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Abstract

Personalized federated learning (PFL) has been widely investigated to address
the challenge of data heterogeneity, especially when a single generic model is
inadequate in satisfying the diverse performance requirements of local clients
simultaneously. Existing PFL methods are inherently based on the idea that the
relations between the generic global and personalized local models are captured
by the similarity of model weights. Such a similarity is primarily based on either
partitioning the model architecture into generic versus personalized components,
or modeling client relationships via model weights. To better capture similar (yet
distinct) generic versus personalized model representations, we propose spectral
distillation, a novel distillation method based on model spectrum information.
Building upon spectral distillation, we also introduce a co-distillation framework
that establishes a two-way bridge between generic and personalized model training.
Moreover, to utilize the local idle time in conventional PFL, we propose a wait-
free local training protocol. Through extensive experiments on multiple datasets
over diverse heterogeneous data settings, we demonstrate the outperformance and
efficacy of our proposed spectral co-distillation method, as well as our wait-free
training protocol.

1 Introduction

With the rapid rise in mainstream popularity of artificial intelligence (AI) models such as ChatGPT [1]
and LoRA [2], there has been an increasing shift towards the development of personalized AI
assistants [3]. Hence, in a future where personalized AI services become mainstream, training AI
models on personal data while preserving data privacy would become increasingly important [4],
and maintaining the quality for such models would require collaborative training across multiple
models. Personalized federated learning (PFL) emerges as a promising privacy-preserving distributed
learning paradigm that is well-equipped to meet such requirements [3]. As an extension of federated
learning (FL), PFL aims to train a customized machine learning model for each client or each group
of clients with similar preferences [5]. When faced with inconsistencies in the objective functions of
different clients, conventional FL fails to generalize well with just a single model, while in contrast
PFL promises to generalize well across all clients, even in the presence of data heterogeneity (e.g.,
label distribution skew and label quantity skew) [6–14].

To tackle the challenges of personalization, numerous works have focused on designing new PFL
systems, or enhancing the performance of personalized models from different aspects, such robustness,
fairness, and model convergence[15–18]. Under federated settings, personalization is achieved
through capturing the (dis-)similarity of the local versus globally shared model representations. In
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practical FL/PFL applications of collaboratively training deep neural networks (DNNs), only the
model parameters (e.g., model weights or gradients) are exchanged between the clients and the
server [8, 19]. Existing DNN-based PFL methods capture this (dis-)similarity either by decoupling
the model architecture into groups of layers/channels[20–25], or by designing local optimization
methods with regularization based directly on model weights [17, 15]. Unfortunately, the motivations
for such approaches are based on empirical observations, without an overarching theory to explain
model (dis-)similarity in relation to training dynamics.

In deep learning theory, the training dynamics of DNNs have been studied from the lens of Fourier
analysis [26]. A crucial insight from this analysis is that there is an implicit self-regularization effect
arising from the training process itself. Given a target function f to learn, the model tends to learn the
lower frequencies of the Fourier spectrum of f first before learning the respective higher frequencies.
Such a bias in this training process is called spectral bias [27, 28]. Informally, spectral bias describes
the commonly encountered phenomenon that DNNs first learn low-level features before learning
high-level features.

Motivated by this insight, we can distinguish different levels of features in a model representation by
looking at its Fourier spectrum. Intuitively, diverse personalized models would still share the same
low-level features, and a global generic model would contain the same low-level features. Hence,
despite any inconsistencies in the objective functions of different clients, there would be no conflict
in learning low-level features for both the generic and personalized models. Consequently, with the
expected similarity in the lower frequency components of the Fourier spectra of both the generic
and personalized models, we can distill the knowledge of the lower Fourier coefficients to boost
the performance of the generic model. Dually, the entire Fourier spectrum of the generic model,
which includes the “averaged” high-level features across all clients, would benefit the training of the
personalized models. By combining both perspectives, we shall propose a co-distillation framework
for PFL that captures (dis-)similarity in models via spectral information.

Typically, when designing PFL systems, a compute-and-wait protocol is implicitly assumed for local
training [15, 23]. This means that the locally updated generic models would be sent by the clients
to the server after all local computation tasks have been completed. Such a protocol would yield a
period of idle waiting where clients have to wait for the next aggregated model to be broadcasted.
By circumventing this compute-and-wait protocol, we shall utilize the local idle time for training to
reduce the total PFL runtime.

Overall, our contributions can be summarized as follows:

• We propose a spectral co-distillation framework for PFL. In particular, this is the first
ever use of spectral distillation in PFL to capture the (dis-)similarity of the generic and
personalized models. Also, this is the first ever bi-directional knowledge distillation directly
between the generic and personalized models.

• We propose a wait-free local training protocol for our spectral co-distillation framework,
where we utilize the idle time during global communication so as to reduce the total PFL
runtime.

• Through extensive experiments on multiple datasets with heterogeneous data settings,
we demonstrate the outperformance and efficacy of our proposed spectral co-distillation
framework with the wait-free communication protocol design for PFL, with respect to model
generalizability and the total PFL runtime.

2 Related work

PFL. In PFL, prior efforts have focused on training multiple personalized models via leveraging the
similarity and relationships between the global generic model and the local personalized models, such
as via model interpolation/mixture [29], model decoupling [22], and personalized optimization with
customized regularizers [15]. In DNN-based FL applications, decoupling-based approaches divide
the model into a private part (kept at the local side) and a shared part (exchanged between the server
and clients) [3, 25, 23]. In particular, FedPer [22] and FedRep [24] share the shallow layers and
train personalized deep layers, while in contrast, LG-Fed [20] and CD2-pFed maintain personalized
shallow layers and channels [21], respectively. Moreover, Fed-RoD proposes a framework to achieve
state-of-the-art (SOTA) performance for generic and personalized models simultaneously, based on
the “two-loss, two-predictor” design[23]. APFL [5] and L2GD [29] consider using a mixture of local

2



Broadcast Update Broadcast

Spectral
Divergence

Cross-Entropy Loss

Loss+Loss+

Spectral 
Divergence

Cross-Entropy Loss

Generic model update Personalized model update

A  communication round

Frozen

GM GM

PM PM

Frozen

Figure 1: Spectral co-distillation framework with wait-free local training for PFL, in which the
generic model (GM) training and the personalized model (PM) training are carried out via spectral
distillation in two different stages.

and global models to achieve personalization, in which the mixture weight controls the personalization
level. Personalized local training methods have been recently explored, which include local fine-
tuning in FedBABU [30], bi-level optimization in Ditto [15], feature alignment in FedPAC [31],
and personalized model sparsification in FedMask [16, 32] and PerFedMask [33]. More broadly,
meta-learning [34, 35], gaussian processes [36], and hyper-network-based approaches [37] have been
investigated in PFL. Specifically, there is another type of PFL that aims to train personalized models
at the level of clusters of clients with similar preferences [38–40].

Knowledge Distillation (KD) in FL. KD has been widely explored in knowledge transfer scenarios,
which usually is used to transfer knowledge from the pre-trained teacher model to the student model
via minimizing the distance from the latent or logit outputs of the two models [41, 42]. KD-based
FL frameworks have been developed with diverse setups, such as FedMD [43] and FedDF [44]. On
the other hand, knowledge-transfer-based PFL frameworks are investigated in [45, 46] with different
model structures at the local clients, which could address the system heterogeneity and improve
communication efficiency. However, such methods rely on the assumption of having access to a
public labeled/unlabelled dataset, which may not be a realistic assumption in FL applications [3].
Moreover, co-distillation methods have been investigated in communication-efficient decentralized
scenarios to improve generalizability [45].

3 Proposed framework

The main goal of this work is to train a generic global model and multiple personalized models
simultaneously. As summarized in Sec. 1, our proposed framework consists of three major compo-
nents: spectral distillation-based personalized model training, spectral co-distillation-based generic
model training, and the wait-free sequential computation-communication protocol. In this section,
we first provide the preliminary and problem formulation for PFL and model spectrum in Sec. 3.1.
Next, we present our proposed spectral distillation approach for PFL in Sec. 3.2, co-distillation-based
generic model training in Sec. 3.3, and the wait-free local training protocol in Sec. 3.4, accordingly.
Moreover, the summarized algorithm is given in Sec. 3.5.

3.1 Preliminaries

Problem formulation for FL and PFL. Consider an FL system consisting of a server and N clients,
in which client i has a loss function fi : Rd → R used for training on its local private dataset
Di = {(xj

i , y
j
i )}

ni
j=1, where ni = |Di| denotes the size of the local dataset of client i. In conventional

FL, the objective of all the participating clients in this system is to find a global model w ∈ Rd that
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solves the following minimization problem [19]:

minimize
w∈Rd

{
F (w) :=

N∑
i=1

ni

n
fi(w)

}
, (1)

where n =
∑N

i=1 ni is the total number of training samples across the N clients. In a typical
communication round t, a subset St of clients is selected to conduct local training, starting from the
latest global model weights wt

G. Let wt
i denote the weights of client i’s model after local training. At

the end of communication round t, the server would collect local models from the selected clients
to update the global model via Federated Averaging (FedAvg), i.e. wt+1

G ←
∑

i∈St
ptiw

t
i , in which

pti = ni/
∑

k∈St
nk represents the ratio of the local data samples in client i over the total number of

data samples in the selected subset St of clients for communication round t.

There are two general types of PFL: a) training N personalized models for all N clients; and b)
training 1 generic model and N personalized models simultaneously. In this work, we investigate the
latter one, which we term as “PFL+”. This means each client i has a local personalized model wp,i for
its private dataset Di, and all clients jointly participate in the training of the generic model wG. After
local training at client i, the updated generic model is denoted by wG,i. Thus, PFL can be formulated
using a regularized loss function with regularization term Rp(wp,i, wG,i). For example, Rp(wp,i, wG,i)
could represent the similarity/divergence between the global and local models’ features, such as
model weights, feature centroids, and prototypes. In our method, Rp(wp,i, wG,i) represents cross-
model distillation during the training of client i’s personalized model. Therefore, the objective
of personalized model training in PFL+ can be formally formulated as a bi-level optimization
problem [17]:

(P1): minimize
wp,i∈Rd

{
fp,i(wp,i) := fi(wp,i) + λpRp(wp,i, wG,i)

}
for each client i (2)

subject to wG,i ← updated generic model from wG, (3)

where the regularization coefficient λp is used to control the level of personalization. For client i,
when referring to a specific communication round t, we shall denote the untrained personalized model
and updated generic model by wt−1

p,i and wt
G,i, respectively.

3.2 Personalized local model training

Motivated by both theoretical and empirical insights of the spectral bias inherent in the training
dynamics of DNNs, we explore the use of the Fourier spectrum of the generic model for knowledge
distillation to enhance the training of personalized local models. In particular, we propose a distillation
regularization term representing the divergence between the full model spectra of the generic and
personalized models.

First, we introduce some notation. Given vectors p = (p1, . . . , pd), q = (q1, . . . , qd) in Rd, define
the divergence function D(p∥q) :=

∑d
i=1 pi log pi − pi log qi. (By convention, 0 log 0 := 0.) Note

that when p and q are stochastic vectors representing parameter vectors of multinomial distributions
P and Q, then D(p∥q) is identically the Kullback–Leibler (KL) divergence from P to Q. Next,
let DFT : Cd → Cd denote discrete Fourier transform, let ϱ : Cd → Rd be the map given by
(z1, . . . , zd) 7→ (∥z1∥, . . . , ∥zd∥), and define the function s : Rd → Rd by s := ϱ ◦ DFT. For an
input vector of the weights of a DNN model, the output vector after applying s shall be called
the spectrum vector of that model [28]. Thus, in communication round t, the spectrum vectors of
the personalized model wt−1

p,i of client i and updated generic model wt
G,i are written as s(wt

G) and
s(wt−1

p,i ), respectively. We shall represent the divergence of the personalized and generic models by
D(s(wt−1

p,i )∥s(wt
G,i)), the divergence of their spectrum vectors.

Concretely, we define Rp(wp,i, wG,i) := D(s(wt−1
p,i )∥s(wt

G,i)), and let fi be the cross-entropy loss
LCE for all i. Then the personalized objective function fp,i of client i in communication round t
(cf. (2)) is given by:

Lp(wt−1
p,i |w

t
G,i) := LCE(w

t−1
p,i |Di) + λpD(s(wt−1

p,i )∥s(wt
G,i)). (4)
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Figure 2: A comparison of the (a) conventional compute-and-wait protocol with the (b) proposed
wait-free training protocol.

For simplicity, we use a common time-invariant λp for all clients throughout training. Since we are
distilling the knowledge of the spectrum vector s(wt

G,i) in (4), we term our approach as spectral
distillation.

3.3 Generic model training

Given a PFL+ training framework, it is natural to connect the roles of generic and personalized
models to the roles of the teacher and student models in distillation, where the training of one model
is guided by the knowledge distilled by the other. Co-distillation extends this idea. Intuitively, the
role of each model alternates between teacher and student for knowledge distillation during training.
In PFL+, since we are concurrently training both the generic and personalized models, either of them
could be used for knowledge distillation. The key challenge for applying co-distillation to PFL+ is
that it is not obvious what knowledge should be distilled from the personalized models to enhance
the training performance of the generic model.

In the theory of deep learning, it is well-known that when training a DNN, there is a learning
bias towards the lower frequencies of its Fourier spectrum [27, 28]. In fact, the lower-frequency
components of this spectrum are robust to random weight perturbations. Hence, with diverse
personalized models, we would still expect the lower-frequency components of the spectra of all
models (both generic and personalized) to be similar. Consequently, we could use such lower-
frequency components for knowledge distillation to enhance generic model training.

Motivated by this, we propose a truncated spectrum-based distillation loss as the regularizer for
generic model training. Given 0 < τ ≤ 1, let ıτ : Rd → R⌈τd⌉ be the projection map onto the first
⌈τd⌉ entries, and define ŝ := ıτ ◦ s. Then the loss function for generic model training, which depends
on the truncated spectrum vectors ŝ(wt

G,i) and ŝ(wt−1
p,i ), is given by:

LG(wt
G,i|wt−1

p,i ) := LCE(w
t
G,i|Di) + λgD(ŝ(wt

G,i)∥ŝ(wt−1
p,i )), (5)

where the regularization term RG(w
t
G,i, w

t−1
p,i ) := D(ŝ(wt

G,i)∥ŝ(w
t−1
p,i )) depends on the hyperparam-

eter τ , and λg is the coefficient of this regularization term. Analogous to (P1), the objective of generic
model training in PFL+ could be formulated as the following bi-level optimization problem:

(P2): minimize
wG∈Rd

{
f(wG) :=

N∑
i=1

ni

n
(fi(wG) + λGRG(wG, wp,i))

}
(6)

subject to wp,i ← output of (P1) for client i, for i = 1, . . . , N. (7)

Overall, by combining the two spectral distillation approaches together, we get a training framework
for PFL+, which we shall call spectral co-distillation.
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Algorithm 1 Spectral Co-Distillation with Wait-free Training for PFL+
Inputs: N , T , ηp, ηG, w0

G, {w0
p,i}

N
i=0, EG, Ep

Outputs: Generic model wT
G , personalized models {wT

p,i}
N
i=1

1: for t = 1 to T do
2: for each client k = 1 to N in parallel do

// Generic model training and update
3: wt

G,k ← GMUPDATE(wt−1
G , wt−1

P,k )

4: Upload weights w(t)
G,k to server

// Personalized model training (Task 1: Line 5)
5: wt

p,k ← PMUPDATE(wt−1
p,k , wt

G,k)
6: do sequentially (Task 2: Lines 7–8)

 Perform Tasks 1 & 2 in parallel
7: Uplink communication of generic model to server
8: Generic model aggregation to obtain wt

G at server
9: return wT

G , {wT
p,i}

N
i=1

function GMUPDATE(wt−1
G , wt−1

p,k )
Require: wt−1

G , wt−1
p,k are the latest generic model and personalized model.

1: w0 ← wt−1
G

2: for j = 1 to EG do
3: wj ← wj−1−ηG∇LG(wj−1|wt−1

p,k ) // Using truncated low frequency spectrum information

4: return wj

function PMUPDATE(wt−1
p,k , wt

G,k)
Require: wt−1

p,k , wt
G,k are the latest personalized model and updated generic model of client k.

1: w0 ← wt−1
p,k

2: for j = 1 to Ep do
3: wj ← wj−1 − ηp∇Lp(wj−1|wt

G,k) // Using full model spectrum information

4: return wj

3.4 Wait-free Local Training Protocol

In the context of federated computing, the total runtime, which includes both local computation and
communication time throughout the entire training process, is a direct indicator of communication
efficiency. However, current PFL frameworks adopt a compute-and-wait protocol for local training.
This means that in each round, the client performs both generic and personalized model updates only
after all local computation tasks have been completed, and resumes local training upon receiving the
latest global model broadcasted from the server. In consequence, there is idle waiting time between
model update and model broadcast; see Fig. 2(a).

To improve the communication efficiency of PFL training with respect to the total runtime, we
propose a wait-free local training protocol, as depicted in Fig. 2(b). In our protocol, the client updates
the generic model according to the conventional generic FL training and trains the personalized model
during the global communication time period. Unlike existing PFL frameworks, local clients would
send the updated generic model to the server before the start of the personalized model training. Thus,
our protocol eliminates idle waiting time, thereby dramatically reducing total runtime. Furtherfore, it
could be easily incorporated into existing PFL frameworks, such as Ditto [15], to further improve the
efficiency; see Tab. 4.

Discussion on the proposed protocol and related work. Our proposed wait-free local training
protocol is specially designed for the PFL+ scenario, where each client trains two models locally. For
simplicity, we use this protocol in our experiments, under the assumption of synchronized PFL+. For
comparison in the asynchronized PFL+ setting [47], see Appendix. Related work that reduce the total
training runtime, such as delayed gradient averaging [48] and wait-free decentralized FL training [49],
are designed for conventional FL and does not deal with the PFL+ scenario. Furthermore, we also
provide a discussion on how our wait-free local training protocol could be adapted to the partial client
participation scheme in FL in the Appendix.
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Methods
α = 1 α = 0.5 α = 0.1

GM PM GM PM GM PM
FedAvg 85.35 ± 0.11 (80.33 ± 0.38) 80.76 ± 0.13 (74.51 ± 0.48) 73.51 ± 0.17 (72.68 ± 0.39)
FedProx 85.61 ± 0.08 (86.28 ± 0.21) 80.54 ± 0.14 (76.88 ± 0.30) 71.96 ± 0.12 (73.77 ± 0.30)
FedDyn 86.03 ± 0.13 (85.33 ± 0.19) 80.88 ± 0.18 (78.93 ± 0.25) 73.62 ± 0.14 (74.25 ± 0.58)
FedGen 86.17 ± 0.32 ( 85.24 ± 0.47) 79.86 ± 0.34 (77.52 ± 0.43) 71.36 ± 0.28 (71.42 ± 0.63)
FedAvgM 85.44 ± 0.05 (82.85 ± 0.28) 81.04 ± 0.09 (75.71 ± 0.33) 72.87 ± 0.06 (72.96 ± 0.14)
pFedMe 85.58 ± 0.23 88.17 ± 0.17 79.33 ± 0.14 84.66 ± 0.17 72.11 ± 0.23 81.18 ± 0.15
Ditto 85.34 ± 0.10 87.55 ± 0.09 80.70 ± 0.13 83.39 ± 0.12 73.45 ± 0.18 80.08 ± 0.20
FedRep (85.61 ± 0.19) 87.32 ± 0.11 (80.33 ±0.23) 84.10 ± 0.10 (73.50 ± 0.24) 79.74 ± 0.31
FedRoD 86.02 ± 0.12 91.67 ± 0.16 81.31 ± 0.15 85.91 ± 0.15 74.64 ± 0.07 81.37 ± 0.17
FedBABU (85.67 ± 0.24) 91.34 ± 0.19 (79.57 ± 0.23) 83.22 ± 0.33 (73.88 ±0.19) 80.58 ± 0.22
Ours 86.37 ± 0.15 92.25 ± 0.21 81.27 ± 0.18 86.59 ± 0.17 75.52 ± 0.11 82.69 ± 0.16

Table 1: Average (3 trials) and standard deviation of the best test accuracies for generic/personalized
models of various methods on CIFAR-10 with different non-IID settings. See also Remark 4.1.

Methods
α = 1 α = 0.1

GM PM GM PM
FedAvg 48.37 ± 0.22 (52.64 ± 0.48) 38.61 ± 0.27 (39.27 ± 0.42)
FedProx 47.33 ± 0.15 (53.85 ± 0.33) 39.55 ± 0.18 (41.33 ± 0.38)
FedDyn 49.24 ± 0.27 (57.20 ± 0.35) 40.43 ± 0.14 (40.92 ± 0.26)
FedAvgM 48.55 ± 0.19 (55.60 ± 0.26) 39.03 ± 0.08 (40.85 ± 0.19)
pFedMe 47.29 ± 0.27 61.52 ± 0.25 38.22 ± 0.23 45.88 ± 0.32
Ditto 48.37 ± 0.25 60.47 ± 0.27 39.61 ± 0.19 43.12 ± 0.28
FedRep (46.32 ± 0.23) 58.76 ± 0.36 (40.11± 0.35) 45.22 ± 0.19
FedRoD 50.07 ± 0.16 62.51 ± 0.15 40.58 ± 0.22 45.99 ± 0.14
FedBABU (48.52 ± 0.30) 60.33 ± 0.28 (37.35 ± 0.29) 44.72 ± 0.28
Ours 51.39 ± 0.22 63.15 ± 0.16 40.67 ± 0.14 46.82 ± 0.23

Table 2: Average (3 trials) and standard deviation of the best test accuracies for generic/personalized
models of various methods on CIFAR-100 with different non-IID settings. See also Remark 4.1.

3.5 Algorithm Summary

Our proposed spectral co-distillation framework combined with our wait-free local training protocol,
is given in Algorithm 1. As an overview, we begin every communication round t with the server
broadcasting the global generic model wt−1

G to each client for local computation. Each client i
would send back the updated generic model wt

G,i after EG local computation steps for global model
aggregation, then immediately start the personalized model training and continue until the global
generic model wt

G is received, which marks the start of the next communication round t+ 1.

Remark on convergence analysis. Note that the global loss function includes a weighted sum of the
local loss functions and a regularizer. The regularizer is given in the form of the divergence function
D, which is equivalent to KL divergence; cf. Sec. 3.2. As demonstrated in [50], the KL divergence
usually exhibits convexity in terms of the model parameters. Consequently, since the model training
undergoes (stochastic) gradient descent, it is possible to establish a convergence rate for the training
of the global model (under the commonly employed assumption of smoothness of the local loss
functions).

4 Experiments

4.1 Experiment setup

Datasets, DNN models, federated settings, and evaluation metrics. We evaluated our proposed
PFL+ framework with N clients on CIFAR-10/100 [51], and iNaturalist-2017, using model archi-
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Methods FedProx FedDyn Ditto FedRep FedRoD FedBABU Ours
GM 39.46±0.39 39.35±0.27 39.33±0.33 39.81±0.41 40.16±0.35 39.23±0.53 41.75±0.37
PM 41.58±0.27 40.99±0.35 41.88±0.41 42.07±0.24 44.54±0.29 42.36±0.44 45.87±0.21

Table 3: Average (3 trials) and standard deviation of the best test accuracies for generic/personalized
models of various methods on iNaturalist-2017 with non-IID setting α = 0.1. See also Remark 4.1.

tectures ResNet-18/34 [52] and ResNet-50, respectively. For the experiments on CIFAR-10 (resp.
CIFAR-100), we used N = 100 (resp. N = 50). For experiments on iNaturalist-2017 [53], we used
N = 20. For dataset partition, we used the symmetric Dirichlet distribution to emulate real-world
heterogeneous data distributions [9, 11], where the heterogeneity is controlled by the concentration
parameter α. (A smaller α indicates a higher degree of data heterogeneity.) For evaluation, we used
two performance metrics:

• Generic model evaluation: global test accuracy (same metric in conventional FL).
• Personalized model evaluation: weighted average of local test accuracies.

For every client, the PM is evaluated on a local test set, whose underlying distribution is the same as
that for the local training set. All the experiments are implemented with a full client participation
scheme. Further experiment details, results on partial client participation, and the computation
overhead discussion are provided in the Appendix.

Remark 4.1. For generic FL methods, personalized model (PM) accuracies are obtained by evaluating
the generic model (GM) on local test sets. For PFL methods without GM training, GM accuracies are
obtained by evaluating the averaged PM on the global test set.

Baselines. We compared our proposed method with the following SOTA PFL methods: pFedMe [17],
Ditto [15], FedRoD [36], FedRep [24], and FedBABU [30]. Moreover, to have a fair performance
evaluation of the generic models, we also include methods designed for conventional FL as baselines:
FedAvg [19], FedProx [10], FedDyn [11], FedGen[54], and FedAvgM [9].

4.2 Performance comparison with state-of-the-art methods

We evaluated the generalizability of our proposed spectral co-distillation framework, as well as the
communication cost performance of our wait-free training protocol for PFL+.

Generalizability over heterogeneous settings. We compared the best test accuracies with mul-
tiple baselines over the different levels of data heterogeneity, using the same system configura-
tion. Tab. 1 and Tab. 2 give the main results on CIFAR-10 and CIFAR-100, respectively. In
summary, our proposed framework achieves the best test accuracies across diverse heteroge-
neous data settings, outperforming all PFL and conventional FL baselines on both PM and GM
test accuracies concurrently. We also investigated the performance on the real-world dataset
iNaturalist2017 in Tab. 3, where our proposed method also achieves the best GM/PM test ac-
curacies.We attribute such consistent outperformance to the bi-directional co-distillation design.

Methods
3 epochs 5 epochs

40% 80% 40% 80%
Speedup

Ours (w/ WF) 1.82 × 1.56 × 2.21× 1.85×
Ditto w/ WF 1.97× 1.38 × 2.87× 1.93×
FedRoD w/ WF 1.75× 1.54 × 2.42× 2.19×

Table 4: Communication cost comparison of various methods
for personalized model accuracies on CIFAR-10 to reach tar-
get accuracy (40%/80%) with non-IID setting α = 0.1. The
speedup factors are with respect to the performance of the
corresponding methods without WF.

This demonstrates that: a) the
spectral information of the generic
model is useful for knowledge dis-
tillation during personalized model
training; and b) using truncated
spectral information of the person-
alized models could boost the per-
formance of the generic model via
careful spectrum truncation. (See
Appendix for a sensitivity analysis
of the truncation ratio τ and other
hyper-parameters.)

Communication cost compari-
son. To demonstrate the superior-
ity of the wait-free training protocol
(WF), we evaluated the communica-
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tion cost performance of SOTA methods with/without the protocol on non-IID CIFAR-10 (α = 0.1),
in terms of the total runtime ζtotal for PM to reach the target test accuracy (40%/80%). A smaller
ζtotal indicates higher communication efficiency. For PFL methods that train generic and personalized
models using the compute-and-wait local training protocol, we evaluated Ditto and FedRoD. We
conduct experiments with different numbers of epochs for local PM training (3 or 5 epochs). As
shown in Tab. 4, our proposed wait-free training protocol could significantly improve the efficiency
of convergence time and has the potential to boost the time efficiency of PFL+ methods.

Method
α = 1 α = 0.1

GM PM GM PM
Ours 86.37 ± 0.15 92.25 ± 0.21 75.52 ± 0.11 82.69 ± 0.16
Ours w/o SCD-GM 85.35 ± 0.11 91.86 ± 0.17 73.51 ± 0.17 81.03 ± 0.20
Ours w/o SCD-PM 82.74 ± 0.39 79.65 ± 0.83 68.96 ± 0.47 70.51 ± 1.21
Ours w/o Both 85.35 ± 0.11 79.65 ± 0.83 73.51 ± 0.17 70.51 ± 1.21

Table 5: Ablation study results on non-IID CIFAR-10 (average and standard deviation of 3 trials).
SCD-GM (resp. SCD-PM) represents the spectral distillation approaches adopted during the training
of generic (resp. personalized) model.

4.3 Ablation results

Ablation study. In our proposed spectral co-distillation framework, we introduce the bi-directional
spectrum knowledge distillation to bridge the training of generic and personalized models with the
target for training good generic and personalized models simultaneously. To achieve the target,
truncated and full model spectrum information are adopted in different training stages. Here, we
conduct an ablation study to evaluate the effectiveness of these two components (see Tab. 5 for the
effects of each component), in which we apply the distillation approaches in the two training stages
separately. In the setup where both SCD-PM and SCD-GM are removed (Case I), the GM training
is identical to FedAvg. In the case of removing only SCD-PM while keeping SCD-GM (Case II),
each PM would be trained locally without any knowledge distilled from the GM. This is akin to the
client training its model by itself, separately from the server. Naturally, the PM performance would
be drastically lower. As SCD-GM is kept in Case II, where the GM is the student and the PM is
the teacher, since the PM’s performance is drastically lower, we would expect a drop in the GM’s
performance. Informally, the model would be worse off with the distillation of bad knowledge, than
without distillation.

As demonstrated in Tab. 5, both the distillation methods can boost the accuracy performance of
generic and personalized models, whereas the bi-directional distillation can bridge the training
performance of the generic and personalized models. Specifically, we can observe that, the SCD-PM
module effectively transfers the knowledge from the generic model to the personalized model and
avoids over-fitting during local training.
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Figure 3: Performance comparison for generalizability on new
clients of various methods.

Generalizability on new join-
ing clients. In a real-world PFL
system, dynamic client participa-
tion should be regarded as an im-
portant factor to consider during
algorithm design, in which there
would be continually new clients
joining the system during train-
ing. The PFL system needs to
rapidly train a good personalized
model that could generalize well
on the new client’s local data. To
evaluate the generalizability of
the system, we simulate a dy-
namic participation system with
80 in-training clients and 20 new
clients on CIFAR-10 (partitioned
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by the Dirichlet distribution with
α = 0.1), and deal with new clients with the global model-based fine-tuning approach. Fig. 3 gives
the results of the average test accuracies of the new clients. Among all evaluated methods, our method
has the best average test accuracies, illustrating the fast adaptive capability of our method.

5 Conclusion

In this work, we propose a spectral co-distillation framework for PFL to learn better generic and
personalized models simultaneously. As far as we know, this is the first work in PFL that represents
the (dis-)similarity of models via their Fourier spectra. Even without co-distillation, there have
been no other works that explore spectral distillation in PFL (or even in FL). The advantage of
this new approach is clear from our experiments: We achieved outperformance in both generic and
personalized model training. Our framework also incorporates a simple yet effective wait-free local
training protocol to reduce the overall local training time.

Limitations. Our proposed spectral co-distillation framework, as currently formulated, does not
deal with stragglers and adversarial attacks. Their influence on performance would require further
investigation. Also, our protocol assumes a synchronized network connection, which may not
be practical for scenarios with large system/network heterogeneity. Moreover, it would be good
to consider a more realistic local training protocol design that takes into account the issues of
network/system heterogeneity; we leave the extension as future work.
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A Appendix

In the appendix, we provide further details organized into the following parts:

• Sec. B introduces the implementation details for our proposed method with respect to the
federated system settings, evaluation metrics, and the data partitions used in our experiments.
In particular, we provide the implementation details for the experiments in “Generalizability
on new joining clients”.

• Sec. C gives further sensitivity analysis on the key parameters τ , λG, and λp.
• Sec. D gives a discussion on the computational overhead.
• Sec. E gives a discussion on the differences and relations to asynchronized (personalized)

federated learning (FL).
• Sec. F gives a discussion on how our wait-free local training protocol could be adapted for

partial client participation.

B Implementation details

Federated system settings. All experiments were implemented using Pytorch. For all methods, we
used an SGD local optimizer with a momentum of 0.5 and with no weight decay. We train all methods
over a total number of T = 500 global communication rounds. Batch size for CIFAR-10/100 [51]
and iNaturalist-2017 [53] are 10 and 128, respectively. As our aim is to train a personalized model for
each client, we conducted the training using a full participation scheme, i.e., in every communication
round, all clients would be selected to participate in training. For our proposed method, we used
a learning rate of 0.01 (resp. 0.003) for both ηG and ηp when training on CIFAR-10/100 (resp.
iNaturalist-2017).

Details on the data partition. We evaluated the performance of all methods with non-IID data
partition. We simulated a non-IID data distribution via the symmetric Dirichlet distribution, in which
we used the concentration parameter α to control data heterogeneity across the FL system [9, 11].
For the entire dataset D with M classes, we sample a stochastic vector dj with length N (total
number of clients) for each 1 ≤ j ≤ M via the Dirichlet distribution with common parameter α.
We shall treat dj as the vector representing the portion of the data samples in class j to be allocated
to the clients. For example, if the second entry of d1 equals 0.05, then client 2 would be randomly
allocated with 5% of the data samples fromD in class 1. This allocation has no overlaps; two different
clients have no common data samples. In particular, a smaller α indicates a higher degree of data
heterogeneity, whereas a larger α will tend to generate identical-like distributions. (As α→ +∞, the
data allocations become uniform.)

Performance metrics. The detailed calculation methods for the two metrics used in the evaluation
are given as follows:

• We used the global test accuracy (same metric used in conventional FL) to evaluate the
collaboratively trained global generic model, where the accuracy refers to the global test set
(e.g., for CIFAR-10, the test set has 10,000 images).

• We used the weighted average of local test accuracies for personalized model evaluations,
where each local test accuracy is obtained with respect to a local test set, and where the
weights of the weighted average are the ratios of local dataset sizes n1

n , n2

n , . . . , nN

n . Let acci
denote the test accuracy for the personalized model at client i.Then the weighted average of
local test accuracies is computed as

∑N
i=1

ni

n acci. Note that for each client, the distribution
of the local test set for each client is the same as the distribution of the local training set.
Specifically, we perform sampling for the local test sets according to the distribution of
training data for each respective client, where sampling is performed without replacement
on the test set of the corresponding benchmark dataset, which is obtained via the Dirichlet
distribution.

Details for the experiments on new joining clients. To evaluate the generalizability of our proposed
federated co-distillation framework when there are new joining clients, we simulated a PFL system
with 80 existing clients and 20 new clients on the CIFAR-10 dataset with non-IID data partition. In
particular, we first partitioned the dataset into 100 local training sets via the Dirichlet distribution.
We then performed training for the pre-determined 80 clients over 300 communication rounds for all
methods, after which we conducted local fine-tuning [55, 23] on the new clients independently with a
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certain number of local epochs based on the well-trained global generic model. (We tried 5 and 10
local epochs in our experiments.) The reported performance is the weighted average of the local test
accuracies over the 20 new clients, in which the weights are the ratios of the dataset sizes relative to
these 20 clients.

C Sensitivity analysis

Recall from Sec. 3.3 of the main paper that τ is the truncation ratio used to compute the truncated
spectrum vectors. In our experiment results (as reported in the main paper), we used τ = 0.4. To
demonstrate the effect of this key hyperparameter, we conduct sensitivity analysis with multiple
values of 0 < τ ≤ 1 on two non-IID CIFAR-10 settings; see Tab. 6. τ = 0 represents there is no
spectral distillation for generic model training (which is equivalent to the setup “Ours w/o SCD-GM”
in Tab. 5 of the ablation studies in the main paper ), while τ = 1 indicates there is no spectrum
truncation. In summary, τ = 0.4 achieves the best performance for both generic model (GM) and
personalized models (PM), which shows the effectiveness of the truncated spectrum in generic
model training and implicitly demonstrates the characteristics of the low frequency of model Fourier
spectrum.

Method
α = 1 α = 0.1

GM PM GM PM
τ = 0 85.35 ± 0.11 91.86 ± 0.17 73.51 ± 0.17 81.03 ± 0.20
τ = 0.1 85.18 ± 0.26 90.85 ± 0.39 72.66 ± 0.11 80.51 ± 0.25
τ = 0.3 85.42 ± 0.22 90.93 ± 0.38 72.59 ± 0.38 82.60 ± 0.19
τ = 0.4 86.37 ± 0.15 92.25 ± 0.21 75.52 ± 0.11 82.69 ± 0.16
τ = 0.5 86.33 ± 0.08 92.04 ± 0.29 74.91 ± 0.31 82.50 ± 0.36
τ = 0.7 86.08 ± 0.43 91.79 ± 0.44 72.85 ± 0.28 81.44 ± 0.43
τ = 0.9 86.25 ± 0.39 92.07 ± 0.28 72.57 ± 0.31 82.09 ± 0.37
τ = 1.0 85.47 ± 0.26 90.33 ± 0.41 73.55 ± 0.17 81.36 ± 0.22

Table 6: Sensitivity analysis for hyper-parameter τ (i.e., the truncation ratio for spectrum truncation,
used in generic model training) on non-IID CIFAR-10 (average and standard deviation of 3 trials).

We also provide experiment results for the sensitivity analysis of the coefficients λG and λp on
CIFAR-10 with data setting α = 1 in Tab. 7 and Tab. 8.

Setup 0.01 0.05 0.1 0.3
GM 84.76 86.37 86.20 83.55
PM 90.33 92.25 91.35 89.64

Table 7: Sensitivity analysis for hyper-parameter λG on non-IID CIFAR-10.

Setup 0.01 0.05 0.1 0.3
GM 86.37 86.33 85.61 85.72
PM 92.25 91.89 89.47 89.33

Table 8: Sensitivity analysis for hyper-parameter λp on non-IID CIFAR-10.

D Computational overhead of the proposed method

In our proposed method, the additional computational overhead is dominated by the computation of
spectral vectors, when compared to other model similarity/difference-based PFL methods [15, 17]. In
our experiments, we use the famous fast Fourier transform (FFT) algorithm to compute the discrete
Fourier transform of an input (complex) vector. Informally, the FFT algorithm is an efficient and
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widely used algorithm that converts an input signal from the original domain into a representation in
the frequency domain.

In our framework, when given an input weight vector wt
p,i ∈ Rd (i.e. there are a total of d model

weights), its associated spectral vector s(wt
p,i) is computed using the FFT algorithm, with correspond-

ing computational complexity Θ(d log d); see, e.g., [56].

E Discussion on the differences/relations to asynchronized FL

Our main goal for proposing the wait-free PFL+ training protocol is to reduce the total running time
overhead and thereby increase the training time efficiency. It should be noted that our wait-free
local training protocol is synchronous, meaning that all the clients perform local computing, pushing
generic model gradients, as well as generic model updates, in a synchronized manner. Similar to [48],
our proposed protocol allows local computing during global communication.

In a similar context of reducing the total running time overhead, some asynchronized FL (AFL)
methods have been proposed. We shall clarify that our wait-free local training protocol is vastly
different from existing AFL methods, from the aspects of both the motivation and the communication-
computation design. Specifically, AFL seeks to tackle the challenge of slow client in a heterogeneous
FL system by reducing idle time, while in contrast, our method adopts a joint communication-
computation design, thereby eliminating idle time. In particular, the usual idle waiting time has been
replaced by training time for the personalized model in our proposed method. Since our method fully
utilizes the idle waiting time at the local side with personalized model training, we did not consider
incorporating the conventional AFL set-up into our framework.

To better demonstrate the outperformance of our wait-free (WF) local training protocol, we evaluated
the performance of two state-of-the-art AFL methods (FedAsync [57] and FedBuff [58]) combined
with the compute-and-wait PFL+ system using Ditto [15] (the PFL system that trains generic and
personalized models simultaneously); see Tab. 9. The speedup factors are computed with respect
to the performance of “Vanilla Ditto”, where a larger speedup factor signifies better efficiency. The
results demonstrate the outperformance of our proposed WF protocol in reducing the total running
time overhead.

Methods
3 epochs 5 epochs

40% 80% 40% 80%
Speedup

Vanilla Ditto 1× 1× 1× 1×
Ditto w/ Our WF 1.97× 1.38× 2.87× 1.93×
Ditto w/ FedAsync 1.36 × 1.15 × 1.29× 1.22×
Ditto w/ FedBuff 1.40 × 1.26 × 1.23× 1.40×

Table 9: Communication cost comparison of various methods for personalized model accuracies on
CIFAR-10 to reach target accuracy (40%/80%) with non-IID setting α = 0.1. The speedup factors
are with respect to the performance of the Vanilla Ditto with the compute-and-wait protocol.

F Discussion on the applicability to the partial client participation scheme

In this work, we consider a full client participation scheme. However, in general, we may want
the option that an edge device/client could be not selected to participate in training for numerous
consecutive communication rounds, especially in the case of an FL system with a large number
of clients. In this subsection, we discuss how our wait-free local training protocol should be
extended/modified.

For an unselected client, the client should not be continuously training its personalized model using
the “stale” GM model weights, which could result in model overfitting on limited data, and model
drift/divergence.

To address this issue, there are two straightforward solutions:
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• The first solution is to adopt a broadcasting scheme with regular latest GM broadcasts by the
server. Such a scheme would ensure that every client receives the latest GM weights, thereby
alleviating the negative impact of stale GM weights for unselected clients, and avoiding
potential client drift. In real-world network connections, the bandwidth of the downlink
connection from the server to the clients is typically larger than the corresponding bandwidth
of the uplink connection. Hence, such design would be practical.

• The second solution is to set an upper limit on the number of local training steps. The basic
underlying idea is to terminate the local PM training after a certain number of local training
steps. This could be an alternative option to address the issue of limited communication for
cross-device FL scenarios. It should be noted that such design would still reduce the overall
total training time, since the PM training is still performed within the idle waiting time in
conventional FL.

We give further experiment results (see below) for partial participation with two typical participation
rates (c=0.1 and 0.2) on non-IID CIFAR-10 with α = 1 in Tab. 10.

Methods
c=0.1 c=0.2

GM PM GM PM
FedAvg 83.16 78.25 83.84 79.03
FedProx 82.97 78.23 83.75 79.44
FedRoD 84.22 89.31 84.90 89.68
Ours 84.35 89.56 85.11 90.37

Table 10: Sensitivity analysis for hyper-parameter λG on non-IID CIFAR-10.

These results show that our method is applicable for partial participation, and even outperforms our
baselines.
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