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A Identifiability

Assume we observe n-dimensional time-series data at discrete time steps, X = {x1,x2, . . . ,xT },
where each xt is generated from time-delayed causally related hidden components zt 2 Rn by the
invertible mixing function:

xt = g(zt). (1)
In addition to latent components zt, there is an extra hidden component ct which is a discrete variable
with cardinality | ct | = C, it follows first-order Markov process controlled by a C ⇥ C transition
matrix A, in which the i, j-th entry Ai,j is the probability to transit from state i to j.

c1, c2, . . . , ct ⇠ Markov Chain(A) (2)
For i 2 {1, . . . , n}, zit, as the i-th component of zt, is generated by (some) components of history
information zt�1, discrete nonstationary indicator ct, and noise ✏it.

zit = fi({zj,t�1 | zj,t�⌧ 2 Pa(zit)}, ct, ✏it) with ✏it ⇠ p✏i|ct (3)

where Pa(zit) is the set of latent factors that directly cause zit, which can be any subset of zHx =
{zt�1, zt�2, . . . , zt�L} up to history information maximum lag L. The components of zt are
mutually independent conditional on zHx and ct.

A.1 Identifiability of Nonstationary Hidden States

Theorem 1. (identifiability of the nonstationarity with Markov Assumptions) Suppose the observed
data is generated following the nonlinear ICA framework as defined in Eqs. (1), (2) and (3). And
Suppose the following assumptions (Markov Assumptions) hold:

i For the Markov process, the number of latent states, C, is known.

ii The transition matrix A is full rank.

Use µ1, . . . , µC 2 Rn to denote nonparametric probability distributions of the C emission distribu-
tions µc = p(xt |xt�1, c). Then the parameters A and M = (µ1, . . . , µC) are identifiable given the
distribution, P(3)

A,M , of at least 4 consecutive observations xt,xt+1,xt+2,xt+3, up to label swapping
of the hidden states, that is:

If eA is a C ⇥ C transition matrix, if e⇡(c) is a stationary distribution of eA with e⇡(c) > 0 8c 2
{1, . . . , C}, and if M̃ = (µ̃1, . . . , µ̃C) are C probability distributions on Rn that verify the equality
of the distribution functions P(3)

eA,M̃
= P(3)

A,M , then there exists a permutation � of the set {1, . . . , C}
such that for all k, l = 1, . . . , C we have Ãk,l = A�(k),�(l) and µ̃k = µ�(k).

Proof. Suppose we have:
p̃(x1, . . . ,xT ) = p(x1, . . . ,xT ) (4)

where p(x1, . . . ,xT ) has transition matrix A and emission distributions (µ1, . . . , µC), similarly for
p̃(x1, . . . ,xT ).

We consider four consecutive observations x0,x1,x2,x3 and corresponding four discrete elements
c0, c1, c2, c3.

p(x1,x2,x3 |x0) =
X

c1,c2,c3

p(c1)p(x1 |x0, c1) ·Ac1,c2p(x2 |x1, c2) ·Ac2,c3p(x3 |x2, c3)

=
X

c1,c2

p(c1)Ac1,c2p(x1 |x0, c1) · p(x2 |x1, c2) ·
 
X

c3

Ac2,c3p(x3 |x2, c3)

!

=
X

c2

 
X

c1

p(c1)Ac1,c2p(x1 |x0, c1)

!
· p(x2 |x1, c2) ·

 
X

c3

Ac2,c3p(x3 |x2, c3)

!

=
X

c2

⇡c2

 
X

c1

⇡c1Ac1,c2

⇡c2

µc1

!

| {z }
µ̄c2

·µc2 ·
 
X

c3

Ac2,c3µc3

!

| {z }
µ̇c2

(5)

15



where ⇡ci = p(ci). Since A has full rank and the probability measures µ1, . . . , µC are linearly
independent, the probability measures {µ̄c2 =

P
c1

⇡c1Ac1,c2
⇡c2

µc1 | c2 = 1, . . . , C} are linearly
independent, and the probability measures {µ̇c2 =

P
c3

Ac2,c3µc3 | c2 = 1, . . . , C} are also linearly
independent. Thus, applying Theorem 9 of [46], there exists a permutation � of {1, . . . , C} such that,
8i 2 {1, . . . , C}:

µ̃i = µ�(i)
X

j

Ãi,j µ̃j =
X

j

A�(i),jµj

This gives easily 8i 2 {1, . . . , C}:
X

j

Ãi,jµ�(j) =
X

j

A�(i),�(j)µ�(j).

Since the conditional distributions µi are linearly independent, we can establish the equivalence
between Ã and A via permutation �,

Ãj,i = A�(j),�(i), (6)
then the theorem is proved.

For notational simplicity, and without loss of generality, we assume the components are ordered such
that c = �(c). That leads us to the identifiability of the nonstationarity in the system i.e. up to label
swapping of the hidden states, the conditional emission distributions p(xt|xt�1, ct) and transition
matrix A are identifiable, hence providing us a bridge to further leverage the temporal independence
condition in the latent space to establish the identifiability result for demixing function or in other
words the latent variables zt.

A.2 Identifiability of Latent Causal Processes

To incorporate nonlinear ICA into the Markov Assumption we define the emission distribution
p(xt |xt�1, c) as a deep latent variable model. First, the latent independent component variables
zt 2 Rn are generated from a factorial prior, given the hidden state ct and previous zt�1, as

p(zt | zt�1, ct) =
nY

k=1

p(zkt | zt�1, ct). (7)

Second, the observed data xt 2 Rn is generated by a nonlinear mixing function as in Eq. (1) which
is assumed to be bijective with inverse given by zt = g

�1(xt). Let ⌘kt(ct) , log p(zkt|zt�1, ct),
and assume that ⌘kt(ct) is twice differentiable in zkt and is differentiable in zl,t�1, l = 1, 2, ..., n.
Note that the parents of zkt may be only ct and a subset of zt�1; if zl,t�1 is not a parent of zkt, then

@⌘k

@zl,t�1
= 0.

Theorem 2. Suppose there exists an invertible function ĝ
�1, which is the estimated demixing function

that maps xt to ẑt, i.e.,
ẑt = ĝ

�1(xt) (8)
such that the components of ẑt are mutually independent conditional on ẑt�1. Let

vk,t(c) ,
⇣ @2⌘kt(c)

@zk,t@z1,t�1
,

@2⌘kt(c)

@zk,t@z2,t�1
, ...,

@2⌘kt(c)

@zk,t@zn,t�1

⌘|
,

v̊k,t(c) ,
⇣ @3⌘kt(c)

@z2
k,t@z1,t�1

,
@3⌘kt(c)

@z2
k,t@z2,t�1

, ...,
@3⌘kt(c)

@z2
k,t@zn,t�1

⌘|
.

(9)

And

skt ,
⇣
vkt(1)

|, ...,vkt(C)|,
@2⌘kt(2)

@z2
kt

� @2⌘kt(1)

@z2
kt

, ...,
@2⌘kt(C)

@z2
kt

� @2⌘kt(C � 1)

@z2
kt

⌘|
,

s̊kt ,
⇣
v̊kt(1)

|, ..., v̊kt(C)|,
@⌘kt(2)

@zkt
� @⌘kt(1)

@zkt
, ...,

@⌘kt(C)

@zkt
� @⌘kt(C � 1)

@zkt

⌘|
.

(10)

If for each value of zt, s1t, s̊1t,v2t, s̊2t, ..., snt, s̊nt, as 2n function vectors sk,t and s̊k,t, with k =
1, 2, ..., n, are linearly independent, then ẑt must be an invertible, component-wise transformation of
a permuted version of zt.
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Proof. Combining (1) and (6) gives zt = (g�1 � ĝ)(ẑt) = h(ẑt), where h , g
�1 � ĝ. Since both g

and ĝ are invertible, h is invertible. Let Ht be the Jacobian matrix of the transformation h(ẑt), and
denote by Hkit its (k, i)th entry.

First, it is straightforward to see that if the components of ẑt are mutually independent conditional
on previous ẑt�1 and current ct, then for any i 6= j, ẑit and ẑjt are conditionally independent given
ẑt�1 [ (ẑt \ {ẑit, ẑjt}) [ {ct}. Mutual independence of the components of ẑt conditional on ẑt�1

implies that ẑit is independent from ẑt \ {ẑit, ẑjt} conditional on ẑt�1 and ct, i.e.,

p(ẑit | ẑt�1, ct) = p(ẑit | ẑt�1 [ (ẑt \ {ẑit, ẑjt}), ct).

At the same time, it also implies ẑit is independent from ẑt \ {ẑit} conditional on ẑt�1 and ct, i.e.,

p(ẑit | ẑt�1, ct) = p(ẑit | ẑt�1 [ (ẑt \ {ẑit}), ct).

Combining the above two equations gives

p(ẑit | ẑt�1 [ (ẑt \ {ẑit}), ct) = p(ẑit | ẑt�1 [ (ẑt \ {ẑit, ẑjt}), ct),

i.e., for i 6= j, ẑit and ẑjt are conditionally independent given ẑt�1 [ (ẑt \ {ẑit, ẑjt}) [ {ct}.

We then make use of the fact that if ẑit and ẑjt are conditionally independent given ẑt�1 [ (ẑt \
{ẑit, ẑjt}) [ {ct}, then

@2 log p(ẑt, ẑt�1, ct)

@ẑit@ẑjt
= 0,

assuming the cross second-order derivative exists [47]. Since p(ẑt, ẑt�1, ct) =
p(ẑt | ẑt�1, ct)p(ẑt�1, ct) while p(ẑt�1, ct) does not involve ẑit or ẑjt, the above equality is
equivalent to

@2 log p(ẑt | ẑt�1, ct)
@ẑit@ẑjt

= 0. (11)

Then for any ct, the Jacobian matrix of the mapping from (xt�1, ẑt) to (xt�1, zt) is

I 0

⇤ Ht

�
, where

⇤ stands for a matrix, and the (absolute value of the) determinant of this Jacobian matrix is |Ht|.
Therefore p(ẑt,xt�1|ct) = p(zt,xt�1|ct) · |Ht|. Dividing both sides of this equation by p(xt�1|ct)
gives

p(ẑt |xt�1, ct) = p(zt |xt�1, ct) · |Ht|. (12)

Since p(zt | zt�1, ct) = p(zt |g(zt�1), ct) = p(zt |xt�1, ct) and similarly p(ẑt | ẑt�1, ct) =
p(ẑt |xt�1, ct), Eq. 12 tells us

log p(ẑt | ẑt�1, ct) = log p(zt | zt�1, ct) + log |Ht| =
nX

k=1

⌘kt(ct) + log |Ht|. (13)

Its partial derivative w.r.t. ẑit is

@ log p(ẑt | ẑt�1, ct)

@ẑit
=

nX

k=1

@⌘kt(ct)

@zkt
· @zkt

@ẑit
� @ log |Ht|

@ẑit

=
nX

k=1

@⌘kt(ct)

@zkt
· Hkit �

@ log |Ht|
@ẑit

.

Its second-order cross-derivative is

@2 log p(ẑt | ẑt�1, ct)

@ẑit@ẑjt
=

nX

k=1

⇣@2⌘kt(ct)

@z2
kt

· HkitHkjt +
@⌘kt(ct)

@zkt
· @Hkit

@ẑjt

⌘
� @2 log |Ht|

@ẑit@ẑjt
. (14)

The above quantity is always 0 according to Eq. (11). Therefore, for each l = 1, 2, ..., n and each
value zl,t�1, its partial derivative w.r.t. zl,t�1 is always 0. That is,

@3 log p(ẑt | ẑt�1, ct)

@ẑit@ẑjt@zl,t�1
=

nX

k=1

⇣ @3⌘kt(ct)

@z2
kt@zl,t�1

· HkitHkjt +
@2⌘kt(ct)

@zkt@zl,t�1
· @Hkit

@ẑjt

⌘
⌘ 0, (15)
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where we have made use of the fact that entries of Ht do not depend on zl,t�1. Using different values
r for ct in Eq. (14) take the difference of this equation across them gives

@2 log p(ẑt | ẑt�1; r + 1)

@ẑit@ẑjt
� @2 log p(ẑt | ẑt�1; r)

@ẑit@ẑjt

=
nX

k=1

h⇣@2⌘kt(r + 1)

@z2
kt

� @2⌘kt(r)

@z2
kt

⌘
· HkitHkjt +

⇣@⌘kt(r + 1)

@zkt
� @⌘kt(r)

@zkt

⌘
· @Hkit

@ẑjt

i
⌘ 0.

(16)

If for any value of zt, s1t, s̊1t, s2t, s̊2t, ..., snt, s̊nt are linearly independent, to make the above
equation hold true, one has to set HkitHkjt = 0 or i 6= j. That is, in each row of Ht there is only one
non-zero entry. Since h is invertible, then zt must be an invertible, component-wise transformation
of a permuted version of ẑt.

So far, the identifiability result has been established without observing the nonstationarity indicators
such as domain indices.

A.3 Discussion on Assumptions in Theorem 2

This condition was initially introduced in GCL [11], namely, “sufficient variability”, to extend the
modulated exponential families [9] to general modulated distributions. Essentially, the condition says
that the nonstationary domains c must have a sufficiently complex and diverse effect on the transition
distributions. In other words, if the underlying distributions are composed of relatively many domains
of data, the condition generally holds true. Loosely speaking, the sufficient variability holds if the
modulation of by c on the conditional distribution q(zit|zHx, c) is not too simple in the following
sense:

1. Higher order of k (k > 1) is required. If k = 1, the sufficient variability cannot hold;
2. The modulation impacts �ij by u must be linearly independent across domains c. The

sufficient statistics functions qij cannot be all linear, i.e., we require higher-order statistics.

Further details of this example can be found in Appendix B of [11] and Appendix S1.4.1 of [18]. In
summary, we need the domains denoted by c to have diverse (i.e., distinct influences) and complex
impacts on the underlying data generation process.

B Implementation Details

B.1 Reproducibility

All experiments are done in a GPU workstation with CPU: Intel i7-13700K, GPU: NVIDIA RTX 4090,
Memory: 128 GB. The code can be found via https://github.com/xiangchensong/nctrl.

B.2 Prior Likelihood Derivation

Let us start with an illustrative example of stationary latent causal processes consisting of two time-
delayed latent variables, i.e., zt = [z1,t, z2,t] with maximum time lag L = 1, i.e., zi,t = fi(zt�1, ✏i,t)
with mutually independent noises. Let us write this latent process as a transformation map f (note
that we overload the notation f for transition functions and for the transformation map):

2

64

z1,t�1

z2,t�1

z1,t

z2,t

3

75 = f

0

B@

2

64

z1,t�1

z2,t�1

✏1,t

✏2,t

3

75

1

CA . (17)

By applying the change of variables formula to the map f , we can evaluate the joint distribution of
the latent variables p(z1,t�1, z2,t�1, z1,t, z2,t) as:

p(z1,t�1, z2,t�1, z1,t, z2,t) = p(z1,t�1, z2,t�1, ✏1,t, ✏2,t)/ |detJf | , (18)
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where Jf is the Jacobian matrix of the map f , which is naturally a low-triangular matrix:

Jf =

2

664

1 0 0 0
0 1 0 0

@z1,t

@z1,t�1

@z1,t

@z2,t�1

@z1,t

@✏1,t
0

@z2,t

@z1,t�1

@z2,t

@z2,t�1
0 @z2,t

@✏2,t

3

775 .

Given that this Jacobian is triangular, we can efficiently compute its determinant as
Q

i
@zi,t

@✏i,t
. Fur-

thermore, because the noise terms are mutually independent, and hence ✏i,t ? ✏j,t for j 6= i and
✏t ? zt�1, we can write the RHS of Eq. 18 as:

p(z1,t�1, z2,t�1, z1,t, z2,t) = p(z1,t�1, z2,t�1)⇥ p(✏1,t, ✏2,t)/ |detJf | (because ✏t ? zt�1)

= p(z1,t�1, z2,t�1)⇥
Y

i

p(✏i,t)/ |detJf | (because ✏1,t ? ✏2,t)

(19)

Finally, by canceling out the marginals of the lagged latent variables p(z1,t�1, z2,t�1) on both sides,
we can evaluate the transition prior likelihood as:

p(z1,t, z2,t|z1,t�1, z2,t�1) =
Y

i

p(✏i,t)/ |detJf | =
Y

i

p(✏i,t)⇥
��detJ�1

f

�� . (20)

Now we generalize this example and derive the prior likelihood below.

Let {f�1
i }i=1,2,3... be a set of learned inverse transition functions that take the estimated latent causal

variables, and output the noise terms, i.e., ✏̂i,t = f�1
i (ẑi,t, {ẑt�⌧ , ct}).

Design transformation A ! B with low-triangular Jacobian as follows:

⇥
ẑt�L, . . . , ẑt�1, ẑt

⇤>
| {z }

A

mapped to
⇥
ẑt�L, . . . , ẑt�1, ✏̂i,t

⇤>
| {z }

B

, with JA!B =

 InL 0

⇤ diag
✓

@f�1
i,j

@ẑjt

◆
!

.

(21)

Similar to Eq. 20, we can obtain the joint distribution of the estimated dynamics subspace as:

log p(A) = log p (ẑt�L, . . . , ẑt�1) +
nX

j=1

log p(✏̂i,t)

| {z }
Because of mutually independent noise assumption

+ log (|det (JA!B)|) . (22)

log p
�
ẑt|{ẑt�⌧}L

⌧=1, ct

�
=

nX

j=1

log p(✏̂i,t|ct) +
nX

i=j

log
���
@f�1

i

@ẑi,t

��� (23)

B.3 Derivation of ELBO

Then the second part is to maximize the Evidence Lower BOund (ELBO) for the VAE framework,
which can be written as:
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ELBO , log pdata(X)� DKL(q�(Z|X)||pdata(Z|X))

=EZ⇠q�(Z|X) log pdata(X|Z)� DKL(q�(Z|X)||pdata(Z|X))

=EZ⇠q�(Z|X) log pdata(X|Z)� EZ⇠q�(Z|X) [log q�(Z|X)� log pdata(Z)]

=EZ⇠q�(Z|X)

2

664log pdata(X|Z) + log pdata(Z)| {z }
Ec[

PT
t=1 log p(zt|zt�1,ct)]

� log q�(Z|X)

3

775

=Ezt

2

66664

TX

t=1

log pdata(xt|zt)

| {z }
�LRecon

+Ec

"
TX

t=1

log pdata(zt|zHx, ct)

#
�

TX

t=1

log q�(zt|xt)

| {z }
�LKLD

3

77775

(24)

B.4 Synthetic Dataset Generation

We generated two synthetic datasets (A and B) with different nonlinear mixing functions. In this
section we will introduce the detailed implementation of the generation. The generation can be split
into steps (1) sample ct from a Markov chain, (2) generate zt with different transition functions fct
with respect to ct, and (3) generate observation xt via mixing function g.

B.4.1 Sample ct from Markov chain

We first randomly initialized a Markov chain with transition matrix A and sample 20,000 steps.

B.4.2 Generation of latent variables zt

We first randomly initialized |C| = 5 different transition functions {f1, f2, . . . , f|C|} with different
MLPs, and generate zt = fct(zHx). The dimensions are set to 8 for fair comparison.

B.4.3 Generation of observations xt

The difference between datasets A and B is the mixing function. We use a two-layer randomly
initialized MLP for dataset A and a three-layer MLP for dataset B. For each linear layer in the MLP,
we use condition number of the weight matrix to filter out ones that are not “invertible”.

B.5 Modified CartPole Dataset Generation

Similar to the synthetic datasets, we also sample from a Markov chain and get ct. For the modified
CartPole, we initialized 5 different environments which have different combinations of hyperparame-
ters such as gravity, pole mass, etc. A detailed comparison is listed in Table 1.

Table 1: Different configs for different Modified CartPole environments.
Environment ID Gravity Pole Mass Noise Scale

0 9.8 0.2 0.01
1 24.79 0.5 0.01
2 3.7 1.0 0.01
3 11.15 1.5 0.01
4 0.62 2.0 0.01

At each time step t the environment will load the corresponding hyperparameters for given ct and
update the states zt according to the configuration given ct. The nonlinear mixing function from
states to observations xt is fixed by a rendering method in the gym package.
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B.6 MoSeq Dataset

In the MoSeq dataset, the observations xt are taken to be the first 10 principal components of depth
camera video data of mice exploring an open field. The dataset consists of 20-minute depth camera
recordings of 24 mice. In preprocessing, the videos are cropped and centered around the mouse
centroid and then filtered to remove recording artifacts. Finally, the preprocessed video is projected
onto the top principal components to obtain a 10-dimensional time series.

B.7 Mean Correlation Coefficient

MCC is a standard metric for evaluating the recovery of latent factors in ICA literature. MCC first
calculates the absolute values of the correlation coefficient between every ground-truth factor against
every estimated latent variable. Pearson correlation coefficients or Spearman’s rank correlation
coefficients can be used depending on whether componentwise invertible nonlinearities exist in the
recovered factors. The possible permutation is adjusted by solving a linear sum assignment problem
in polynomial time on the computed correlation matrix.

B.8 Network Architecture

We summarize our network architecture below and describe it in detail in Table 2 and Table 3.

Table 2: Architecture details. BS: batch size, T: length of time series, i_dim: input dimension, z_dim:
latent dimension, LeakyReLU: Leaky Rectified Linear Unit.

Configuration Description Output

ARHMM Autoregressive HMM for Synthetic Data
Input: x1:T Observed time series BS ⇥ T ⇥ i_dim
Emission Module Compute µzt+1 , �zt+1 BS ⇥ T ⇥ 2 ⇥ z_dim

MLP-Encoder Encoder for Synthetic Data
Input: x1:T Observed time series BS ⇥ T ⇥ i_dim
Dense 128 neurons, LeakyReLU BS ⇥ T ⇥ 128
Dense 128 neurons, LeakyReLU BS ⇥ T ⇥ 128
Dense 128 neurons, LeakyReLU BS ⇥ T ⇥ 128
Dense Temporal embeddings BS ⇥ T ⇥ z_dim

MLP-Decoder Decoder for Synthetic Data
Input: ẑ1:T Sampled latent variables BS ⇥ T ⇥ z_dim
Dense 128 neurons, LeakyReLU BS ⇥ T ⇥ 128
Dense 128 neurons, LeakyReLU BS ⇥ T ⇥ 128
Dense i_dim neurons, reconstructed x̂1:T BS ⇥ T ⇥ i_dim

Factorized Inference Network Bidirectional Inference Network
Input Sequential embeddings BS ⇥ T ⇥ z_dim
Bottleneck Compute mean and variance of posterior µ1:T , �1:T

Reparameterization Sequential sampling ẑ1:T

Prior Network Nonlinear Transition Prior Network
Input Sampled latent variable sequence ẑ1:T BS ⇥ T ⇥ z_dim
InverseTransition Compute estimated residuals ✏̂it BS ⇥ T ⇥ z_dim
JacobianCompute Compute log (|det (J)|) BS
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Table 3: Architecture details on CNN encoder and decoder. BS: batch size, T: length of time series,
h_dim: hidden dimension, z_dim: latent dimension, F: number of filters, (Leaky)ReLU: (Leaky)
Rectified Linear Unit.

Configuration Description Output

CNN-Encoder Feature Extractor
Input: x1:T RGB video frames BS ⇥ T ⇥ 3 ⇥ 64 ⇥ 64
Conv2D F: 32, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 32 ⇥ 64 ⇥ 64
Conv2D F: 32, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 32 ⇥ 32 ⇥ 32
Conv2D F: 32, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 32 ⇥ 16 ⇥ 16
Conv2D F: 64, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 64 ⇥ 8 ⇥ 8
Conv2D F: 64, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 64 ⇥ 4 ⇥ 4
Conv2D F: 128, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 128 ⇥ 1 ⇥ 1
Dense F: 2 * z_dim = dimension of hidden embedding BS ⇥ T ⇥ 2 * z_dim

CNN-Decoder Video Reconstruction
Input: z1:T Sampled latent variable sequence BS ⇥ T ⇥ z_dim
Dense F: 128 , LeakyReLU BS ⇥ T ⇥ 128 ⇥ 1 ⇥ 1
ConvTranspose2D F: 64, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 64 ⇥ 4 ⇥ 4
ConvTranspose2D F: 64, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 64 ⇥ 8 ⇥ 8
ConvTranspose2D F: 32, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 32 ⇥ 16 ⇥ 16
ConvTranspose2D F: 32, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 32 ⇥ 32 ⇥ 32
ConvTranspose2D F: 32, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 32 ⇥ 64 ⇥ 64
ConvTranspose2D F: 3, estimated scene x̂1:T BS ⇥ T ⇥ 3 ⇥ 64 ⇥ 64
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