) 8 495K 0.148 ± 0.007
GatedGCN SignNet 8 495K 0.121 ± 0.005
GatedGCN MAP 8 486K 0.120 ± 0.002

PNA None 0 369K 0.141 ± 0.004
PNA LapPE + RS 8 474K 0.132 ± 0.010
PNA SignNet 8 476K 0.105 ± 0.007
PNA MAP 8 462K 0.101 ± 0.005
SAN None 0 501K 0.181 ± 0.004
SAN MAP 16 230K 0.170 ± 0.012

GraphiT None 0 501K 0.181 ± 0.006
GraphiT MAP 16 329K 0.160 ± 0.006

Table 4: Results on MOLTOX21. All scores are averaged over 4 runs with 4 different seeds.
Model PE k #Param ROCAUC ↑

GatedGCN None 0 1004K 0.772 ± 0.006
GatedGCN LapPE + RS 3 1004K 0.774 ± 0.007
GatedGCN MAP 3 1505K 0.784 ± 0.005

PNA None 0 5245K 0.755 ± 0.008
PNA MAP 16 1951K 0.761 ± 0.002
SAN None 0 958K 0.744 ± 0.007
SAN MAP 12 1152K 0.766 ± 0.007

GraphiT None 0 958K 0.743 ± 0.003
GraphiT MAP 16 590K 0.769 ± 0.011

Table 5: Results on MOLPCBA. All scores are averaged over 4 runs with 4 different seeds.
Model PE k #Param AP ↑

GatedGCN None 0 1008K 0.262 ± 0.001
GatedGCN LapPE + RS 3 1009K 0.266 ± 0.002
GatedGCN MAP 3 2658K 0.268 ± 0.002

PNA None 0 6551K 0.279 ± 0.003
PNA MAP 16 4612K 0.281 ± 0.003
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4.2 Empirical Understandings

Computation time. We demonstrate the efficiency of MAP by measuring the pre-processing time
and training time on the large OGBG-MOLPCBA dataset, and compare them with SignNet. For a fair
comparison, we use identical model size, hyperparameters and random seed and conduct experiments
on the same NVIDIA 3090 GPU. The results are shown in Table 6. We observe that model with
MAP train 41% faster than its SignNet counterpart, saving 44 hours of training time. Since SignNet
takes the form ρ

(
ϕ(u) + ϕ(−u)

)
while we use models taking the form ρ

(
ϕ(u)

)
, models with MAP

would always train faster than those with SignNet under the same hyperparameters. We also observe
that the pre-processing time is negligible compared with training time (< 3%), since pre-processing
only needs to be done once. This makes MAP overall more efficient while achieving the same goal of
tackling ambiguities.

Table 6: Comparison of pre-processing and training time between models with MAP or SignNet as
PE, on the MOLPCBA dataset. Experiments are run with the same model size and hyperparameters,
the same random seed, on the same NVIDIA 3090 GPU.

Model Pre-processing time Training Time Total Time

GatedGCN + MAP 1.70 h 63.02 h 64.72 h
GatedGCN + SignNet 0.27 h 108.51 h 108.78 h

Spectral embedding dimension. Next, we study the effects of k. We train GatedGCN with MAP on
ZINC with different number of eigenvectors used in the PE and report the results in Table 7. The
hyperparameters are the same across these experiments. It can be observed that the performance
drops when k is too small, meaning that SE provides crucial structural information to the model.
Using larger k has limited influence on the performance, meaning that the model relies more on
low-frequency information of spectral embedding.

Table 7: Effects of k, where k is the number of eigenvectors used.
k 0 4 8 16

Test MAE 0.256 ± 0.012 0.138 ± 0.004 0.120 ± 0.002 0.124 ± 0.002

Ablation study. Finally, we conduct ablation study of MAP by removing each component of MAP
and evaluate the performance. The results are shown in Table 8. Removing sign invariance hurts the
performance the most, because most eigenvectors are single and thus sign ambiguity has the most
influence on the model’s performance. Removing basis invariance also has negative effects since
a small portion of eigenvalues are multiple. Removing eigenvalues has moderate negative effects,
showing that the incorporation of eigenvalue information is beneficial for the network.

Table 8: Effects of the three components of MAP (GatedGCN on ZINC).
PE full MAP without can. sign without can. basis without eigenvalues

Test MAE 0.120 ± 0.002 0.131 ± 0.003 0.122 ± 0.003 0.125 ± 0.001

5 Conclusion

In this paper, we explored a new approach called Laplacian Canonization for addressing sign and basis
ambiguities of Laplacian eigenvectors while also preserving permutation invariance and universal
expressive power. We developed a novel theoretical framework to characterize canonization and
the canonizability of eigenvectors. Then we proposed a practical canonization algorithm called
Maximal Axis Projection (MAP). Theoretically, it is sign/basis-invariant, permutation-equivariant
and universal. Empirically, it canonizes most eigenvectors on synthetic and real-world data while
showing promising performance on various datasets and GNN architectures.
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A Why sign and basis invariance matters

It is perfectly understandable that one may not see the significance and benefits of sign and basis
invariance at once. For instance, below is a quote from one of the reviews of Lim et al. [29] when
they first submitted their paper to NeurIPS 2022:

It is not clear “why” to preserve the two symmetries this paper proposes to pre-
serve including sign invariance and basis invariance. In graph & molecule setting,
two important symmetries are permutation (i.e. if we permute the nodes/atoms, the
output stays the same) and rotation (i.e. if we rotate the 3D coordinates associating
with each atom, the prediction for a physical property stays the same). I don’t
see a strong evidence that suggests preserving sign & basis invariances on top of
permutation & rotation invariances brings any benefits.

Indeed, it is not easy to see why issues related with something matters if they don’t even use it. One
may overlook the importance of sign and basis invariance for two reasons: (1) people not familiar with
Laplacian PE may not even realize sign/basis ambiguity is a thing; (2) people that does have some
knowledge about Laplacian PE may not realize sign and basis ambiguities are markedly hindering its
performance. Nonetheless, Laplacian PE does have advantages over other commonly used PEs that it
is worth the efforts addressing their drawbacks. For these reasons we feel it is of great significance
that we explain the motivation behind preserving sign and basis invariances in more details.

Why use spectral embedding: trade-off between universality and ambiguities. Sign and basis
ambiguities arise only in spectral embeddings, so the first important question is why to use them.
There are many kinds of positional encodings in the literature, such as Random Walk PE (RWPE),
Position-aware Encoding, Relational Pooling (RP), random features, etc. Without addressing sign
and basis ambiguities, some works even reported superior performance of RWPE over spectral
embedding [18, 42]. However, these other PEs all have drawbacks either in their expressive power
or permutation equivariance. RP and random features are universal, but they do not guarantee
permutation equivariance, which is an important inductive bias in graph-structured data. RWPE
and positional-aware encoding are permutation equivariant, but their expressive power is limited.
Thus one may wonder whether there exists a kind of positional encoding method that achieves both.
Spectral Embedding, as it turns out, is both permutation equivariant and universal (when coupled with
eigenvalue information, see Sec 2). The good thing about SE is that through eigendecomposition, it
transforms a “harder” permutation equivariance formulated by

f(P⊤ÂP ) = P⊤f(Â)P , (4)

into a “easier” permutation equivariance formulated by

f(PU) = P f(U), (5)

where P is an arbitrary permutation matrix, Â is the normalized adjacency matrix of the graph and U
are its eigenvectors. Universality and equivariant results for equation 4 are only known for high-order
tensor networks [32], but similar results for equation 5 have long been known to be achievable even
by first-order networks such as DeepSets [63]. Thus SE enables efficient and universal graph neural
networks that respects permutation equivariance. However, SE also brings new problems, sign and
basis ambiguities. It is not fair to say models with SE are universal without achieving sign and
basis invariance, since we expect graph neural networks to respect all symmetries among isomorphic
graphs.

Sign and basis invariances are well-established problems in the literature. Sign and basis
ambiguities have been recognized by numerous works in the literature to be challenging and important
issues when incorporating SE as positional encoding. Below we list some existing discussions in
these papers.

Quote from Dwivedi et al. [17]:

We propose an alternative to reduce the sampling space, and therefore the
amount of ambiguities to be resolved by the network. Laplacian eigenvectors
are hybrid positional and structural encodings, as they are invariant by node re-
parametrization. However, they are also limited by natural symmetries such as the
arbitrary sign of eigenvectors (after being normalized to have unit length). The
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number of possible sign flips is 2k, where k is the number of eigenvectors. In
practice we choose k ≪ n, and therefore 2k is much smaller than n! (the number
of possible ordering of the nodes). During the training, the eigenvectors will be
uniformly sampled at random between the 2k possibilities. If we do not seek
to learn the invariance w.r.t. all possible sign flips of eigenvectors, then we can
remove the sign ambiguity of eigenvectors by taking the absolute value. This
choice seriously degrades the expressivity power of the positional features.

Quote from Kreuzer et al. [25]:

As noted earlier, there is a sign ambiguity with the eigenvectors. With the sign
of ϕ being independent of its normalization, we are left with a total of 2k possible
combination of signs when choosing k eigenvectors of a graph. Previous work has
proposed to do data augmentation by randomly flipping the sign of the eigenvectors
[6, 16, 17], and although it can work when k is small, it becomes intractable for
large k.

Quote from Beaini et al. [6]:

For instance, a pair of eigenvalues can have a multiplicity of 2 meaning that they
can be generated by different pairs of orthogonal eigenvectors. For an eigenvalue of
multiplicity 1, there are always two unit norm eigenvectors of opposite sign, which
poses a problem during the directional aggregation. We can make a choice of sign
and later take the absolute value. An alternative is to take a sample of orthonormal
basis of the eigenspace and use each choice to augment the training.

Quote from Mialon et al. [34]:

Note that eigenvectors of the Laplacian computed on different graphs could
not be compared to each other in principle, and are also only defined up to a ±1
factor. While this raises a conceptual issue for using them in an absolute positional
encoding scheme, it is shown in Dwivedi and Bresson [16]—and confirmed in our
experiments—that the issue is mitigated by the Fourier interpretation, and that the
coordinates used in LapPE are effective in practice for discriminating between
nodes in the same way as the position encoding proposed in Vaswani et al. [51] for
sequences. Yet, because the eigenvectors are defined up to a ±1 factor, the sign of
the encodings needs to be randomly flipped during the training of the network.

Quote from Dwivedi and Bresson [16]:

In particular, Dwivedi et al. [17] make the use of available graph structure to pre-
compute Laplacian eigenvectors [7] and use them as node positional information.
Since Laplacian PEs are generalization of the PE used in the original transformers
[51] to graphs and these better help encode distance-aware information (i.e., nearby
nodes have similar positional features and farther nodes have dissimilar positional
features), we use Laplacian eigenvectors as PE in Graph Transformer. Although
these eigenvectors have multiplicity occuring due to the arbitrary sign of eigen-
vectors, we randomly flip the sign of the eigenvectors during training, following
Dwivedi et al. [17].

Quote from Dwivedi et al. [18]:

Another PE candidate for graphs can be Laplacian Eigenvectors [17, 16] as
they form a meaningful local coordinate system, while preserving the global graph
structure. However, there exists sign ambiguity in such PE as eigenvectors are
defined up to ±1, leading to 2k number of possible sign values when selecting k
eigenvectors which a network needs to learn. Similarly, the eigenvectors may be
unstable due to eigenvalue multiplicities.

Quote from Lim et al. [29]:
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However, there are nontrivial symmetries that should be accounted for when
processing eigenvectors. If v is a unit-norm eigenvector, then so is −v, with the
same eigenvalue. More generally, if an eigenvalue has higher multiplicity, then
there are infinitely many unit-norm eigenvectors that can be chosen. Indeed, a full
set of orthonormal eigenvectors is only defined up to a change of basis in each
eigenspace. In the case of sign invariance, for any k eigenvectors there are 2k

possible choices of sign. Accordingly, prior works randomly flip eigenvector signs
during training in order to approximately learn sign invariance [25, 17]. However,
learning all 2k invariances is challenging and limits the effectiveness of Laplacian
eigenvectors for encoding positional information. Sign invariance is a special
case of basis invariance when all eigenvalues are distinct, but higher dimensional
basis invariance is even more difficult to deal with, and we show that these higher
dimensional eigenspaces are abundant in real datasets.

Quote from Wang et al. [52]:

Srinivasan and Ribeiro [45] states that PE using the eigenvectors of the ran-
domly permuted graph Laplacian matrix keeps permutation equivariant. Dwivedi
et al. [17], Kreuzer et al. [25] argue that such eigenvectors are unique up to their
signs and thus propose PE that randomly perturbs the signs of those eigenvectors.
Unfortunately, these methods may have risks. They cannot provide permutation
equivariant GNNs when the matrix has multiple eigenvalues, which thus are danger-
ous when applying to many practical networks. For example, large social networks,
when not connected, have multiple 0 eigenvalues; small molecule networks often
have non-trivial automorphism that may give multiple eigenvalues. Even if the
eigenvalues are distinct, these methods are unstable. We prove that the sensitivity
of node representations to the graph perturbation depends on the inverse of the
smallest gap between two consecutive eigenvalues, which could be actually large
when two eigenvalues are close.

Sign and basis invariances make the learning tasks easier. Permutation invariance is an important
inductive bias in graphs in the sense that applying permutations on graphs results in isomorphic graphs
and they should have the same properties and produce the same outputs. Empirically constraining the
network to be invariant to such permutations benefits the performance, since otherwise the network
has to learn these n! ambiguities by itself. Similarly, sign and basis ambiguities result in 2k and
infinite possible choices of positional features respectively that a network has to learn, which could
degrade its performance greatly. By preserving sign and basis invariance, a network will not need to
learn the equivalence between all these possible choices and the learning task is significantly easier.

There are less ambiguity in signs than in permutations. For a given graph, there are n! possible
ordering of the nodes that all represent the same graph, resulting in n! number of ambiguities.
Considering that the vast majority of eigenvectors on real-world data have distinct eigenvalue
(Table 9), when selecting k eigenvectors as positional encoding to present structural information, the
number of ambiguities is 2k, which is much smaller than n!. This transformation from permutation
ambiguity to sign ambiguity greatly reduces the amount of random noise in the input data and makes
the model much more stable.

When sign invariance meets permutation equivariance. Sign ambiguity is not an issue when we
do not take permutation symmetry into account. For each eigenvector pair±u, we can choose the one
whose first non-zero entry is positive. This simple canonization solves the sign ambiguity problem
with ease. The problem of sign ambiguity is only non-trivial when combined with permutation
equivariance, that is, we require the canonization process to be both sign-invariant and permutation-
equivariant. Since the eigenvectors can now be permuted arbitrarily, there is no “first” non-zero entry
and the simple canonization above fails.

Moreover, such canonization only makes sense when we require it to be universal. For instance,
mapping all eigenvectors to j = (1, 1, . . . , 1) is also a sign-invariant and permutation-equivariant
canonization, but this canonization provides us with no information. Thus one may wonder whether a
network can be both sign-invariant, permutation-equivariant and universal at the same time. Unfortu-
nately, as far as we know, no existing work addresses all of them. The universality of SignNet only
considers sign invariance, as stated in their theorem:
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Theorem 6 (Universal representation for SignNet). A continuous function f : (Sn−1)k → Rs is sign
invariant, i.e. f(s1v1, . . . , skvk) = f(v1, . . . , vk) for any si ∈ {−1, 1}, if and only if there exists a
continuous ϕ : Rn → R2n−2 and a continuous ρ : R(2n−2)k → Rs such that

f(v1, . . . , vk) = ρ
(
[ϕ(vi) + ϕ(−vi)]ki=1

)
.

In fact, being sign-invariant, permutation-equivariant and universal at the same time is not even
well-defined. As mentioned in the main text, for an uncanonizable eigenvector u with u = −Pu for
some permutation matrix P , let f be an arbitrary continuous sign-invariant, permutation-equivariant
and universal function and denote f(u) = y. The sign invariance property requires that f(−u) = y,
while the permutation equivariance property requires that f(Pu) = Py. Since −u = Pu, we have
y = Py. However u ̸= Pu, thus universality is not satisfied, leading to a contradiction. This can be
illustrated in Figure 1, where the three properties cannot be met at the same time.

sign invariance

permutation equivariance

universality

SignNet

MLP

MAP

Figure 1: The dilemma where permutation-equivariance, sign-invariance and universal expressive
power cannot be achieved at the same time.

Remark. The universality in Definition 1 is defined on eigenvectors U ∈ Rn×n. The permutation
equivariance property of eigenvectors is defined as f(PU) = P f(U), and here universality implies
that if two eigenvectors are not equal up to permutation, then f should be able to tell them apart.
As mentioned above, such set-universal networks (like DeepSets or MLP) cannot be permutation
equivariant and sign invariant at the same time. In the context of graphs, we may also care about
universality defined on the adjacency matrix A ∈ Rn×n, in which case the permutation equivariance
property is defined as f(PAP⊤) = P f(A). Such graph-universal networks are always able to tell
two non-isomorphic adjacency matrices apart. We can view f(A) as a function of U (we omit the
eigenvalues for simplicity), and we denote g(U) = f(A), then to achieve the graph universality of f ,
g does not have to be set-universal, thus may not suffer from the dilemma above.

Much effort has been devoted to the structure of invariant and equivariant networks in the literature,
but few has studied the case when invariance and equivariance combine (in this case you may have to
sacrifice some invariance, or some equivariance, or some expressive power). Our work takes a step in
this direction, providing some insights to this dilemma and characterize the necessary and sufficient
conditions where these three properties conflict with each other.

B Related work

Theoretical Expressivity It has been shown that neighborhood-aggregation based GNNs are not
more powerful than the WL test [57, 35]. Since then, many attempts have been made to endow graph
neural networks with expressive power beyond the 1-WL test, such as injecting random attributes
[36, 44, 59, 45, 17], injecting positional encodings [28, 60], and designing higher-order GNNs
[35, 32, 33, 31, 14].

Positional Encodings Recently, there are many works that aim to improve the expressive power of
GNNs by positional encoding (PE). Murphy et al. [36] assigned each node an identifier depending
on its index. Li et al. [28] proposed to use distances between nodes characterized by powers of the
random walk matrix. You et al. [59] proposed to use distances of nodes to a sampled anchor set of
nodes. Using random node features can also improve the expressiveness of GNNs, even making
them universal [44, 1], but it has several defects: (1) loss of permutation invariance, (2) slower
convergence, (3) poor generalization on unseen graphs [59, 30]. More detailed discussion can be
found in Appendix E.

Laplacian PE Another PE candidate for graphs is Laplacian Eigenvectors [16, 17] which form
a meaningful local coordinate system while preserving global structure. However, there exists
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ambiguities in sign and basis that the network needs to learn, which harms the performance of GNNs.
To address these ambiguities, many approaches have been proposed such as randomly flip the signs
[17], use eigenfunctions over the edges [25] or use invariant network architectures [29].

Sign Invariance Several prior works have proposed ways of addressing sign ambiguity. A popular
heuristic is Random Sign (RS), which randomly flips the signs of eigenvectors during training to
encourage the insensitivity to different signs [17]. However, the network still has to learn these
signs, leading to slower convergence and harder curve fitting task. Bro et al. [12] developed a data-
dependent method to choose signs for each singular vector of a singular value decomposition. Still,
in the worst case the signs chosen will be arbitrary, and they do not handle rotational ambiguities in
higher dimensional eigenspaces. Kreuzer et al. [25] proposed to use the relative Laplace embeddings
of two nodes. However, their approach suffers from a major computational bottleneck with O(n4)
complexity. Lim et al. [29] proposed SignNet that passes both u and −u to the same network, adds
the outputs together and then passes them to another network. As both outputs of u and −u need to
be computed, their approach adds to the training cost. Our approach happens at pre-processing time
with O(n3) complexity.

Basis Invariance The only works we know addressing basis ambiguity are Lim et al. [29] and
Huang et al. [21]. Lim et al. [29] proposed BasisNet that is basis invariant. However, to achieve
universality, the components of BasisNet need to use higher order tensors in Rnk

where k can be as
large as n(n−1)

2 [33], rendering BasisNet impractical. Huang et al. [21] generalized BasisNet and
proposed SPE that is both basis-invariant and stable to perturbation to the Laplacian matrix, but it
still suffers from exponential complexity as BasisNet. In this paper, we showed that under certain
assumptions, the issue of basis ambiguity can be resolved more efficiently in the pre-processing stage.

There is also a literature beyond GNN that also considers spectral embeddings of graphs and
going around the sign/basis ambiguity problems. Lai and Zhao [26] proposed to address sign/basis
ambiguities using optimal transport theory that involves solving a non-convex optimization problem,
thus it could be less efficient than our approach. Tam and Dunson [48] proposed to symmetrize the
embedding using a heuristic measure called ELD that is quite similar to the form of SignNet, while
our MAP algorithm offers an axis projection approach and establish its theoretical guarantees.

Canonical Forms The theory of canonical forms has been widely studied in mathematics [39] and
applied to many fields of machine learning. Sajnani et al. [43] proposed a self-supervised method
named ConDor that learns to canonicalize the 3D orientation and position for full and partial 3D point
clouds. Agaram et al. [2] presented Canonical Field Network (CaFi-Net), a self-supervised method to
canonicalize the 3D pose of instances from an object category represented as neural fields, specifically
neural radiance fields (NeRFs). Sun et al. [47] proposed an unsupervised capsule architecture for
3D point clouds. Kaba et al. [23] proposed to decouple the equivariance and prediction components
of neural networks by predicting a transformation that can be used to align the input data to some
canonical pose. After this alignment the remaining layers do not have to be equivariant anymore.
However, as far as we know, no existing work addresses the issue of ambiguities, which arises when
some function (e.g., eigendecomposition) is required to be both equivariant on the input space and
invariant on the output space. No existing work addresses the canonizability of input data, which
only arises when the invariance and equivariance property conflicts. Instead, we develop a novel
theoretical framework that addresses these issues.

C Implementation and verification of MAP

C.1 Complete pseudo-code of MAP

A simplified pseudo-code for sign canonization with MAP is shown in Algorithm 1. A simplified
pseudo-code for basis canonization with MAP is shown in Algorithm 2. (j = (1, 1, . . . , 1) ∈ Rn)

The complete pseudo-code of MAP is shown in Algorithm 3. Despite the sophisticated workflow,
programmers do not have to know the principles of our algorithm to use it. The entire module can be
passed as a pre_transform function to the dataset class with a single line of code.

There are three steps in Algorithm 3. The first is to eliminate sign ambiguity with O(n2 log n) time
complexity. The second is to eliminate basis ambiguity with O(n2dm) time complexity, where d is
the multiplicity of the eigenvalue and m is the number of multiple eigenvalues of Â. The third is
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Algorithm 1 Maximal Axis Projection for eliminating sign ambiguity

Require: Input graph G = (V,E,X)
Ensure: Spectral embedding of G

Calculate the eigendecomposition Â = UΛU⊤ ▷ O(n3) complexity
for each eigenvector u do ▷ O(n2 log n) complexity

xi ←
∑

ej∈Bi
ej + cj, i = 1, . . . , k

xh ← non-orthogonal summary vector with smallest h (equation 1)
if xh is not <none> then

u← u∗ (choose the direction with u⊤xh > 0 as in equation 2)
else

u← u (no canonization)
end if

end for
return U

Algorithm 2 Maximal Axis Projection for eliminating basis ambiguity

Require: Eigenvalue λ with multiplicity d > 1
Ensure: Spectral embedding corresponding to λ

Calculate the eigenvectors U ∈ Rn×d of λ through eigendecomposition ▷ O(n3) complexity
for i = 1, 2, . . . , d do ▷ O(n2d) complexity

xi ←
∑

ej∈Bi
ej + cj

Choose ui ∈ ⟨u1, . . . ,ui−1⟩⊥, |ui| = 1, s.t. f(ui) = u⊤
i xi is maximized (equation 3)

end for
return U0 := [u1, . . . ,ud]

to incorporate eigenvalue information with O(n2) time complexity. The overall time complexity is
O(n3) with the bottleneck being the eigendecomposition.

The second part of our algorithm (eliminating basis ambiguity) has time complexity O(n2dm). We
point out that in real-world datasets m is often quite small. As shown in Table 9, multiple eigenvalues
only make up around 5% of all eigenvalues, thus in practice the time complexity of the second part
is O(n2d), better than eigendecomposition. (Note it is important to take floating-point errors into
account when counting these multiple eigenvalues)

Table 9: The number of multiple eigenvalues in real-world datasets.
Dataset ogbg-molesol ogbg-molfreesolv ogbg-molhiv ogbg-mollipo ogbg-moltox21 ogbg-moltoxcast ogbg-molpcba

#multiple eigenvalues 738 286 52367 5391 8772 10556 491247
#all eigenvalues 13420 4654 952055 104669 129730 141042 10627757

Ratio 5.50 % 6.15 % 5.50 % 5.15 % 6.76 % 7.48 % 4.62 %

Some parts of Algorithm 3 have time complexity O(nd4). We also point out that d is usually small
in real datasets. We show the number of eigenvalues and their multiplicities in logarithmic scale in
Figure 2.

The details of the datasets are listed in Table 10.

C.2 Verifying the correctness of Theorem 3

We verify the correctness of Theorem 3 through random simulation. The program is shown in
Algorithm 4. Let U be a random orthonormal matrix, P be a random permutation matrix and S be a
random sign matrix (diagonal matrix of 1 and−1). We pass U , PU , US, PUS to the UNIQUESIGN
function (Algorithm 1) and compare the outputs. If our algorithm is correct, U and US should have
invariant outputs, while U , PU and PUS should have equivariant outputs.

We conduct 1000 trials. The results are p_correct = q_correct = pq_correct = total = 1000,
showing that Algorithm 1 is both permutation-equivariant and unique (unambiguous).
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Algorithm 3 Maximal Axis Projection

Require: Graph G = (V,E), its normalized adjacency matrix Â
Ensure: Maximal Axis Projection of G

Calculate the eigendecomposition Â = UΛU⊤ ▷ O(n3) complexity
for each single eigenvector u ∈ Rn do ▷ O(n2 log n) complexity

proj ← (|uu⊤e1|, |uu⊤e2|, . . . , |uu⊤en|) ▷ O(n) complexity
len, ind ← SORT(proj ) ▷ O(n log n) complexity
len ← UNIQUE(len)
k ← |len|
for i = 1, 2, . . . , k do ▷ O(n) complexity

xi ←
∑

j eind[j] such that proj ind[j] = len[i]
xi ← xi + cj
u0 ← NORMALIZE(uu⊤xi)
if ∥u0∥ > ε then ▷ floating-point errors are considered

substitute u with u0

break
end if

end for
end for
for each multiple eigenvalue and its eigenvectors U ∈ Rn×d do ▷ O(n2dm) complexity

proj ← (|UU⊤e1|, |UU⊤e2|, . . . , |UU⊤en|) ▷ O(n2d) complexity
len, ind ← SORT(proj )
len ← UNIQUE(len)
if k < d then

break ▷ Assumption 2 not satisfied
end if
for i = 1, 2, . . . , d do ▷ O(n) complexity

xi ←
∑

j eind[j] such that proj ind[j] = len[i]
xi ← xi + cj

end for
Uspan ← empty matrix of shape n× 0
Uperp ← U ▷ orthogonal complementary space
for i = 1, 2, . . . , d do ▷ O(nd4) complexity

ui ← UperpU
⊤
perpxi ▷ O(nd) complexity

if ∥ui∥ < ε then ▷ floating-point errors are considered
break ▷ Assumption 3 not satisfied

end if
ui ← NORMALIZE(ui)
substitute U:,i with ui

Uspan ← [Uspan,ui]
Ubase ← Uspan

for j = 1, 2, . . . , d do ▷ O(nd3) complexity
Utemp ← [Ubase,U:,j ]
if rank(Utemp) = j + 1 then ▷ O(nd2) complexity

Ubase ← Utemp

end if
if Ubase ∈ Rn×d then

break
end if

end for
Ubase ← GRAMSCHMIDTORTHOGONALIZATION(Ubase) ▷ O(nd2) complexity
Uperp ← (Ubase):,i+1:d

end for
end for
U ← UΛ

1
2 ▷ O(n2) complexity

return U
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Figure 2: #Eigenvalues w.r.t. their multiplicities in real-world datasets (in logarithmic scale).

Table 10: The details of the datasets. Reg: Regression; Bin: Binary classification.
Dataset ogbg-molesol ogbg-molfreesolv ogbg-molhiv ogbg-mollipo ogbg-moltox21 ogbg-moltoxcast ogbg-molpcba

#Graphs 1128 642 41127 4200 7831 8576 437929
Avg #Nodes 13.3 8.7 25.5 27.0 18.6 18.8 26.0
Avg #Edges 13.7 8.4 27.5 29.5 19.3 19.3 28.1

#Tasks 1 1 1 1 12 617 128
Task Type Reg Reg Bin Reg Bin Bin Bin

Metric RMSE RMSE ROC-AUC RMSE ROC-AUC ROC-AUC AP

Algorithm 4 Verify the correctness of Theorem 3

p_correct ← 0, q_correct ← 0, pq_correct ← 0, total ← 0
for i = 1, 2, . . . , trials do

n← a random positive integer
U ← a random orthonormal matrix in Rn×n

U0 ← UNIQUESIGN(U )
P ← a random permutation matrix
V ← PU
V0 ← UNIQUESIGN(V )
p_correct ← p_correct + 1 if |PU0 − V0| < ε ▷ test permutation-equivariance
S ← a random sign matrix (diagonal matrix of 1 and −1)
W ← US
W0 ← UNIQUESIGN(W )
q_correct ← q_correct + 1 if |U0 −W0| < ε ▷ test uniqueness
Y ← PW
Y0 ← UNIQUESIGN(Y )
pq_correct ← pq_correct + 1 if |PU0 − Y0| < ε ▷ test both
total ← total + 1

end for
print out the values of p_correct , q_correct , pq_correct and total
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C.3 Verifying the correctness of Theorem 5

We verify the correctness of Theorem 5 through random simulation. The program is shown in
Algorithm 5. Let U be a random orthonormal matrix in Rn×d, P be a random permutation matrix
and Q be a random orthonormal matrix in Rd×d. We pass U , PU , UQ, PUQ to the UNIQUEBASIS
function (Algorithm 2) and compare the outputs. If our algorithm is correct, U and UQ should have
invariant outputs, while U , PU and PUQ should have equivariant outputs.

Algorithm 5 Verify the correctness of Theorem 5

p_correct ← 0, q_correct ← 0, pq_correct ← 0, total ← 0
for i = 1, 2, . . . , trials do

n← a random positive integer (greater than 1)
d← a random positive integer (less than n)
U ← a random orthonormal matrix in Rn×d

U0 ← UNIQUEBASIS(U )
P ← a random permutation matrix
V ← PU
V0 ← UNIQUEBASIS(V )
p_correct ← p_correct + 1 if |PU0 − V0| < ε ▷ test permutation-equivariance
Q← a random orthonormal matrix in Rd×d

W ← UQ
W0 ← UNIQUEBASIS(W )
q_correct ← q_correct + 1 if |U0 −W0| < ε ▷ test uniqueness
Y ← PW
Y0 ← UNIQUEBASIS(Y )
pq_correct ← pq_correct + 1 if |PU0 − Y0| < ε ▷ test both
total ← total + 1

end for
print out the values of p_correct , q_correct , pq_correct and total

We conduct 1000 trials. The results are p_correct = q_correct = pq_correct = total = 1000,
showing that Algorithm 2 is both permutation-equivariant and unique. The function UNIQUEBASIS
raises an assertion error when either Assumption 2 or Assumption 3 is violated, so Algorithm 5 also
shows that random orthonormal matrices violate these assumptions with probability 0.

C.4 Verifying the correctness of Theorem 1

We conduct experiment on the EXP dataset proposed in Abboud et al. [1], which is designed to explic-
itly evaluate the expressive power of GNNs. The dataset consists of a set of 1-WL indistinguishable
non-isomorphic graph pairs, and each graph instance is a graph encoding of a propositional formula.
The classification task is to determine whether the formula is satisfiable (SAT). Since the graph pairs
in the EXP dataset are not distinguishable by 1-WL test, if a model shows above 50% accuracy on
this dataset, it should have expressive power beyond the 1-WL algorithm.

The models we used on EXP dataset are as follows: an 8-layer GCN, GIN [57], PPGN [31], 1-2-
3-GCN-L [35], 3-GCN [1], DeepSets-RNI (DeepSets with Random Node Initialization (RNI) [1]),
GCN-RNI (GCN with Random Node Initialization (RNI)), Linear-RSE (linear network with RSE),
and DeepSets-RSE. GCN and GIN belongs to the family of MP-GNNs whose expressive power is
bounded by 1-WL, and RNI is a method to improve the expressive power of MP-GNNs. We verify
the expressive power gain of RSE-based models by comparing them with GCN, and evaluate their
efficiency by comparing them with other expressive models.

We evaluate all models on the EXP dataset using 10-fold cross-validation, and train each model
for 500 epochs per fold. Mean test accuracy across all folds is measured and reported. The results
are reported in Table 11. In addition, we also measure the learning curves of models to show their
convergence rate, as shown in Figure 3.

In Table 11, we observe that vanilla GCN and DeepSets-RNI only achieves 50% accuracy, because
they do not have expressive power beyond the 1-WL test. DeepSets-RSE achieves the best perfor-
mance among all models with a near 100% accuracy, which demonstrates the expressive power of
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Table 11: Accuracy results on EXP.
Model Test Accuracy (%)

GCN 50.0
GIN 50.0
PPGN 50.0
1-2-3-GCN-L 50.0
3-GCN 99.7± 0.0
DeepSets-RNI 50.0
GCN-RNI 97.6± 2.5
Linear-RSE 99.1± 1.8
DeepSets-RSE 99.8± 0.5
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Figure 3: Learning curves on EXP.

RSE-based models is beyond the 1-WL test. Other models, namely Linear-RSE and GCN-RNI, also
achieve comparable performance. It’s worth mentioning that even a simple linear model (Linear-RSE)
could achieve performance above 99%. This indicates that the universal expressiveness of models
with RSE is mostly from RSE itself, rather than the network structure.

From Figure 3, we find that the convergence rate of RSE-based models are much faster than their
RNI-based counterpart. This is because RSE-based models are deterministic, while RNI-based
models are random and require more training epochs to converge. The structures of DeepSets-RSE
and Linear-RSE are simpler, which means they also train much faster than GCN-RNI.

D Synthetic experiment on basis invariance

As mentioned in Appendix B, SignNet [29] only deals with sign ambiguity, while BasisNet [29]
has a prohibitive computational overhead. On the other hand, our proposed MAP addresses basis
ambiguity efficiently, albeit with the existence of uncanonizable eigenspaces. In this section, we
conduct a synthetic experiment to verify the ability of MAP on addressing basis ambiguity. We
use graph isomorphic testing, a traditional graph task. Our focus is on 10 non-isomorphic random
weighted graphs G1, . . . ,G10, all exhibiting basis ambiguity issues (with the first three eigenvectors
belonging to the same eigenspace). We sample 20 instances for each graph, introducing different
permutations and basis choices for the initial eigenspace. The dataset is then split into a 9:1 ratio for
training and testing, respectively. The task is a 10-way classification, where the aim is to determine
the isomorphism of a given graph to one of the 10 original graphs. The model is given the first 3
eigenvectors as input (i.e. k = 3). The results are averaged over 4 different runs.

Table 12: Test accuracy of the synthetic graph isomorphic testing task with DeepSets [63] using
different PEs.

Positonal Encoding Accuracy

LapPE 0.11 ± 0.08
LapPE + RS 0.10 ± 0.09
LapPE + SignNet 0.10 ± 0.03
LapPE + MAP 0.84 ± 0.21

As evident from the results in Table 12, approaches that address sign ambiguity (like RandSign and
SignNet) cannot obtain nontrivial performance on this task. Conversely, MAP shows commend-
able performance. The 84% accuracy, although impressive, indicates potential avenues for further
enhancement. We believe this synthetic task could also serve as a valuable benchmark for future
studies addressing basis invariance through canonization. Code for this experiment is available at
https://github.com/GeorgeMLP/basis-invariance-synthetic-experiment.
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E Other positional encoding methods

In this paper, we proposed MAP, which is a kind of positional encodings. In the field of graph
representation learning, many other positional encoding methods have also been proposed. Murphy
et al. [36] proposed Relational Pooling (RP) that assigns each node with an identifier that depends on
the index ordering. They showed that RP-GNN is strictly more expressive than the original WL-GNN.
However, to ensure permutation equivalence, we have to account for all possible n! node orderings,
which is computationally intractable. You et al. [59] proposed learnable position-aware embeddings
by computing the distance of a target node to an anchor-set of nodes, and showed that P-GNNs
have more expressive power than existing GNNs. However, the expressive power of their model is
dependent on the random selection of anchor sets. Sato et al. [44], Abboud et al. [1] proposed to
use full or partial random node features and proved that their model has universal expressive power,
but it has several defects: (1) the loss of permutation invariance, (2) slower convergence, and (3)
poor generalization on unseen graphs [59, 30]. Li et al. [28] proposed Distance Encoding (DE) that
captures the distance between the node set whose representation is to be learned and each node in
the graph. They proved that DE can distinguish node sets embedded in almost all regular graphs
where traditional GNNs always fail. However, their approach fails on distance regular graphs, and
computation of power matrices can be a limiting factor for their model’s scalability. Dwivedi et al.
[18] proposed Learnable Structural and Positional Encodings (LSPE) that decouples structural and
positional representations by inserting MPGNNs-LSPE layers and showed promising performance
on three molecular benchmarks.

In particular, we will show that with Random Node Initialization (RNI), (1) A linear network is
universal on a fixed graph, and (2) An MLP with just one additional message passing layer can be
universal on arbitrary graphs.

In our work, we denote RNI as concatenating a random matrix to the input node features. The
random matrix can be sampled from Gaussian distribution, uniform distribution, etc. Without loss of
generality, we will assume that each entry of the random matrix is sampled independently from the
standard Gaussian distribution N(0, 1).
Definition 2. A GNN with RNI is defined by concatenating a random matrix R to the input node
features, i.e., X ′ = [X,R], where X are the original node features, X ′ are the modified node
features and each entry of R is sampled independently from the standard Gaussian distribution
N(0, 1). The value of R is sampled at every forward pass of GNN.

To study the effects of RNI on the expressiveness of GNNs, we consider two types of tasks: tasks on
a fixed graph (e.g., node classification) and tasks on arbitrary graphs (e.g. graph classification). On a
fixed graph, we aim to learn a function f : Rn×d → Rn×d′

that transforms the feature of each node
vi to a presentation vector Zi,: ∈ R1×d′

. We claim that a linear GNN with RNI in the form

[X,R]W = Z (6)

is universal, where W ∈ Rd×d′
are the network parameters, and Z ∈ Rn×d′

is the desired output. In
other words, we have the universality theorem of linear GNNs with RNI on a fixed graph:
Theorem 7. On a fixed graph G, a linear GNN with RNI defined by Equation 6 is equivariant and
can produce any prediction Z ∈ Rn×d′

with probability 1.

We prove Theorem 7 in Appendix K.8.

On arbitrary graphs, the target function is not only dependent on the node features, but on the graph
structure Â ∈ Rn×n as well. Let Ω ⊂ Rn×d × Rn×n be a compact set of graphs with [X, Â] ∈ Ω,
where X are the node features and Â is the normalized adjacency matrix. We wish to learn a function
f : Ω→ R that transforms each graph to its label. Since f is also dependent on Â, an MLP-based
network with X ′ as input is not expressive enough, and we need additional graph convolutional
layers to obtain information about the graph structure. However, Puny et al. [41] proved that with just
one additional message passing layer, an MLP with RNI can approximate any continuous invariant
graph function f .
Theorem 8 (Puny et al. [41]). Given a compact set of graphs Ω ⊂ Rn×d × Rn×n, a GNN with one
message passing layer, an MLP network with RNI can approximate an arbitrary continuous invariant
graph function f : Ω→ R to an arbitrary precision.
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Theorem 8 is a direct inference of the proof of Proposition 1 in Puny et al. [41], where the authors
constructed a RGNN that first transfers the graph structural information to the node features through
a message passing layer, and then approximates f with a DeepSets network, which is an MLP-based
network.

F Toy Examples

F.1 Toy examples for Algorithm 1
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Step 2: (+u)Txh > 0 > (−u)Txh, so we choose +u as PE

Figure 4: A toy example illustrating our algorithm for eliminating sign ambiguity. Top: The angle
between the z-axis and u is the smallest, so we choose +u to maximize u⊤ez . Bottom: The angle
between both x and y-axes and u are the smallest, so we choose +u to maximize u⊤(ex + ey).

We give toy examples to help illustrate our MAP-sign algorithm. As shown on the top row of
Figure 4, we have n = 3 and two possible sign choices for the eigenvector u. Our algorithm first
compares the angles (or equivalently, the absolute value of inner product) between u and the standard
basis: ex, ey, ez , and pick the smallest one (the one with the largest absolute inner product), in this
case ez . Thus we let xh = ez and choose the sign that maximize u⊤xh. In the first example we
have (+u)⊤xh > 0 > (−u)⊤xh, thus +u is chosen instead of −u. This choice is unique and
permutation-equivariant.

It is possible though, that the angle between u and more than 1 basis vectors are equal. As shown on
the bottom row of Figure 4, the angle between both ex, ey and u are maximum. In this case we let
xh = ex + ey be their sum and maximize u⊤xh, thus +u is chosen. A special case is when u and
xh are perpendicular. If this happens, we go on to pick the basis vector with the second largest angle
and continue this process.

26



x1 := exx

y

z

x2 := ey

x1

x2

find u1 ∈ V
to maximize uT

1 x1
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u1

V V

⟨u1⟩⊥

find u2 ∈ ⟨u1⟩⊥
to maximize uT

2 x2

x1

x2
u1

u2

Step 1: ⟨V, ex⟩ < ⟨V, ey⟩ < ⟨V, ez⟩, so we let x1 := ex,x2 := ey
Step 2: find u1 ∈ V to maximize uT

1 x1

Step 3: find u2 ∈ ⟨u1⟩⊥ to maximize uT
2 x2

Figure 5: A toy example illustrating our algorithm for eliminating basis ambiguity. First, we sort
the angles between V and the standard basis vectors, and set x1 := ex,x2 := ey. Next, we choose
u1 ∈ V that maximizes uT

1 x1. Finally, we choose u2 ∈ ⟨u1⟩⊥ that maximizes uT
2 x2. This gives us

a unique basis u1,u2 of V .

F.2 Toy examples for Algorithm 2

We give a toy example to help illustrate our MAP-basis algorithm. As shown in Figure 5, we have
n = 3, d = 2 with a two-dimensional eigenspace V . Our algorithm first compares the angles (or
equivalently, the length of orthogonal projection) between V and the standard basis: ex, ey, ez ,
and pick the two smallest one (the two with the largest and second largest lengths of orthogonal
projection), in this case ex and ey. Thus we let x1 = ex, x2 = ey. Then we choose u1 ∈ V
that maximizes u⊤

1 x1, which is just the orthogonal projection of x1 onto V . Finally we choose
u2 ∈ ⟨u1⟩⊥ that maximizes u⊤

2 x2, which is the orthogonal projection of x2 onto ⟨u1⟩⊥. This gives
us a basis u1,u2 of V . This choice is unique and permutation-equivariant.

It is possible though, that the angle between V and more than 1 basis vectors are equal. For example,
if ⟨V, ex⟩ = ⟨V, ey⟩ are both the smallest angles between V and the standard basis, then we let
x1 = ex + ey . The same goes for the second smallest angle, the third smallest angle, and so on.

G Discussions on the assumptions

G.1 Discussions on Assumption 1

The purpose of Section 3.3.1 is to uniquely determine the signs of the eigenvectors while also
preserving their permutation-equivariance. One could easily come up with simple solutions such as
choosing the signs such that the sum of the entries of eigenvectors are positive, or signs such that
the element with the greatest absolute value is positive. In fact, Lim et al. [29] has proposed a more
general way of choosing signs:

We also consider ablations in which we . . . choose a canonical sign for each
eigenvector by maximizing the norm of positive entries.
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This “canonical sign” approach did not work well because (1) a large percentage of eigenvectors in
real-world datasets have the same norm for positive and negative entries, thus this approach does
not actually solve sign ambiguity of these eigenvectors; (2) this approach cannot be generalized to
multiple eigenvalues. As a reference, we list the number of eigenvectors that “canonical sign” fails in
Table 13.

Table 13: The number of eigenvectors with the same norm for positive and negative entries, the
total number of eigenvectors, and the ratio of eigenvectors that “canonical sign” approach fails in
real-world datasets.

Dataset ogbg-molesol ogbg-molfreesolv ogbg-molhiv ogbg-mollipo ogbg-moltox21 ogbg-moltoxcast ogbg-molpcba

#Violation 4060 2135 209854 15115 31365 35174 1536415
#Eigenvectors 14991 5600 1049163 113568 145459 161088 11373137

Ratio 27.08 % 38.13 % 20.00 % 9.84 % 21.56 % 21.84 % 13.51 %

Some examples of such eigenvectors in real-world datasets are as follows.

[ 0.0000, 0.0000, -0.0000, 0.0000, 0.1364, -0.0965, -0.0965, -0.1575,
0.0965, -0.0000, 0.1575, -0.0965, -0.2784, 0.2227, -0.1364, -0.0000,
0.3341, -0.2363, -0.2363, -0.1364, 0.2227, -0.0000, -0.0487, 0.0345,
0.0345, -0.0877, 0.0620, 0.0620, 0.2784, -0.2227, 0.1364, 0.0000,

-0.3341, 0.2363, 0.2363, 0.1364, -0.2227],
[ 0.0000, 0.0000, 0.0000, -0.0796, 0.0796, 0.0975, -0.0796, -0.0563,

0.0000, 0.2087, -0.3615, 0.2951, 0.0000, -0.1815, 0.1815, 0.4767,
-0.4767, -0.0029, 0.0051, -0.0042, 0.0000, -0.0458, 0.0458, 0.0416,
-0.0416, -0.1495, 0.2589, -0.2114, 0.0000, -0.0975, 0.0975, -0.1139,
0.1139],

[ 0.0000, 0.0000, 0.0000, -0.0025, 0.0025, 0.0031, -0.0025, -0.0018,
0.0000, -0.0025, 0.0043, -0.0035, -0.0000, -0.0987, 0.0987, 0.0952,

-0.0952, -0.1271, 0.2202, -0.1798, 0.0000, -0.3234, 0.3234, 0.1436,
-0.1436, 0.1313, -0.2275, 0.1858, 0.0000, -0.2524, 0.2524, 0.4381,
-0.4381].

Assumption 1, on the other hand, is less restrictive. It requires that the eigenvectors are not per-
pendicular to at least one of the vectors xi. For random unit vectors or random weighted graphs,
Assumption 1 has 0 possibility of being violated. The number of eigenvectors violating Assumption 1
in real-world datasets are listed in Table 14. It can be observed that the ratio of violation tends to
become smaller as the graph size becomes larger.

Table 14: The number of eigenvectors violating Assumption 1, the total number of eigenvectors, and
the ratio of violation in real-world datasets. We ignore small graphs with no more than 5 nodes.

Dataset ogbg-molesol ogbg-molfreesolv ogbg-molhiv ogbg-mollipo ogbg-moltox21 ogbg-moltoxcast ogbg-molpcba

#Violation 727 388 29558 3328 5418 6032 343088
#Eigenvectors 14551 5048 1049101 113568 144421 159987 11372381

Ratio 5.00 % 7.69 % 2.82 % 2.93 % 3.75 % 3.77 % 3.02 %

G.2 Discussions on Assumption 2 and Assumption 3

Assumption 2 requires that the projections of e1, e2, . . . , en on V have at least d distinct lengths,
while Assumption 3 requires that each xi is not perpendicular to ⟨u1, . . . ,ui−1⟩⊥, which is a
subspace of V . We illustrate two examples of these assumptions being violated when n = 3 and
d = 2 in Figure 6. In the left figure, the projections of e1, e2, e3 on V all have the same lengths,
thus k = 1 < d, violating Assumption 2. In the right figure, x2 is perpendicular to the orthogonal
complementary space of span(u1) in V , violating Assumption 3. We observe that the eigenspace
V needs to obey certain kinds of symmetries in order to violate either assumptions. For random
orthonormal matrices and random weighted graphs, these assumptions have 0 possibility of being
violated; and in real-world datasets, the ratio of violation tends to become smaller as the graph size
becomes larger.

The number of multiple eigenvalues violating these assumptions in real-world datasets are listed
in Table 15. Indeed there is still around 20% of violation on large datasets, but since multiple
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Figure 6: Examples of Assumption 2 and Assumption 3 being violated when n = 3 and d = 2.
Left: the projections of e1, e2, e3 are of the same length, thus k = 1 < d, violating Assumption 2.
Right: x2 is perpendicular to the orthogonal complementary space of span(u1) in V , violating
Assumption 3.

eigenvalues only make up a small portion of all eigenvalues (Table 9), the ratio of violation is
relatively small and has negligible influence on the model performance.

Table 15: The number of eigenvalues violating Assumption 2 or Assumption 3 in real-world datasets.
n1: the number of eigenvalues violating Assumption 2. n2: the number of eigenvalues not violating
Assumption 2 but violating Assumption 3. N1: the total number of multiple eigenvalues. p1: the
ratio of multiple eigenvalues violating Assumption 2. p2: the ratio of multiple eigenvalues violating
Assumption 3. N2: the total number of eigenvalues. p3: the ratio of all eigenvalues violating
Assumption 2. p4: the ratio of all eigenvalues violating Assumption 3. We ignore small graphs with
no more than 5 nodes.

Dataset ogbg-molesol ogbg-molfreesolv ogbg-molhiv ogbg-mollipo ogbg-moltox21 ogbg-moltoxcast ogbg-molpcba

n1 39 30 5315 440 646 873 30844
n2 126 45 6329 599 1073 1450 61318
N1 738 286 52367 5391 8772 10556 491247
p1 5.28 % 10.49 % 10.15 % 8.16 % 7.36 % 8.27 % 6.28 %
p2 17.07 % 15.73 % 12.09 % 11.11 % 12.23 % 13.74 % 12.48 %
N2 13420 4654 952055 104669 129730 141042 10627757
p3 0.29 % 0.64 % 0.56 % 0.42 % 0.50 % 0.62 % 0.29 %
p4 0.94 % 0.97 % 0.66 % 0.57 % 0.83 % 1.03 % 0.58 %

H Discussions on random graphs

In this section we summarize some existing results on random graphs and more generally random ma-
trices. These discussions help us to have a better understanding of how eigenvalues and eigenvectors
of random graphs distribute, and the probability that they are uncanonizable by our MAP algorithm.
Due to the theoretical complexity, we do make some simplifications in our discussions.

We first give some basic definitions about random matrices and random graphs.
Definition 3 (Wigner matrix). Let ξ, ζ be real random variables with mean zero. We say W is a
Wigner matrix of size n with atom variables ξ, ζ if W = (wij)

n
i,j=1 is a random real symmetric

n× n matrix that satisfies the following conditions.

• (independence) {wij : 1 ≤ i ≤ j ≤ n} is a collection of independent random variables.

• (off-diagonal entries) {wij : 1 ≤ i < j ≤ n} is a collection of independent and identically
distributed (iid) copies of ξ.

• (diagonal entries) {wii : 1 ≤ i ≤ n} is a collection of iid copies of ζ.

If ξ and ζ have the same distribution, we say W is a Wigner matrix with atom variable ξ. We always
assume that ξ is non-degenerate, namely that there is no value c such that P(ξ = c) = 1.
Definition 4 (symmetric Bernoulli matrix). Let 0 < p < 1, and take ξ to be the random variable

ξ :=

{
1− p, with probability p,

−p, with probability 1− p.
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Then ξ has zero mean. Let Bn(p) denote the n× n Wigner matrix with atom variable ξ. We refer to
Bn(p) as a symmetric Bernoulli matrix (with parameter p).

Definition 5 (sub-exponential). A random variable ξ is called sub-exponential with exponent α > 0
if there exists a constant β > 0 such that

P(|ξ| > t) ≤ β exp(−tα/β) for all t > 0.

Definition 6 (Erdős-Rényi random graph). Let G(n, p) denote the Erdős-Rényi random graph on n
vertices with edge density p. That is, G(n, p) is a simple graph on n vertices such that each edge
{i, j} is in G(n, p) with probability p, independent of other edges.

Let An(p) be the zero-one adjacency matrix of G(n, p). An(p) is not a Wigner matrix since its entries
do not have mean zero. Let G̃(n, p) denote the Erdős-Rényi random graph with loops on n vertices
with edge density p. Let Ãn(p) denote the zero-one adjacency matrix of G̃(n, p). Technically, Ãn(p)
is not a Wigner random matrix because its entries do not have mean zero. However, we can view
Ãn(p) as a low rank deterministic perturbation of a Wigner matrix. That is, we can write Ãn(p) as

Ãn(p) = pJn +Bn(p),

where Jn is the all-ones matrix.

Simplification in our discussions. The adjacency matrix of Erdős-Rényi random graphs can be
viewed as a rank-one perturbation of a zero-mean symmetric random matrix, which has no effect
on the distribution of eigenvalues in the limit n→∞ [8]. In the finite case, the difference between
eigenvalues and eigenvectors of the perturbed and unperturbed random matrices can be bounded as
well, as stated in the following theorems.

Theorem 9 (O’Rourke et al. [38]). Let E be an n × n Bernoulli random matrix, and let A be
an n × n matrix with rank r. Let σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n} ≥ 0 be singular values of A,
v1, v2, . . . , vmin{m,n} be corresponding singular vectors of A, σ′

1 ≥ · · · ≥ σ′
min{m,n} ≥ 0 be

singular values of A + E, v′1, . . . , vmin{m,n} be corresponding singular vectors of A + E. For
every ε > 0 there exists constants C0, δ0 > 0 (depending only on ε) such that if δ > δ0 and
σ1 ≥ max{n,

√
nδ}, then, with probability at least 1− ε,

sin∠(v1, v
′
1) ≤ C

√
r

δ
.

Theorem 10 (O’Rourke et al. [38]). Let E be an n × n Bernoulli random matrix, and let A be
an n × n matrix with rank r satisfying σ1 ≥ n. For every ε > 0, there exists a constant C0 > 0
(depending only on ε) such that, with probability at least 1− ε,

σ1 − C ≤ σ′
1 ≤ σ1 + C

√
r.

In particular, when the rank r is significantly smaller than n, the bounds in the above theorems are
significantly better. Thus the rank-one perturbation has little or no effect on the spectral distribution
of the adjacency matrix. In the following discussions we will ignore the rank-one perturbation and
assume that the adjacency matrix of random graphs have zero mean.

We will study two cases: (1) the adjacency matrix of the random graph is continuously distributed
(random weighted graph); (2) the adjacency matrix of the random graph is discretely distributed
(random unweighted graph).

It is easy to see that for a Wigner matrix with atom variables ξ, ζ, if the distribution of ξ is continuous,
then with probability 1 it has simple spectrum (i.e., all eigenvalues have multiplicity one), thus
no basis ambiguity exists. For its single eigenvectors, we also expect these eigenvectors to be
continuously distributed on the unit sphere, thus the probability that they are uncanonizable is equal
to 1. In fact, we can even give a explicit formula for the distribution of some simple random matrices,
as follows.

Definition 7 (GOE). The Gaussian orthogonal ensemble (GOE) is defined as a Wigner random
matrix with atom variables ξ, ζ, where ξ is a standard normal random variable and ζ is a normal
random variable with mean zero and variance 2.
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Theorem 11 (Anderson et al. [4], Section 2.5.1). Let M be a n× n real symmetric matrix drawn
from the GOE, with eigenvalues λ1 ≤ · · · ≤ λn and corresponding eigenvectors v1, . . . , vn. Then
the eigenvectors v1, . . . , vn are uniformly distributed on

Sn−1
+ := {x = (x1, . . . , xn) ∈ Sn−1 : x1 > 0},

and the eigenvalues λ1, . . . , λn have joint density

pn(λ1, . . . , λn) :=

{
1
Zn

∏
1≤i<j≤n |λi − λj |

∏n
i=1 e

−λ2
i /4, if λ1 ≤ · · · ≤ λn,

0, otherwise,

where Zn is a normalization constant.

Thus the eigenvectors of such Gaussian random matrices are uniformly distributed on the unit sphere,
meaning they are canonizable with probability 1.

The discrete case is trickier, because when n is finite, the probability that the eigenvectors are
uncanonizable is no longer 0. We wish that this probability can be upper bounded and asymptotically
converges to zero. The first fact is that for a large class of random matrices, perturbed or not, they
have simple spectrum with probability 1− o(1).

Theorem 12 (Tao and Vu [50]). Consider real symmetric random matrices Mn = (ξij)1≤i,j≤n,
where the entries ξij for i ≤ j are jointly independent with ξji = ξij , the upper-triangular entries
ξij , i < j have non-trivial distribution ξ for some fixed µ > 0 such that P(ξ = x) ≤ 1 − µ for
all x ∈ R. The diagonal entries ξii, 1 ≤ i ≤ n can have an arbitrary real distribution (and can
be correlated with each other), but are required to be independent of the upper diagonal entries
ξij , 1 ≤ i < j ≤ n. Then for every fixed A > 0 and n sufficiently large (depending on A,µ), the
spectrum of Mn is simple with probability at least 1− n−A.

Thus with probability 1− o(1) no basis ambiguity exists.

For sign ambiguity, we expect that the probability that the single eigenvectors are canonizable
asymptotically converges to 1 as n → ∞. Denote j = (1, 1, . . . , 1) ∈ Rn the all-one vector,
ĵ = ( 1√

n
, 1√

n
, . . . , 1√

n
) ∈ Rn the normalized all-one vector. One obvious fact is that for an

eigenvector u ∈ Rn, if it is non-canonizable, then u · j = 0. Thus it suffices to show that the
probability of the inner product between u and j being zero converges to 0 as n→∞. This can be
derived from the following theorem.

Theorem 13 (Tao and Vu [49]). Let ξ, ζ be random variables such that

• ξ and ζ are sub-exponential random variables,

• E(ξ) = E(ζ) = E(ξ3) = 0,

• E(ξ2) = 1,E(ξ4) = 3,E(ζ2) = 2,

and assume ξ is a symmetric random variable. For each n ≥ 1, let Wn be an n × n Wigner
matrix with atom variables ξ, ζ. Let {an} be a sequence of unit vectors with an ∈ Sn−1 such that
limn→∞∥an∥ℓ∞ = 0, and let {in} be a sequence of indices with in ∈ [n]. Then

√
nvin(Wn) · an → N(0, 1)

in distribution as n→∞.

Thus in the limit as n→∞, by taking an = ĵ, we have the inner product between the eigenvector and
j following a normal distribution. The probability that they have zero inner product is 0, indicating
these eigenvectors are almost always canonizable.

Related readings. We refer the readers to Anderson et al. [4] for a introduction of random matrices,
Benaych-Georges and Nadakuditi [8] for a survey about the singular values and vectors of low rank
perturbations of large random matrices, O’Rourke et al. [37] for a comprehensive survey about
eigenvectors of random matrices.
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I Further weakening the assumptions

I.1 Further weakening Assumption 1

In Section 3.2, we mentioned that some eigenvectors are intrinsically uncanonizable, meaning that it
is impossible to canonize them based on themselves. However, in graph-level tasks, the input is a
whole graph with n eigenvectors, not a single eigenvector. When the input graph is permuted by a
permutation σ, all the eigenvectors are also permuted in the same way. This raises the question of
whether we can canonize one eigenvector based on other eigenvectors in the same graph.

Thus we propose to further weaken Assumption 1 in the following steps. For a given input graph,
we first divide its eigenvectors into two sets: S1, containing all uncanonizable eigenvectors; and S2,
containing all canonizable eigenvectors. Suppose |S1| = d1, |S2| = d2, where d1 + d2 = n. Define
the matrix of canonizable eigenvectors

Ucan = [u1, . . . ,ud2
], where u1, . . . ,ud2

are all the eigenvectors in S2.

We fist canonize all the eigenvectors in S2, using our MAP-sign algorithm. This gives us a matrix of
canonized eigenvectors U∗

can ∈ Rn×d2 . Using a hash function, we can compress the matrix U∗
can

into a vector ucan that preserves all the information of S2:
ucan ∈ Rn, where (ucan)i = hash

{
(U∗

can)i,:
}
, 1 ≤ i ≤ n.

Then we can define the summary vectors xi of ucan in the same way as in Section 3.3, and use them
to canonize the eigenvectors in S1. Denote the projection matrix P = ucanu

⊤
can and the projected

angles αi = |Pei|, 1 ≤ i ≤ n. Assume that there are k distinct values in {αi, i = 1, . . . , n},
according to which we can divide all basis vectors {ei} into k disjoint groups Bi (arranged in
descending order of the distinct angles). Each Bi represents an equivalent class of axis that ucan has
the same projection on. Then we define a summary vector xi of ucan for the axes in each group Bi
as their total sum xi =

∑
ej∈Bi

ej + c, where c is a tunable constant.

For each u ∈ S1, we can try to canonize it using the MAP-sign algorithm as in Section 3.3.1, with the
summary vectors of u replaced by the summary vectors of ucan. We find the first non-orthongonal
summary vector with u, denoted by xh, and choose the sign that maximizes u⊤xh. In this way,
we are able to canonize some eigenvectors in S1 that are originally uncanonizable, thus further
weakening Assumption 1. The complete workflow is shown in Algorithm 6.

Algorithm 6 A stronger algorithm for eliminating sign ambiguity

Require: Input graph G = (V,E,X)
Ensure: Spectral embedding of G

Calculate the eigendecomposition Â = UΛU⊤

S1 ← the set of all uncanonizable eigenvectors of G
S2 ← the set of all canonizable eigenvectors of G
Canonize all eigenvectors in S2, using Algorithm 1
U∗

can ← [u∗
1, . . . ,u

∗
d2
], where u∗

1, . . . ,u
∗
d2

are all the canonized eigenvectors, d2 = |S2|
ucan ←

(
hash{(U∗

can)1,:}, . . . ,hash{(U∗
can)n,:}

)⊤
P ← ucanu

⊤
can

αi ← |Pei|, 1 ≤ i ≤ n
k ← the number of distinct values in {αi}
Divide all basis vectors {ei} into k disjoint groups Bi according to the values of {αi}
xi ←

∑
ej∈Bi

ej + cj, i = 1, . . . , k

for each eigenvector u ∈ S1 do
xh ← non-orthogonal summary vector with smallest h
u← −u if u⊤xh < 0

end for
return the canonized eigenvectors

I.2 Further weakening Assumption 2 and Assumption 3

When reading Algorithm 2, some may find it not as strong as Algorithm 1. In Algorithm 1, we
search over the summary vectors xi one by one, until we find a summary vector xh that is not
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orthogonal to u. However, in Algorithm 2, we just assumed that x1 is not orthogonal to V , x2 is not
orthogonal to ⟨u1⟩⊥, x3 is not orthogonal to ⟨u1,u2⟩⊥, etc. We did not search for non-orthogonal
summary vectors; we just assumed that they are. This observation is more obvious when we look
at the special case of Algorithm 2 when d = 1. In this case, Assumption 2 is always satisfied, and
Assumption 3 requires that x1 is not orthogonal to u, which is stricter than Assumption 1 in our
MAP-sign algorithm. This raises the question of whether we can strengthen Algorithm 2 such that it
is as powerful as Algorithm 1 when taking d = 1.

This can be achieved by searching for non-orthogonal summary vectors at each step just as in
Algorithm 1. Suppose we have obtained the summary vectors xi, i = 1, . . . , k. First we search {xi}
for the first summary vector x∗

1 that is not orthogonal to V , and choose u1 ∈ V that maximizes
u⊤
1 x

∗
1. Next we search {xi} for the first summary vector x∗

2 that is not orthogonal to ⟨u1⟩⊥, and
choose u2 ∈ ⟨u1⟩⊥ that maximizes u⊤

2 x
∗
2. Then we search {xi} for the first summary vector x∗

3

that is not orthogonal to ⟨u1,u2⟩⊥, and choose u3 ∈ ⟨u1,u2⟩⊥ that maximizes u⊤
3 x

∗
3, and so on.

The complete workflow is shown in Algorithm 7.

Algorithm 7 A stronger algorithm for eliminating basis ambiguity

Require: Eigenvalue λ with multiplicity d > 1
Ensure: Spectral embedding corresponding to λ

Calculate the eigenvectors U ∈ Rn×d of λ through eigendecomposition
P ← UU⊤

αi ← |Pei|, 1 ≤ i ≤ n
k ← the number of distinct values in {αi}
Divide all basis vectors {ei} into k disjoint groups Bi according to the values of {αi}
xi ←

∑
ej∈Bi

ej + cj, i = 1, . . . , k

for i = 1, 2, . . . , d do
x∗
i ← the first summary vector in {xi} not perpendicular to ⟨u1, . . . ,ui−1⟩⊥

Choose ui ∈ ⟨u1, . . . ,ui−1⟩⊥, |ui| = 1, s.t. f(ui) = u⊤
i x

∗
i is maximized

end for
return U0 := [u1, . . . ,ud]

In order for Algorithm 7 to succeed, we require that such non-orthogonal summary vector x∗
i exists

at each step, which is less restrictive than Assumption 2 and Assumption 3. Thus we obtain a stronger
algorithm for eliminating basis ambiguity.

J An alternative approach to dealing with sign ambiguity

In our design for algorithms that eliminate sign ambiguity, we find one type of eigenvectors especially
difficult to deal with. That is, uncanonizable eigenvectors u ∈ Rn such that there exists a permutation
matrix P ∈ Rn×n satisfying u = −Pu. This means that u and −u only differ by a permutation.
Since they are uncanonizable by Corollary 1, none of the solutions mentioned in Appendix G.1 can
handle such eigenvectors. However, depending on the model architecture, such eigenvectors may not
cause ambiguities at all. For example, consider the DeepSets-like architecture ρ(

∑
ϕ(ui)), where ϕ

is permutation-invariant. Then since u and −u only differ by a permutation, they produce the same
output when fed to a permutation-invariant network, thus no ambiguities exist. This shows we can
delay the handling of uncanonizable eigenvectors to the training stage, though it may result in loss of
expressive power.

On the other hand, for eigenvectors that are canonizable, we already know that Algorithm 1 canonizes
them. Here we give an equivalent algorithm for removing sign ambiguity, shown in Algorithm 8.

Theorem 14. Algorithm 8 uniquely decides the signs of canonizable eigenvectors and is permutation-
equivariant.

Theorem 14 is proved in Appendix K.9.

Algorithm 8 is well-motivated and better to understand than Algorithm 1 in some sense. Consider a
naïve canonization of u where we choose the sign such that u has positive sum. This canonization
algorithm is quite simple, but it cannot canonize all canonizable eigenvectors, such as the ones with
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Algorithm 8 An alternative approach to dealing with sign ambiguity

Require: Input graph G = (V,E,X)
Ensure: Spectral embedding of G

Calculate the eigendecomposition Â = UΛU⊤

for each eigenvector u ∈ Rn do
h← the smallest positive odd integer such that

∑n
i=1 u

h
i ̸= 0

Substitute u with −u if
∑n

i=1 u
h
i < 0

end for
return U

zero sum. What Algorithm 8 does is to go on to look at the sum of the 3rd power of u and, if it is
non-zero, choose the sign such that it is positive. If unfortunately it is zero, we go on to look at the
sum of the 5th power and so on. It can be proved that there must exists a positive odd integer h ≤ n
such that the sum of the h-th power of u is non-zero. Thus Algorithm 8 terminates within n+1

2 steps,
successfully canonizing all canonizable eigenvectors.

Algorithm 8 offers an alternative approach to dealing with sign ambiguity in addition to Algorithm 1,
though it cannot generalize to the basis ambiguity case. The time complexity of Algorithm 8 is
O(n2 log n).

K Proofs

K.1 Proof of Theorem 1

We first prove that UΛ
1
2 is a real-valued matrix.

Lemma 1. Suppose Â is the normalized adjacency matrix of a graph G, and Â = UΛU⊤ is its
spectral decomposition. Then, UΛ

1
2 ∈ Rn×n.

Proof. Let Λ = diag(λ). It suffices to show that λi ≥ 0 for i = 1, 2, . . . , n.

Let G = (V,E), where V is the vertex set and E is the edge set. For node i, we denote the degree of
node i by di. For any x ∈ Rn, we have

x⊤Âx = x⊤(I + Ã)x =
∑
i∈V

x2
i +

∑
(i,j)∈E

2xixj√
didj

=
∑

(i,j)∈E

(
xi√
di

+
xj√
dj

)2

≥ 0,

thus the Rayleigh quotient of Â is bounded by x⊤Âx
x⊤x

≥ 0. The Rayleigh quotient gives the lower
bound of eigenvalues of Â, therefore we have λi ≥ 0, and this completes the proof.

Then we give the proof of Theorem 1.

Proof. We can rewrite f such that it is a continuous set invariant function on the set consisting of the
rows of its input:

f([X, Â]) = f([X,UΛU⊤]) = f
([

X, (UΛ
1
2 )(UΛ

1
2 )⊤
])

= F ([X,UΛ
1
2 ]).

Using the permutation invariance property of f , we can verify that F is set invariant by observing:

F ([PX,PUΛ
1
2 ]) = f

([
PX, (PUΛ

1
2 )(PUΛ

1
2 )⊤
])

= f([PX,PÂP⊤]) = f([X, Â]) = F ([X,UΛ
1
2 ]).

Thus a universal network on sets can approximate F to an arbitrary precision.
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K.2 Proof of Theorem 2

Proof. On the one hand, if f(hx) = gf(x) holds for some h ∈ H and g ∈ G, then we have
A
(
f(hx)

)
= hA

(
f(x)

)
by the equivariance property of A and A

(
gf(x)

)
= A

(
f(x)

)
by the

invariance property of A. However, since A is a mapping and f(hx) = gf(x), there must be
A
(
f(hx)

)
= A

(
gf(x)

)
and thus A

(
f(x)

)
= hA

(
f(x)

)
. Now we have x ̸= hx and A

(
f(x)

)
=

hA
(
f(x)

)
, contradicting the universality property of A.

On the other hand, if there does not exist h ∈ H and g ∈ G such that x ̸= hx and f(hx) = gf(x),
we can construct a canonization of x as follows. First arbitrarily choose y0 such that f(x) = y0,
and let A

(
f(x)

)
= y0. For any h ∈ H such that x ̸= hx, by the equivariance of f we know

that f(hx) = hy0, thus we let A
(
f(hx)

)
= hy0. Since f(hx) ̸= gf(x) for any g, we know that

y0 ̸= hy0, thus the universality property of A holds. A is also invariant, since A
(
f(x)

)
is uniquely

determined; and equivariant, since A
(
f(hx)

)
= hy0 = hA

(
f(x)

)
for any h. We can repeat this

process for all equivalence classes inX and obtain an invariant, equivariant and universal canonization
for all inputs.

K.3 Proof of Corollary 1

Proof. Under sign ambiguity, we have H = Sn and G = {+1,−1}. By Theorem 2, u is canonizable
if and only if there does not exist a permutation σ such that u ̸= σ(u) and u = ±σ(u). This is
equivalent to say that there does not exist a permutation matrix P ∈ Rn×n such that u = −Pu.

K.4 Proof of Corollary 2

Proof. Under basis ambiguity, we have H = Sn and G = O(d). By Theorem 2, U is canonizable
if and only if there does not exist a permutation σ and an orthonormal matrix Q ∈ O(d) such that
U ̸= σ(U) and U = σ(U)Q. This is equivalent to say that there does not exist a permutation matrix
P ∈ Rn×n such that U ̸= PU and U and PU span the same d-dimensional subspace V ⊆ Rn.
Note here we used a lemma from Lim et al. [29]: for any orthonormal bases V and W of the same
subspace, there exists an orthogonal Q ∈ O(d) such that V Q = W .

K.5 Proof of Theorem 3

Proof. Without loss of generality, we can always assume that the angles {αi} are sorted (if they are
not, we can simply rearrange ei to make them sorted and proceed in the same way):

|Pe1| = · · · = |Pen1
| > |Pen1+1| = · · · = |Pen1+n2

| > · · ·
> |Pen1+···+nk−1+1| = · · · = |Pen1+···+nk

|,

where k is the number of distinct lengths of Pei,
∑k

i=1 ni = n. Here we divide ei into k groups
according to the angles between them and the eigenspace, with each group sharing the same |Pei|.
Define j = (1, 1, . . . , 1) ∈ Rn, then xi can be expressed as

xi = en1+···+ni−1+1 + · · ·+ en1+···+ni
+ cj, 1 ≤ i ≤ k.

The sign of u0 is selected based on the sign of u⊤xh(̸= 0), which is sign-equivariant. No matter
what the sign of u is, we will always choose the one that maximizes u⊤xh, thus u0 is sign-invariant.

Suppose the entries of the input eigenvector u is permutated by σ ∈ Sn, where Sn is the permutation
group of order n. Then we have u′

i = uσ(i)(1 ≤ i ≤ n) and

|u′u′⊤eσ(1)| = · · · = |u′u′⊤eσ(n1)| > |u
′u′⊤eσ(n1+1)| = · · · = |u′u′⊤eσ(n1+n2)| > · · ·

> |u′u′⊤eσ(n1+···+nk−1+1)| = · · · = |u′u′⊤eσ(n1+···+nk)|,

thus (x′
i)i = (xi)σ(i), i.e., the vectors xi(1 ≤ i ≤ k) are permutation-equivariant. Let x′

h be defined
as in Section 3.3.1 (the number h is permutation-invariant because each u′⊤x′

i is permutation-
invariant). The sign of u′

0 is determined by the sign of the dot product of u′ and x′
h, both of which

are permutation-equivariant. This indicates that the sign of u′⊤x′
h (and thus the sign of u′

0) is
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permutation-invariant (i.e., unique). Since u′
0 = u′ or u′

0 = −u′, u′
0 is permutation-equivariant as

well.

If there exists a permutation σ (acting on entries of u) such that u ̸= σ(u) but they have the same
canonical form, then either u = +σ(u) or u = −σ(u). The former is impossible since we already
assumed they are not equal, and the latter violates Assumption 1, leading to a contradiction. Thus the
canonization of u is universal.

K.6 Proof of Theorem 4

Proof. Without loss of generality, we can always assume that the angles {αi} are sorted (if they are
not, we can simply rearrange ei to make them sorted and proceed in the same way):

|Pe1| = · · · = |Pen1
| > |Pen1+1| = · · · = |Pen1+n2

| > · · ·
> |Pen1+···+nk−1+1| = · · · = |Pen1+···+nk

|,

where k is the number of distinct lengths of Pei,
∑k

i=1 ni = n. Here we divide ei into k groups
according to the angles between them and the eigenspace, with each group sharing the same |Pei|.
Define j = (1, 1, . . . , 1) ∈ Rn, then xi can be expressed as

xi = en1+···+ni−1+1 + · · ·+ en1+···+ni + cj, 1 ≤ i ≤ k.

Notice that |Pei| = |uu⊤ei| = ui|u|, thus

|u1| = · · · = |un1
| > · · · > |un1+···+nk−1+1| = · · · = |un1+···+nk

|.

Suppose u violates Assumption 1. Then for any 1 ≤ j ≤ k, we have

un1+···+nj−1+1 + · · ·+ un1+···+nj
= 0.

Let ũj := (un1+···+nj−1+1, . . . , un1+···+nj
)⊤. The above equations show that (1) the absolute value

of the entries of ũj are all equal; (2) the sum of the entries of ũj is 0. Thus for any entry of ũj , either
it is 0 or its positive and negative value appears in pairs. In conclusion, +ũj and −ũj are equal up
to a permutation for all j, thus +u and −u are equal up to a permutation. By Theorem 1, it is not
canonizable.

On the other hand, suppose u satisfies Assumption 1. Then there exists 1 ≤ j ≤ k such that

un1+···+nj−1+1 + · · ·+ un1+···+nj ̸= 0.

Let ũj := (un1+···+nj−1+1, . . . , un1+···+nj )
⊤. ũj contains all entries of u with absolute value

|un1+···+nj
|. Since the sum of ũj is non-zero, the numbers of positive and negative entries in ũj are

different. No matter how we permute +u and −u, their corresponding entries in ũj will not align.
Thus +u and −u are not equal up to any permutation. By Theorem 1, it is canonizable.

K.7 Proof of Theorem 5

We first point out that the orthogonal projector P = UU⊤ is invariant to the choice of basis.

Lemma 2. Let U = [u1, . . . ,ud] ∈ Rn×d and V = [v1, . . . ,vd] ∈ Rn×d be two sets of orthonor-
mal vectors that span the same d-dimensional subspace V ⊆ Rn. Then UU⊤ = V V ⊤.

Proof. We have U⊤U = V ⊤V = I by the definition of U and V . Let U = V Q where Q is an
invertible matrix, then

UU⊤ = U(U⊤U)−1U⊤

= V Q(Q⊤V ⊤V Q)−1Q⊤V ⊤

= V QQ−1(V ⊤V )−1(Q⊤)−1Q⊤V ⊤ = V V ⊤.
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Lemma 2 shows that Pei (and thus xi) is invariant to the choice of basis in V . If we permute
e1, . . . , en by σ ∈ Sn, then the sorted sequence of |Pei| is also permuted by σ. Thus the elements
of each xi is permuted by σ as well. This shows the choice of xi is permutation-equivariant.

Then we prove Theorem 5.

Proof. Without loss of generality, we can always assume that the angles {αi} are sorted (if they are
not, we can simply rearrange ei to make them sorted and proceed in the same way):

|Pe1| = · · · = |Pen1 | > |Pen1+1| = · · · = |Pen1+n2 | > · · ·
> |Pen1+···+nk−1+1| = · · · = |Pen1+···+nk

|,

where k is the number of distinct lengths of Pei,
∑k

i=1 ni = n. Here we divide ei into k groups
according to the angles between them and the eigenspace, with each group sharing the same |Pei|.
Define j = (1, 1, . . . , 1) ∈ Rn, then xi can be expressed as

xi = en1+···+ni−1+1 + · · ·+ en1+···+ni
+ cj, 1 ≤ i ≤ k.

We have already shown the existence of the maximum value of f(u). To show that basis-invariance
of U0, it suffices to show the uniqueness of the maximum point of f(u). Thus no matter what basis
of U is, Algorithm 2 always yields the same output.

Notice that f(−u) = −f(u), thus either the maximum value of f(u) is positive, or f(u) = u⊤xi ≡
0. However, f(u) ≡ 0 implies that xi is perpendicular to ⟨u1, . . . ,ui−1⟩⊥, violating Assumption 3.
Thus we conclude the maximum value of f(u) is positive.

Suppose there exists u′ ̸= u′′ such that f(u′) = f(u′′) takes maximum value. Consider the
vector αu′ + αu′′ where α =

√
1

2(1+u′⊤u′′)
> 1

2 . Obviously, αu′ + αu′′ ∈ ⟨u1, . . . ,ui−1⟩⊥,

|αu′+αu′′| = 1, and f(αu′+αu′′) = 2αu′⊤xi > u′⊤xi. This leads to a contradiction. Therefore,
the choice of ui is unique.

The permutation-equivariance of Algorithm 2 can be proved by observing that each step of Algo-
rithm 2 is permutation-equivariant. Since each xi is permutation-equivariant, its eigenprojection on
the subspace V (and thus U0) is also permutation-equivariant.

If there exists a permutation σ (acting on rows of U ) such that U ̸= σ(U) but they have the same
canonical form, then U and σ(U) spans the same subspace. On the one hand, U ̸= σ(U) means that
at least one of the eigenvectors in U is not σ-invariant. On the other hand, since all u1, . . . ,ud are
permutation-equivariant but unchanged after σ, they are all σ-invariant. This leads to a contradiction,
since it is impossible to have a non-σ-invariant eigenvector in a σ-invariant eigenspace.

K.8 Proof of Theorem 7

We first prove the following lemmas.

Lemma 3. Let R ∈ Rn×n be a random matrix, and each entry of R is sampled independently from
the standard Gaussian distribution N(0, 1). Then with probability 1, R has full rank.

Proof. We denote the first column of R by R:,1. It is linearly independent because R:,1 = 0 with
probability 1. Then we view R:,1 as fixed, and consider the second column R:,2. The probability that
R:,2 falls into the span of R:,1 is 0, thus with probability 1, R:,1 and R:,2 are linearly independent.

Generally, let us consider the k-th column R:,k. The first k−1 columns of R forms a subspace in Rn

whose Lebesgue measure is 0. Thus R:,k falls into this subspace with probability 0. By inference, we
have all the columns of R are linearly independent with probability 1, i.e., P (rank(R) = n) = 1.

Lemma 4. Let A ∈ Rs×n, B ∈ Rs×m be two matrices. Then the equation AX = B has a solution
iff. rank(A) = rank([A,B]).

Proof. First we prove the necessity. Suppose AX = B has a solution. Then,

[A:,1,A:,2, . . . ,A:,n]X:,i = B:,i,
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where M:,i denotes the i-th column of matrix M . This means each column of B can be expressed
as a linear combination of the columns of A, and therefore each column of [A,B] can be expressed
as a linear combination of the columns of A.

On the other hand, it is obvious that each column of A can be expressed as a linear combination of
the columns of [A,B]. Thus we have rank(A) = rank([A,B]).

Then we prove the sufficiency. Since rank(A) = rank([A,B]), and each column of A can be
expressed as a linear combination of columns of [A,B], we have the columns of A and the columns
of [A,B] are equivalent. Therefore, each column of B can be expressed as a linear combination of
columns of A, i.e., Ax = B:,i has a solution for i = 1, . . . ,m. Thus the equation AX = B has a
solution.

Then we give the proof of Theorem 7.

Proof. For any prediction Z ∈ Rn×d′
, we wish to prove that with probability 1, there exists

parameters of a linear GNN with RNI W ∈ Rd×d′
such that

[X,R]W = Z. (7)

By Lemma 4, the necessary and sufficient condition that Equation 7 has a solution W is
rank([X,R]) = rank([X,R,Z]).

By Lemma 3, with probability 1, rank(R) = n, therefore rank([X,R]) = rank([X,R,Z]) = n.

Thus, in conclusion, with probability 1, there exists parameters of a linear GNN with RNI W ∈ Rd×d′

such that the GNN produces Z.

We can also prove linear GNNs’ equivariance by observing that for any permutation matrix P ∈
Rn×n,

[PX,R]W = P [X,R]W = PZ,

where we used PR = R because each entry of PR is also sampled from the standard Gaussian
matrix N(0, 1).

K.9 Proof of Theorem 14

The following lemmas are used in our proof.

Lemma 5 (Newton’s Identities). Let x1, x2, . . . , xn be variables, denote for k ≥ 1 by Pk the k-th
power sum:

Pk =

n∑
i=1

xk
i = xk

1 + · · ·+ xk
n,

and for k ≥ 0 denote by ek the elementary symmetric polynomial. Then we have

Pk = (−1)k−1kek +

k−1∑
i=1

(−1)k−1+iek−iPi,

for all n ≥ 1 and n ≥ k ≥ 1.

Lemma 6 (Vieta’s Formulas). Let f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 be a polynomial of
degree n, ek be the elementary symmetric polynomial. Then we have

e1 = −an−1

an
, e2 =

an−2

an
, . . . , en = (−1)n a0

an
.

We first show that h exists.

Lemma 7. Let u ∈ Rn. Assume that there does not exists a permutation matrix P ∈ Rn×n such
that u = −Pu. Then there exists a positive odd integer h ≤ n such that

∑n
i=1 u

h
i ̸= 0.
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Proof. Suppose the opposite holds, i.e., Pi = 0 for all odd 1 ≤ i ≤ n, where Pi is the i-th power
sum of entries of u. Let u1, u2, . . . , un be the roots of the polynomial f(x) = anx

n + an−1x
n−1 +

· · ·+ a1x+ a0.

If n is even, by Lemma 5,

0 = P1 = e1,

0 = P3 = e1P2 − e2P1 + 3e3,

0 = P5 = e1P4 − e2P3 + e3P2 − e4P1 + 5e5,

...
0 = Pn−1 = e1Pn−2 − e2Pn−3 + · · ·+ (n− 1)en−1,

which gives us e1 = e3 = · · · = en−1 = 0. Then, by Lemma 6, we have an−1 = an−3 = · · · =
a1 = 0. This indicates that f(x) = g(x2) for some polynomial g(x). Similarly, if n is odd, by
Lemma 5,

0 = P1 = e1,

0 = P3 = e1P2 − e2P1 + 3e3,

0 = P5 = e1P4 − e2P3 + e3P2 − e4P1 + 5e5,

...
0 = Pn = e1Pn−1 − e2Pn−2 + · · ·+ nen,

which gives us e1 = e3 = · · · = en = 0. Then, by Lemma 6, we have an−1 = an−3 = · · · = a0 = 0.
This indicates that f(x) = xg(x2) for some polynomial g(x). Either way, all n roots of f(x) are
symmetric with respect to the y-axis. Then there must exist a permutation matrix such that u = −Pu,
leading to a contradiction. Thus Lemma 7 holds.

Then we prove Theorem 14.

Proof. By Lemma 7, we have shown the existence of h. Since flipping the sign of u also flips the
sign of

∑n
i=1 u

h
i (because h is odd), Algorithm 8 uniquely decides the sign of u. Since the algorithm

outputs either u or −u, it is also permutation-equivariant.

K.10 Proof of Theorem 15

We prove that under mild conditions, the loss of expressive power induced by truncating RSE can be
upper bounded, as shown in the following theorem.

Theorem 15. Let Ω ⊂ Rn×d × Rn×n be a compact set of graphs, [X, Â] ∈ Ω. Let NN be a
universal neural network on sets. Given an invariant graph function f defined over Ω that can
be ε-approximated by an Lp-Lipschitz continuous function and arbitrary ε > 0, for any integer
0 < k ≤ n, there exist parameters of NN such that for all graphs [X, Â] ∈ Ω,∣∣f([X, Â])−NN([X, (UΛ

1
2 ):,−k:,0])

∣∣ < √n− kLpλn−k + ε.

Here the Lp-Lipschitz continuity of f is defined using the Frobenius norm on the input domain,
0 ≤ λ1 ≤ · · · ≤ λn ≤ 2 are the eigenvalues of Â, 0 ∈ Rn×(n−k).

We can see from Theorem 15 that the upper bound of the loss of expressive power decreases when k
increases, and when k = n, the network becomes universal. We give its proof as follows.

By Lemma 1, we know that λi ≥ 0 for i = 1, 2, . . . , n. Next we prove that λi ≤ 2.

Lemma 8. Suppose Â is the normalized adjacency matrix of a graph G, and λ1 < · · · < λn are its
eigenvalues. Then λi ≤ 2, for i = 1, 2, . . . , n.

Proof. In the proof of Lemma 1, we proved x⊤(I + Ã)x ≥ 0. Similarly, we have

x⊤(I − Ã)x =
∑

(i,j)∈E

(
xi√
di
− xj√

dj

)2

≥ 0.
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Thus,
x⊤Âx = x⊤(−I + Ã)x+ 2x⊤x ≤ 2x⊤x.

This shows that the Rayleigh quotient is bounded by x⊤Âx
x⊤x

≤ 2, therefore λi ≤ 2.

Then we give the proof of Theorem 15.

Proof. Let 0 ≤ λ1 ≤ · · · ≤ λn ≤ 2 be the eigenvalues of Â and u1, . . . ,un be the corresponding
eigenvectors. Then

Â = λ1u1u
⊤
1 + · · ·+ λnunu

⊤
n .

We also define
Â′ := λn−k+1un−k+1u

⊤
n−k+1 + · · ·+ λnunu

⊤
n .

By Theorem 1 and the assumptions in our theorem, we know that there exists a permutation-invariant
network on sets such that∣∣F ([X, (UΛ

1
2 ):,−k:,0])−NN([X, (UΛ

1
2 ):,−k:,0])

∣∣ < ε

2
.

Since f can be approximated by an Lp-Lipschitz continuous function, we have∣∣f([X, Â])− F ([X, (UΛ
1
2 ):,−k:,0])

∣∣ = ∣∣f([X, Â])− f([X, Â′])
∣∣

≤ Lp

∥∥[X, Â]− [X, Â′]
∥∥
F
+

ε

2

= Lp

∥∥[0, λ1u1u
⊤
1 + · · ·+ λn−kun−ku

⊤
n−k]

∥∥
F
+

ε

2

= Lp

√
λ2
1 + · · ·+ λ2

n−k +
ε

2

≤
√
n− kLpλn−k +

ε

2
.

Combining the two inequalities above gives us∣∣f([X, Â])−NN([X, (UΛ
1
2 ):,−k:,0])

∣∣ < √n− kLpλn−k + ε.

L Dataset details

ZINC (MIT License) consists of 12K molecular graphs from the ZINC database of commercially
available chemical compounds. These molecular graphs are between 9 and 37 nodes large. Each
node represents a heavy atom (28 possible atom types) and each edge represents a bond (3 possible
types). The task is to regress constrained solubility (logP) of the molecule. The dataset comes with a
predefined 10K/1K/1K train/validation/test split.

OGBG-MOLTOX21 and OGBG-MOLPCBA (MIT License) are molecular property prediction
datasets adopted by OGB from MoleculeNet. These datasets use a common node (atom) and edge
(bond) featurization that represent chemophysical properties. OGBG-MOLTOX21 is a multi-mask
binary graph classification dataset where a qualitative (active/inactive) binary label is predicted
against 12 different toxicity measurements for each molecular graph. OGBG-MOLPCBA is also
a multi-task binary graph classification dataset from OGB where an active/inactive binary label is
predicted for 128 bioassays.

Details of the three datasets are summarized in Table 16.

M Hyperparameter settings

M.1 Real-world tasks

We evaluate the proposed MAP on three real-world datasets: ZINC, OGBG-MOLTOX21 and OGBG-
MOLPCBA, on a server with 6 NVIDIA 3080 Ti GPUs and 2 NVIDIA 1080 Ti GPUs. We consider

40



Table 16: Details of the datasets.
Dataset ZINC ogbg-moltox21 ogbg-molpcba

#Graphs 12000 7831 437929
Avg #Nodes 23.2 18.6 26.0
Avg #Edges 24.9 19.3 28.1
Task Type Regression Binary Classification Binary Classification

Metric MAE ROC-AUC AP

4 GNN architectures: GatedGCN, PNA, SAN and GraphiT, with 4 different positional encodings: no
PE, LapPE with random Sign, SignNet and MAP. We follow the same settings as Dwivedi et al. [18]
for models with no PE or LapPE, and same settings as Lim et al. [29] for models with SignNet or
MAP. All baseline scores reported in Table 3, 4 & 5 are taken from the original papers. As shown in
Figure 7, for models with no PE or LapPE, the input features are directly fed into the base model; for
models with SignNet, the eigenvectors are first processed by SignNet and then concatenated with the
original node features as input to the base model; for models with MAP, the PEs are first processed
by a normal GNN and then concatenated with the original node features as input to the base model.
These settings align with the original papers.

X or [X,U ] base model Y

U ρ
(
ϕ(u) + ϕ(−u)

)

X

Y

UΛ
1
2 ρ

(
ϕ(u)

)

X

Y

no PE/LapPE

SignNet

MAP

base model

base model

Figure 7: Our experiment settings with different PEs.

The main hyperparameters in our experiments are listed as follows.

• k: the number of eigenvectors used in the PE.

• L1: the number of layers of the base model.

• h1: the hidden dimension of the base model.

• h2: the output dimension of the base model.

• λ: the initial learning rate.

• t: the patience of the learning rate schedular.

• r: the factor of the learning rate schedular.

• λmin: the minimum learning rate of the learning rate schedular.

• L2: the number of layers of SignNet or the normal GNN (when using MAP as PE).

• h3: the hidden dimension of SignNet or the normal GNN (when using MAP as PE).

The values of these hyperparameters in our experiments are listed in Table 17.
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Table 17: Hyperparameter details for experiments on real-world datasets.
Model PE k L1 h1 h2 λ t r λmin L2 h3

Z
IN

C
GatedGCN None 0 16 78 78 0.001 25 0.5 1e-6 - -
GatedGCN LapPE + RS 8 16 78 78 0.001 25 0.5 1e-6 - -
GatedGCN SignNet 8 16 67 67 0.001 25 0.5 1e-6 8 67
GatedGCN MAP 8 16 69 67 0.001 25 0.5 1e-5 6 69

PNA None 0 16 70 70 0.001 25 0.5 1e-6 - -
PNA LapPE + RS 8 16 80 80 0.001 25 0.5 1e-6 - -
PNA SignNet 8 16 70 70 0.001 25 0.5 1e-6 8 70
PNA MAP 8 16 70 70 0.001 25 0.5 1e-6 6 70

SAN None 0 10 64 64 0.0003 25 0.5 1e-6 - -
SAN MAP 16 10 40 40 0.0007 25 0.5 1e-5 6 40

GraphiT None 0 10 64 64 0.0003 25 0.5 1e-6 - -
GraphiT MAP 16 10 48 48 0.0007 25 0.5 1e-6 6 48

M
O

LT
O

X
21

GatedGCN None 0 8 154 154 0.001 25 0.5 1e-5 - -
GatedGCN LapPE + RS 3 8 154 154 0.001 25 0.5 1e-5 - -
GatedGCN MAP 3 8 150 150 0.001 22 0.14 5e-6 8 150

PNA None 0 8 206 206 0.0005 10 0.8 2e-5 - -
PNA MAP 16 8 115 113 0.0005 10 0.8 8e-5 7 115

SAN None 0 10 88 88 0.0007 25 0.5 1e-6 - -
SAN MAP 12 10 88 88 0.0007 25 0.5 1e-5 8 88

GraphiT None 0 10 88 88 0.0007 25 0.5 1e-6 - -
GraphiT MAP 16 10 64 64 0.0007 25 0.5 1e-6 6 64

M
O

L
PC

B
A GatedGCN None 0 8 154 154 0.001 25 0.5 1e-4 - -

GatedGCN LapPE + RS 3 8 154 154 0.001 25 0.5 1e-4 - -
GatedGCN MAP 3 8 200 200 0.001 25 0.5 1e-5 8 200

PNA None 0 4 510 510 0.0005 4 0.8 2e-5 - -
PNA MAP 16 4 304 304 0.0005 10 0.8 2e-5 8 304

M.2 Synthetic tasks

To verify the expressive power of RSE, we conduct experiments on the synthetic EXP dataset. The
dataset consists of a set of 1-WL indistinguishable non-isomorphic graph pairs. If a network reaches
above 50 % accuracy on this dataset, it must have expressive power beyond the 1-WL test. DeepSets-
RSE is a two-layer DeepSets model with RSE as PE, whereas Linear-RSE is a one-layer linear model
with RSE as PE. We use Optuna [3] to optimize the hyperparameters of our models. The values of
hyperparameters of our models are as follows:

• DeepSets-RSE: the learning rate λ = 0.002385602941230316, the hidden dimension of
the first linear layer w1 = 60, the hidden dimension of the second linear layer w2 = 76,
the dropout rate [46] p = 0.13592575703525184, the weight decay of Adam optimizer
wd = 0.0005.

• Linear-RSE: the learning rate λ = 0.0006867736568978745, the hidden dimension w =
109, the weight decay of Adam optimizer wd = 0.0001.
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