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Abstract

Multitask learning is a powerful framework that enables one to simultaneously
learn multiple related tasks by sharing information between them. Quantifying
uncertainty in the estimated tasks is of pivotal importance for many downstream
applications, such as online or active learning. In this work, we provide novel
confidence intervals for multitask regression in the challenging agnostic setting, i.e.,
when neither the similarity between tasks nor the tasks’ features are available to the
learner. The obtained intervals do not require i.i.d. data and can be directly applied
to bound the regret in online learning. Through a refined analysis of the multitask
information gain, we obtain new regret guarantees that, depending on a task
similarity parameter, can significantly improve over treating tasks independently.
We further propose a novel online learning algorithm that achieves such improved
regret without knowing this parameter in advance, i.e., automatically adapting
to task similarity. As a second key application of our results, we introduce a
novel multitask active learning setup where several tasks must be simultaneously
optimized, but only one of them can be queried for feedback by the learner at each
round. For this problem, we design a no-regret algorithm that uses our confidence
intervals to decide which task should be queried. Finally, we empirically validate
our bounds and algorithms on synthetic and real-world (drug discovery) data.

1 Introduction

In many real-world applications, one often faces multiple related tasks to be solved sequentially or
simultaneously. The goal of multitask learning (MTL) [4] is to leverage the similarities across the
tasks to obtain more accurate and robust models. Indeed, by jointly learning multiple tasks, MTL can
exploit their statistical dependencies, yielding better generalization and faster learning than treating
each task independently. MTL has gained significant attention in recent years, as it has been shown to
be effective in a wide range of applications, including natural language processing, computer vision,
federated learning, and drug discovery, see e.g., [11, 19, 16, 27].

A very natural model for learning across multiple tasks is the agnostic multitask (MT) regression
approach of [13]. This utilizes a multitask kernel that can interpolate between running N (number
of tasks) independent regressions, and regressing all tasks to their common average, depending on a
tunable parameter. Notably, such a kernel does not require any knowledge neither about tasks’ features
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Figure 1: Independent vs. Multitask (MT) regression. MT regression leverages data coming from
multiple related tasks and can yield more accurate and more confident estimates. In this work, we
show naive confidence intervals are overly conservative and provide improved ones (shaded in red).

nor about their similarity, thus finding good application in several domains. For instance, Cavallanti
et al. [5] study it for online classification, and Cesa-Bianchi et al. [6] for online convex optimization.

However, it is much less understood how to quantify the uncertainty of such MT regression, i.e.,
assessing confidence in the estimated tasks. In particular, as also outlined by [13] as an open
problem, it is important to assess their generalization error as a function of the kernel parameter.
Appropriately characterizing these confidence intervals is indeed of crucial importance for a whole
set of downstream applications. More concretely, multitask confidence intervals are used in online
learning to inform the next decision to be made [6]. In active learning—as we show next—these
intervals are pivotal to deciding the most informative task to query.

In this work, we study the agnostic MT regression setup of [13], and provide new multitask confidence
intervals (see Figure 1 for a visualization) for the full range of the kernel parameter. Our intervals hold
in the so-called adaptive setting, i.e., without requiring i.i.d. data, and are tighter up to a

√
N factor

than the naive ones employed in [6]. Moreover, we provide the first bounds for the information gain of
MT regression and utilize them—together with the derived intervals—to obtain tighter online learning
guarantees. The latter depend on a task similarity parameter and can significantly improve over
treating tasks independently. Additionally, we propose an adaptive no-regret algorithm that exploits
task similarity without knowing this parameter in advance. Finally, we consider a novel multitask
active learning setup, where tasks should be simultaneously optimized but only one of them can be
queried at each round. We show that the newly derived intervals are also crucial in such a setting, and
provide a new algorithm that ensures sublinear regret. We demonstrate the superiority of the derived
intervals over previously proposed algorithms on synthetic as well as real-world drug discovery tasks.

Related work. The agnostic MT regression approach of [13] reduces the learning of N tasks to a
single regression problem, as a function of the MT kernel parameter. When combined with support
vector machines, it was shown effective in a series of classification problems [13, 24], and since then
was studied in various further settings. Cavallanti et al. [5], e.g., analyze mistake bounds for online
MT classification algorithms as a function of the kernel parameter. Cesa-Bianchi et al. [6], instead,
utilize the MT kernel to prove regret bounds in online MT learning with bandit feedback. Inspired
by this, [10] focuses on learning more general kernel structures from data. An important question
not addressed by previous work, though, is how to properly quantify the uncertainty of the obtained
task estimates. This problem is well-understood in single-task learning (e.g., [2, 25, 8]) but remains
largely unexplored in MT domains. As shown in [6], MT confidence intervals can in principle be
obtained by a naive application of the single-task guarantees of [2]. However, as we show in Section 2,
the so-obtained intervals are extremely conservative and—as a result—can hamper the MT learning
performance. Our intervals are tighter by a factor up to

√
N w.r.t. the naive ones from [6], yielding

novel online learning regret guarantees which can provably improve over treating tasks independently.

Compared to MT online learning [5, 6], where a single task is revealed to the learner at each round, a
series of works have considered learning multiple tasks simultaneously, i.e., taking a decision for
each one of them. Dekel et al. [12], e.g., propose the use of a shared loss function to account for
tasks’ relatedness, Lugosi et al. [20] studies the computational tractability of taking multiple actions
with joint constraints, while Cavallanti et al. [5] propose a matrix-based extension of the multitask
Perceptron algorithm. In all of these works, however, the learner receives feedback from all the
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tasks. In Section 4, instead, we focus on the challenging setup where only one task can be queried by
the learner at each round. Hence, in addition to choosing good actions, the learner faces the active
learning task of assessing the most informative feedback, in order to achieve sublinear regret. Perhaps
most related to ours, is the offline contextual Bayesian optimization setup of [7, 18] where the goal is
to compute the best strategy for each context (task) with minimal function interactions. However,
unlike us, [7, 18] do not guarantee sublinear regret but provide only sample-complexity results.

Finally, we note that MT confidence intervals and regret guarantees were also recently derived by [9],
albeit in a different setup and regression model. Indeed, the authors of [9] focus on multi-objective
optimization where they ought to learn multi-output functions (each output corresponding to a task)
using matrix-valued kernels. Although their setup can be related to ours, it crucially requires all tasks
to be observed at each round, leading to different challenges than ours, see Appendix A.1 for details.

Notation. We use [N ] := {1, . . . , N}, 1N for the vector in RN full of ones. Norms of functions are
always taken w.r.t. the natural RKHS norm, so that we drop the subscript for simplicity of writing.

2 Improved Confidence Intervals for Multitask Kernel Regression

In this section, we introduce the MT kernel regression setting, and prove our refined confidence
intervals. Of independent interest, these results are then leveraged in Sections 3 and 4 to derive novel
regret bounds for online and active multitask learning. All proofs are deferred to the Appendix.

2.1 Multitask Kernel Regression

Given an input space X , equipped with a (single task) scalar kernel kX : X × X → R, the goal of
MT kernel regression is to jointly learn N different functions f1, . . . , fN from X to R, all belonging
to HkX , the RKHS associated to kX . To do so, the learner is given a set of triplets {(is, xs), ys}ts=1
consisting of a measured task index is ∈ [N ], a measured point xs ∈ X , and a noisy measurement
ys = fis(xs) + ξs, where ξs is an independent random variable to be specified later. We can further
define the multitask function fmt : [N ]×X → R such that fmt(i, ·) = fi, and the multitask kernel

k
(
(i, x), (i′, x′)

)
= kT (i, i

′) · kX (x, x′) , (1)

where kT is a kernel on the tasks. In certain cases, the latter might be given as input to the learner,
either under the form of the task Gram matrix, or via task features and an assumed (e.g., linear)
similarity [17]. However, in practice such information is usually not accessible to the learner. In such
a case, a standard agnostic approach to MT regression [5, 6, 10, 13, 24] then consists in leveraging a
parameterized task kernel of the form

kT (i, i
′) =

[
Ktask(b)

]
ii′
, with Ktask(b) =

1

1 + b
IN +

b

1 + b

1N1
⊤
N

N
∈ RN×N . (2)

Intuitively, parameter b ≥ 0 governs how similar the tasks are thought to be. When b = 0, we have
Ktask(b) = IN , such that kT (i, i′) = δii′ , and the tasks are considered to be independent. When b
goes to +∞, we have Ktask(b) = 1N1

⊤
N/N , and all tasks are considered to be one single common

task. Any choice of b ∈ (0,+∞) corresponds to a tradeoff between these two regimes. We make this
intuition explicit in Proposition 2 (Appendix A.1). Note that all quantities depending on the kernel do
by definition depend on b. We use the notation | b to make this dependence explicit when relevant.

Given a history of measurements {(is, xs), ys}ts=1, one may then estimate fmt, or equivalently the
{fi}Ni=1, by standard kernel Ridge regression using the MT kernel k. One obtains the estimates

µt(i, x | b) = kt(i, x)
⊤(Kt + λIt

)−1
y1:t , (3)

σ2
t (i, x | b) = k

(
(i, x), (i, x)

)
− kt(i, x)

⊤(Kt + λIt
)−1

kt(i, x) , (4)

where kt(i, x) =
[
k
(
(is, xs), (i, x)

)]t
s=1

, Kt =
[
k
(
(is, xs), (is′ , xs′)

)]t
s,s′=1

, y1:t =
[
ys
]t
s=1

, and
λ > 0 is some regularization parameter. Functions µt and σ2

t can be interpreted as the posterior mean
and variance of a corresponding Gaussian Process model, see [25, 8]. In the next section, we will
utilize µt and σ2

t to construct high-probability confidence intervals for the multitask function fmt.
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Figure 2: Novel multi-task confidence width βnew
t (b) (see Theorem 1) visualized for large and small

values of b. It improves over the naive width βnaive
t (b) by a factor of

√
N at b = 0 and as b→ +∞.

Problem parameters were set to B = 1, ϵ = 0.4, N = 20, t = 4, and γmt
t (b) = γst

t = 0 for all b.

Information gain. An important quantity when analyzing (multitask) kernel regression is the
so-called (multitask) information gain:

γmt
T (b) =

1

2
ln
∣∣IT + λ−1KT

∣∣ .
It can be interpreted as the reduction in uncertainty about fmt after having observed a given set of T
datapoints. Similarly to single-task setups [25, 8], we use γmt

T in the next sections to characterize our
confidence intervals and regret bounds. Note that γmt

T depends on the multitask kernel through KT ,
and hence on b. In Section 3, we exploit the properties of our multitask kernel to obtain a sharper
control over γmt

T , which is then fundamental to derive improved regret bounds.

2.2 Improved Confidence Intervals

In this section, we utilize the regression estimates obtained in Equations (3) and (4) to construct
high probability confidence intervals around the unknown multitask function fmt. First, we assume
that ∥fi∥ ≤ B for all i ∈ [N ], as it is standard in single-task regression. Moreover, let favg =

(1/N)
∑N

i=1 fi be the average task function, and define

ϵ = max
i

∥fi − favg∥/B . (5)

Note that by definition ϵ ∈ [0, 2]. The smaller ϵ, the more similar the tasks are, the limit case being
that all tasks are equal, attained at ϵ = 0. At the other extreme, when ϵ≫ 0 tasks are highly distant
and ought to be learned independently. The deviation ϵ plays a crucial role in the subsequent analysis.

A naive confidence interval. As discussed in [6], it is possible to construct the multitask feature map
ψ̃ associated to k. One may then rewrite fmt(i, x) = ⟨f̃ , ψ̃(i, x)⟩, where f̃ is a transformed version of
fmt which satisfies

∥∥f̃∥∥ ≤ B
√
N(1 + bϵ2), see Appendices A.1 and A.2 for details. MT regression

thus boils down to single-task regression, over the modified features ψ̃(i, x), and with target function f̃ .
One can then employ well-known linear regression results to obtain confidence intervals for fmt.
Using [1, Theorem 3.11, Remark 3.13] and the definition of γmt

t (b), with probability 1− δ we have
that for all t ∈ N, i ∈ [N ], and x ∈ X it holds

∣∣µt(i, x | b)−fmt(i, x)
∣∣ ≤ βnaive

t (b) ·σt(i, x | b), where

βnaive
t (b) = B

√
N(1 + bϵ2) + λ−1/2

√
2
(
γmt
t (b) + ln(1/δ)

)
.

Note that the above confidence interval was already established in [6, Theorem 1]. As expected,
it depends on B, N , b, and in a decreasing fashion with respect to ϵ. However, we argue that the
above naive choice can be extremely conservative. Indeed, when b = 0, MT regression treats tasks
independently, see Proposition 2. Hence, a valid confidence width from [2, 1, 8] is O

(
B +

√
γst
t

)
,

where γst
t is the single-task maximum information gain. Instead, noting that γmt

t (0) = O
(
Nγst

t

)
,

see Proposition 1, the naive choice provides βnaive
t (0) =

√
N · O

(
B +

√
γst
t

)
, which is larger by a

factor
√
N . A similar suboptimality gap of

√
N can also be proven when b tends to +∞. Motivated

by the above observation, we derive a novel confidence width that is less conservative than βnaive
t (b)

for the whole range of possible kernel parameters b.

Theorem 1 (Multitask confidence intervals). Let fmt : [N ] × X → R such that for all i ∈ [N ],
fi := fmt(i, ·) belongs to the RKHS associated to kX and ∥fi∥ ≤ B. Moreover, let µt and σt be the
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regression estimates of Equations (3) and (4) with task kernel kT (i, j) = [Ktask(b)]ij , parameter
λ ∈ [1/(1 + b), 1], and noise {ξτ}tτ=1 i.i.d. 1-sub-Gaussian. Then, with probability at least 1− 2δ,∣∣µt(i, x | b)− fmt(i, x)

∣∣ ≤ βnew
t (b) · σt(i, x | b), ∀ t ∈ N, i ∈ [N ], x ∈ X ,

where βnew
t (b) = min

{
βnaive
t (b), βsmall-b

t (b), βlarge-b
t (b)

}
,

βsmall-b
t (b) = B(1 + bϵ)

√
1 + bN

1 + b
+ λ−1/2

√
2(1 + bN)

(
γst
t + ln(N/δ)

)
,

βlarge-b
t (b) = B

√
(1 + bϵ)2

1 + b
+

2bN

1 + b
+

2b(1 + bϵ)2

Nλ2(1 + b)3
t2 + λ−1/2

√
2
(
γmt
t (b) + ln(1/δ)

)
.

The obtained improved confidence width βnew
t (b) is the minimum between three confidence widths,

see Figure 2. The first one is the naive one βnaive
t (b), obtained by standard arguments as outlined

above, while βsmall-b
t (b) and βlarge-b

t (b) (dashed and dotted lines in Figure 2) are novel and useful for
small and large values of b, respectively. Indeed, note that we have βsmall-b

t (b)
b→0−−−→ O

(
B +

√
γst
t

)
,

which is the expected single-task confidence width and
√
N smaller than βnaive

t (0). Similarly, as
b goes to +∞ we have βlarge-b

t (b)
b→+∞∼ O

(
B
√
bϵ2 + 2N + 2ϵ2t2/N

) b→+∞∼ O
(
ϵB

√
b
)
, while

βnaive
t (b)

b→+∞∼ O
(
ϵB

√
Nb
)
. The obtained confidence width is therefore always smaller than the

naive one, but also tighter by a factor
√
N for the extreme choices b = 0 and b = +∞.

From a technical viewpoint, βsmall-b
t and βlarge-b

t are obtained by viewing MT regression as a single-task
regression over the inflated features ψ̃(i, x), as also done in [6]. However, unlike [6], we explicitly
leverage the expressions of ψ̃(i, x | b) andKtask(b) as functions of b. In particular, because of the struc-
ture of Ktask, the regression kernel matrix is a rank-one perturbation of a block diagonal matrix, a fact
that we exploit, e.g., via Lemma 2. Moreover, we note that refined widths can be obtained if one has ac-
cess to task-specific constantsBi and ϵi. For simplicity of exposition, we focus on uniform (over tasks)
B and ϵ. Also, a tighter data-dependent βlarge-b

t can be utilized as outlined in Appendix A.2.2. Finally,
we remark that the obtained multitask intervals do not require i.i.d. data and thus apply to the adaptive
design setting where data are, e.g., sequentially acquired by the learner, as shown in the next section.

3 New Guarantees for Multitask Online Learning

In this section, we show how the improved confidence interval established in Theorem 1 can be used
to derive sharp regret guarantees for multitask online learning. To do so, we also prove novel bounds
for the multitask information gain γmt

T (b). For t = 1, 2, . . . the learning protocol is as follows: nature
reveals task index it ∈ [N ]; the learner chooses strategy xt ∈ X and pays fmt(it, xt); the learner
observes the noisy feedback yt = fmt(it, xt) + ξt. The goal is to minimize for any horizon T the
multitask regret

Rmt(T ) =

T∑
t=1

max
x∈X

fmt(it, x)−
T∑

t=1

fmt(it, xt) . (6)

In the next subsection, we provide a generic algorithm to minimize (6). In particular, we show that
naive choices of parameters allow to recover previous approaches with their guarantees, while using
the refined confidence width βnew

t (b) derived in Theorem 1 yields significant improvements.

3.1 Algorithm and regret guarantees

In line with the online learning literature, our approach is based on the multitask Upper Confidence
Bound, defined for any t ∈ N as

ucbt(i, x | b) = µt

(
i, x | b

)
+ βt(b) · σt

(
i, x | b

)
. (7)

Here βt : R+ → R+ is a function which assigns a confidence width βt(b) to each kernel parameter
b. We consider the general strategy MT-UCB (see Algorithm 1) which, at each round t selects
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Algorithm 1 MT-UCB

Require: Domain X , kernel kX , number of tasks N ,
width functions {βt}t∈N , parameters b, λ.

1: for t = 1, 2, . . . do
2: Observe it,
3: Play xt = argmaxx∈X ucbt−1(it, x | b),
4: Observe yt = fmt(it, xt) + ϵt,
5: Update ucbt(·, · | b) based on (3),(4), and (7).

Algorithm βt b λ

IGP-UCB [8] βsmall-b
t 0 1

GoB.Lin [6] βnaive
t b 1

This work βnew
t b N+b

N+bN

Table 1: Recovering previous works by
appropriate choices of βt, b, and λ.

xt = argmaxx∈X ucbt−1(it, x | b). As summarized in Table 1, both the strategy that runs N
independent instances of IGP-UCB (one for each task), and GoB.Lin from [6] are particular cases
of MT-UCB. Importantly, whenever βt(b) is set such that [µt(·, · | b) ± βt(b) · σt(·, · | b)] is a valid
confidence interval for fmt(·, ·), the regret of MT-UCB can be controlled through the following lemma.

Lemma 1. Suppose that λ ≥ (N + b)/(N + bN), and that for all tasks i, point x, and time t, we
have fmt(i, x | b) ∈ [µt(i, x | b)± βt(b) · σt(i, x | b) ]. Then, the multitask regret of MT-UCB satisfies

Rmt(T ) ≤ 4βT (b)
√
λTγmt

T (b) .

The main novelty of Lemma 1 is that the right-hand side scales with λ1/2, which might be chosen
smaller than 1. This improvement is due to the fact that multitask posterior variances are smaller than
(N + b)/(N + bN) ≤ 1. The right-hand side also depends on the multitask information gain γmt

T (b),
which is nontrivial to compute or upper bound. In the next proposition, we provide practical upper
bounds of γmt

T (b), in terms of the kernel parameter b and the single-task information gain γst
T .

Proposition 1. Let λ ≤ 1, N ≥ 2, and Ti ≥ 1 for all i ∈ [N ]. Then, for any b ≥ 0, we have

γmt
T (b) ≤ Nγst

T − Nb

8(1 + b)
, and γmt

T (b) ≤ γst
T +

T

2λ(1 + b)
.

We can now combine Theorem 1, Lemma 1, and Proposition 1 to obtain our main result: a bound on
the multitask regret of MT-UCB run with the confidence width βnew

t from Theorem 1 and a specific λ.

Theorem 2. Assume that B ≥ 1, and that MT-UCB is run with βt = βnew
t from Theorem 1, and

λ = (N + b)/(N + bN). Let b = N/ϵ2 if T ≤ N , b = 1/ϵ2 if T ≥ N and ϵ ≤ N−1/4T−1/2, and

b = 0 otherwise. Let Rst(T ) = B
√
Tγst

T +
√
Tγst

T

(
γst
T + ln(1/δ)

)
be the single task regret bound

achieved by IGP-UCB (up to constant factors). Then, there exists a universal constant C such that
with probability 1− 2δ we have (up to logN factors)

Rmt(T ) ≤ Cmin
{√

NRst(T ) , Rst(T ) + ϵBT 3/2
(√

γst
T + ln(1/δ) + ϵ

√
T
)
,

Rst(T ) + ϵBT
√
N
(√

γst
T + ln(1/δ) + ϵ

√
NT

)}
.

The regret bound of Theorem 2 is the minimum between three bounds, obtained exploiting the three
different regimes of the confidence width βnew

t derived in Theorem 1 (see Figure 2). The first bound
is obtained using βnew

t ≤ βsmall-b
t , and shows that our approach cannot be worse than independent

learning. Indeed, it can be checked that, when facing N tasks, the regret of running N independent
instances of IGP-UCB can be bounded by

√
N times the single-task regret bound of IGP-UCB, that

we denoted by Rst(T ). Note however that our analysis slightly differs, insofar as we leverage the
multitask information gain, while the independent analysis uses Jensen’s inequality to aggregate the
individual bounds, see Appendix B for details. Note finally that we are able to recover this bound as
βsmall-b
t is tight at b = 0, unlike βnaive

t . The second bound uses βnew
t ≤ βlarge-b

t and consists of two
terms: the single task regret bound and an additional term that scales with the task deviation ϵ. When
the latter is small, i.e., when tasks are similar, the dominant term is Rst(T ), as if only one task were
solved. The third bound is similar, but obtained using βnew

t ≤ βnaive
t and is useful when T ≥ N . In

6



contrast with the independent bound, which does not exploit the task structure, the last two bounds
show that multitask learning is always beneficial when the horizon T (and thus the additional ϵ-related
term) is small. As expected, this is particularly true when the number of tasks N is large: while the
independent bound increases, the second bound does not depend on N . On the other hand, one can
note that the condition on ϵ to improve over independent becomes more constraining as the horizon T
increases. This suggests that the benefit of multitask may vanish with the number of available points
per task, an observation which is well-known by practitioners, see e.g. [21]. As far as we know, this
work is the first one to provide theoretical evidence of such a phenomenon in online MT learning.

We conclude this section by comparing Theorem 2 to existing results. As already mentioned in the
above discussion, independent IGP-UCB is a particular case of MT-UCB, such that we cannot be worse
than the independent approach. We incidentally recover its regret bound as the first bound in the
minimum of Theorem 2. Regarding GoB.Lin, since it is also a specific instance of MT-UCB (for
βt = βnaive

t and λ = 1), Lemma 1 allows to recover its regret bound [6, Theorem 1].

Corollary 1 (Regret of GoB.Lin [6]). For any b, the multitask regret of GoB.Lin using parameter b
satisfies with probability 1− δ

Rmt(T ) ≤ 4βnaive
T (b)

√
Tγmt

T (b) ≤ 6

(
B
√
N(1 + bϵ2) +

√
γmt
T (b) + ln(1/δ)

)√
Tγmt

T (b) . (8)

If tasks are similar, i.e., when ϵ≪ 1, bound (8) suggests to choose b > 0; this does not impact too
much the first term, but makes γmt

T (b) smaller. However, we recall that the above bound instantiated
with b = 0 does not recover the independent bound. It is instead

√
N bigger, since βnaive

t is not tight
at b = 0. Hence, the Gob.Lin analysis is not sufficient to show that multitask learning improves over
independent learning. Our refined analysis, which uses instead βnew

t , closes this gap.

3.2 Adapting to unknown task similarity

In this section, we consider the case where parameter ϵ (i.e., a bound on the task deviation from
the average, see (5)) is a-priori unknown. Despite this challenge, we show that the regret bound of
Theorem 2 can be approximately attained using an adaptive procedure, AdaMT-UCB (Algorithm 3),
relegated to Appendix B.4 due to space limitations. The proposed approach is inspired by the model
selection scheme of [22, Section 7] with a few important modifications that we will outline at the
end of this section. AdaMT-UCB considers a plausible set of parameters E = {e1, . . . , e|E|} ⊂ (0, 2]
and, for each e ∈ E , initializes an instance of the MT-UCB algorithm with parameters set according
to Theorem 2 assuming ϵ = e. We denote such an instance as MT-UCB(e). Moreover, we use the
notation ucbe

t to denote the upper confidence bounds constructed by MT-UCB(e). We assume the
existence of some e ∈ E such that e ≥ ϵ, so that at least one of the learners is well-specified (i.e., its
confidence bounds contain fmt with high probability). Our goal is to incur a regret which grows as the
regret of the learner with the smallest e such that e ≥ ϵ, since the smaller the e the smallest the regret
bound (see Theorem 2), as long as e is a valid upper bound for ϵ. Let us identify with e⋆ such learner.

At each round t, AdaMT-UCB uses learner et = min E , and plays the action xt suggested by it, i.e., the
maximizer of ucbet

t (it, ·). Then, all MT-UCB(e) learners are updated based on the observed reward.
In the meantime, a misspecification test is carried out to check whether learner et is well-specified.
Such a test compares the obtained cumulative reward, a lower confidence estimate on such reward
according to the other learners, and the believed regret of learner et. As long as the test does not
trigger, the regret of learner et is controlled by the believed one. Instead, if the test triggers, learner
et can be considered misspecified with high probability. As a result, it gets removed from E and
a new epoch starts with the new set E . Let Rmt

⋆ (T ) denote the regret bound (Theorem 2) of learner
e⋆ had it been chosen from round 0. We can state the following.

Theorem 3. Assume that there exists e ∈ E such that e ≥ ϵ, and let M be the number of learners
e ∈ E such that e < ϵ (i.e., the number of misspecified learners in E). The regret of AdaMT-UCB
satisfies with high probability Rmt(T ) = O

(√
M + 1 ·Rmt

⋆ (T )
)
.

Clearly, the number M of misspecified learners is not known in advance but is always less than |E|.
Note that when ϵ = 0, we have M = 0 and we recover the single task regret bound. Moreover, given
ρ ≤ 1, we show in Appendix B.4 that one can attain a multiplicative accuracy ρ over ϵ, assuming that
ϵ ≥ ϵmin > 0, through an exponential grid with M being polylogarithmic in 1/ρ and 1/ϵmin.
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Relation with the approach of [22]. Compared to [22, Section 7]—where the goal is to adapt
to an unknown features’ dimension—the set of learners considered in AdaMT-UCB share the same
dimension d. This allows us to exploit the following two novelties with respect to [22]: (1) all
learners are updated from the data gathered from learner it (Line 6 in Algorithm 3), and (2) the lower
confidence bounds Le in the misspecification test (Line 8) are all computed using action xt (i.e., the
action recommended by learner it), as opposed to using the actions recommended by each learner e.
Both these points are only applicable to our setting, leading to a simpler regret analysis.

4 Multitask Active Learning

The goal of the online learning setup of Section 3 is to optimize the tasks sequentially revealed by
nature. In some situations (e.g., in [20] or the drug discovery problem considered in Section 5),
however, we care about the performance of multiple tasks simultaneously, to eventually learn the
best strategy for each one of them. Moreover, we ought to do so with minimal interactions T , i.e.,
minimizing the queries of the function fmt. We capture this by the following active learning protocol.

Learning protocol and regret. At each round t, the learner: chooses a strategy {xit, i ∈ [N ]} for
each task, chooses which task it ∈ [N ] to query, and observes the noisy feedback yt = fmt(it, xt)+ξt.
The learner’s goal is to minimize the active learning regret:

Rmt
AL(T ) =

T∑
t=1

1

N

N∑
i=1

max
x∈X

fmt(i, x)−
T∑

t=1

1

N

N∑
i=1

fmt(i, xit) .

Compared to the online learning regret of Equation (6), the learner’s performance at each round is
here measured by the average reward coming from each task (as opposed to just the task presented
by nature). Moreover, compared to online learning, the learner faces the additional challenge of
choosing—at each round—from which task information should be gathered. Intuitively, more difficult
(or informative) tasks should be queried more often to ensure Rmt

AL(T ) grows sublinearly. To the best
of our knowledge, the above protocol and regret notion are novel in the multitask literature.

Algorithm 2 MT-AL

for t=1,. . . , T do
xit = argmaxx∈X ucbt−1(i, x), ∀i ∈ [N ]
it = argmaxi∈[N ] β

i
t−1σt−1(i, x

i
t)

Observe: yt = fmt(it, x
it
t ) + ξt

Update ucbt(·, ·) and σt(·, ·) based on
observations.

In Algorithm 2 we present MT-AL, an efficient
strategy that ensures sublinear active learning re-
gret. Like in MT-UCB, MT-AL constructs confi-
dence intervals around fmt and, at each round,
select strategy xit = argmaxx∈X ucbt−1(i, x)
for each task i ∈ [N ]. When it comes to se-
lecting which task to query, MT-AL selects it ∈
argmaxi∈[N ] β

i
t−1σt−1(i, x

i
t), i.e., the task for

which the believed optimizer xit is subject to max-
imal uncertainty (we use generic task-dependent widths βi

t for completeness). This rule, also known
as uncertainty sampling in the literature [23], intuitively makes sure the learner can control the regrets
for the tasks not queried and leads to the following theorem.
Theorem 4. Suppose that for all tasks i, point x, and time t, we have that fmt(i, x) ∈
[µt(i, x)±βi

t ·σt(i, x) ]. Then, the MT-AL algorithm ensures the active learning regret is bounded by

Rmt
AL ≤ 2

T∑
t=1

βit
t σt(it, x

it
t ) ,

where {it} is the sequence of queried tasks and {xitt } the strategies selected for each of them.

The above bound only relies on MT-AL utilizing valid intervals around fmt and thus applies more
broadly than our agnostic MT regression, e.g., when such intervals are constructed using a known
multitask kernel k

(
(i, x), (i′, x′)

)
). However, Theorem 4 shows the active learning regret heavily

depends on the constructed intervals, similar to online learning. In MT-AL, these are additionally
utilized for deciding which task to query at each round. When specialized to our agnostic MT kernel
and improved confidence, we obtain the following.
Corollary 2. Let MT-AL utilize the MT regression estimates of Eq. (3)-(4) with parameters set
according to Theorem 2. Moreover, let Rmt(T ) be the bound on the online learning regret obtained
in Theorem 2. Then, with high probability, we have Rmt

AL(T ) ≤ Rmt(T ).
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Figure 3: Online and active learning regrets on synthetic and drug discovery MHC-I data, respectively.
When utilizing the improved confidence intervals, MT-UCB and MT-AL outperform the other baselines.

Thus, MT-AL ensures the active learning regret is always bounded by its online learning counterpart.
Moreover, the same considerations as in Theorem 2 apply also here, regarding the benefit of multitask
learning over independent single-task regression for instance.

5 Experiments

The goal of our experiments is to evaluate the effectiveness of the studied MT regression, and in
particular of the improved confidence intervals obtained in Section 2, both in online learning and
active learning setups. We utilize the following synthetic and real-world data2.

Synthetic data: We generate tasks of the form fi = (1− δ) · f̄ + δ · f idev, i ∈ [N ], where f̄ , f idev are
random unit vectors representing a common model and individual deviations, respectively. Moreover,
actions consist of 104 vectors x ∈ Rd from the sphere of radius 10. Observation noise is unit normal.

Drug discovery MHC-I data [27]: The goal is to discover the peptides with maximal binding affinity
to each Major Histocompatibility Complex class-I (MHC-I) allele. The dataset from [27] contains
the standardized binding affinities (IC50 values) of different peptide candidates to the MHC-I alleles
(tasks). For each allele, the dataset contains ∼ 1000 peptides represented as x ∈ R45 feature vectors.
For our experiments, we utilize the 5 alleles A-{0201, 0202, 0203, 2301, 2402}, since they were
shown in [27] to share binding similarity. Note that such a problem falls into our multitask active
learning setup, since we would like to retrieve the best peptide for each allele minimizing the number
of interactions (i.e., lab experiments). Nevertheless, we also consider its online learning analog where
we care about finding the best peptides for each revealed allele.

Online learning. At each round t, a random task it ∈ [N ] is observed and point xt is selected
according to the following baselines: (1) Independent, which runs N independent IGP-UCB [8]
algorithms (corresponding to MT-UCB with b = 0), (2) Single, which treats all tasks to be the same
and runs a unique single-task IGP-UCB (corresponding to MT-UCB with b = +∞), (3) MT-UCB which
utilizes an appropriate parameter 0 < b <∞ as well as a bound on the tasks similarity ϵ (for synthetic
data this can be exactly computed, while for MHC-I data we use ϵ = 0.3) and utilizes the naive (i.e.,
Gob.Lin) or improved confidence bounds, and (4) AdaMT-UCB which is run with the same b but uses
the set of plausible deviations E = {.1, .2, . . . , 1} instead of knowing the true ϵ. For choosing b, we
sweep over possible values and select the best-performing one, keeping it fixed for all the baselines.

Active learning. We follow the multitask active learning setup of Section 4. All baselines utilize
confidence intervals from the agnostic MT regression of Section 2, where ϵ and b are chosen as
for online learning. Moreover, they all utilize the improved confidence intervals, unless otherwise
specified. We compare: (1) Unif. which chooses the task it to be queried uniformly at random (but
still selects xit ∈ argmaxx ucbi

t(i, x)) and employs the naive or the improved confidence intervals,
the offline contextual Bayesian optimization baselines (2) MTS [7] and (3) AE-LSVI [18], and (4)
MT-AL which utilizes the naive or the improved confidence intervals.

2code available at: https://github.com/sessap/multitask-noregret.
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We report the cumulative regret (online and active learning, respectively) of the considered baselines
in Figure 3, averaged over 5 runs. For the synthetic data, we report results for d = 4, N = 5, δ = 0.4,
but provide a full set of experiments for different parameters in Appendix D. In Appendix D we also
report the frequencies of each task being queried in our active learning experiments. In Figure 3 (a),
both MT-UCB and AdaMT-UCB lead to superior performance compared to the Independent and Single
baselines, demonstrating the benefits of MT regression. In addition, the improved confidence
intervals significantly outperform the naive ones. Moreover, we observe AdaMT-UCB achieves
comparable (sometimes even better, see Appendix D) performance to MT-UCB. Indeed, instead of using
a conservative choice of ϵ, the misspecification test (Line 8 of Algorithm 3) of AdaMT-UCB allows to
use a smaller ϵ and only increase it when there is evidence that the constructed intervals do not contain
the true tasks. In active learning (Figure 3 (b)), we observe MT-AL has a significant advantage over
the uniform sampling baselines and MTS, while performing comparably to AE-LSVI (both methods
are similar as discussed in Appendix C.3). Moreover, its regret is bounded by the online learning
regret of MT-UCB, conforming with Theorem 4. Importantly, the improved confidence intervals play
a crucial role also here and enable a drastic performance improvement compared to the naive ones.

6 Future Directions

We believe this paper opens up several future research directions. The derived confidence intervals,
as well as our analysis of the multitask information gain, heavily exploit the structure of the task
Gram matrix Ktask(b), see Equation (2). However, it remains unclear whether these can be extended
to more general kernels. According to the graph perspective of [13], Ktask(b) can be seen as
Ktask(b) = IN + L(b), where L(b) ∈ RN×N is the Laplacian matrix of a clique graph with vertices
[N ] and edge weight b. Hence, it would be interesting to extend our results to different graph
structures. Furthermore, we believe the proposed multitask confidence intervals hold potential for
various related domains., e.g., to assess uncertainty in safety-critical systems [3], or to balance
exploration-exploitation in multitask reinforcement learning [26], spam filtering [15], or personalized
health [14]. In such applications, the introduced notion of active learning regret can serve as a
measure of the overall sample efficiency.
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Supplementary Material
We gather here the technical proofs and additional results complementing the main paper.

A Multitask Regression and Improved Confidence Intervals

Notation. In order to coincide with the notation of [6], we introduce the matrix A(b) ∈ RN×N

such that A−1(b) := Ktask(b). For all b ≥ 0 we have

A(b) = (1 + b)IN − b
1N1

⊤
N

N
, A(b)1/2 =

√
1 + b IN +

(
1−

√
1 + b

)1N1
⊤
N

N
,

A(b)−1 =
1

1 + b
IN +

b

1 + b

1N1
⊤
N

N
, A(b)−1/2 =

1√
1 + b

IN +

(
1− 1√

1 + b

)
1N1

⊤
N

N
.

Note that in the following we often drop the dependence in b and use only A, A−1, A1/2, A−1/2.

A.1 Further intuitions about the MT regression of Section 2.1

Given the history of measurements {(is, xs), ys}ts=1, the agnostic MT regression considered in
Section 2.1 estimates fmt (or equivalently the fi) by standard kernel Ridge regression, i.e., by
computing

µt = argmin
h∈Hk

t∑
s=1

(
h(is, xs)− ys

)2
+ λ∥h∥2Hk

, (9)

where Hk is the RKHS associated to kernel k, and λ > 0 some regularization parameter. In the
next proposition, we provide some intuition about the role of parameter b by exhibiting regression
problems that are equivalent to problem (9) when b = 0 and b = +∞. We relegate its proof to the
end of this section.
Proposition 2. Solving the multitask kernel Ridge regression problem (9) for b = 0 is equivalent to
solve N independent kernel Ridge regressions, using each task’s data separately, i.e., we have

∀ i ∈ [N ] , µt(i, · | b = 0) = argmin
h∈HkX

∑
s : is=i

(
h(xs)− ys

)2
+ λ∥h∥2HkX

.

On the other hand, solving (9) for b = +∞ is equivalent to solve a unique kernel Ridge regression
for all the tasks based on the entire dataset, i.e., we have

∀ i ∈ [N ] , µt(i, · | b = +∞) = argmin
h∈HkX

t∑
s=1

(
h(xs)− ys

)2
+ λN∥h∥2HkX

.

Hence, choosing some b in (0,+∞) is choosing some tradeoff between these two extreme regimes.
In Section 3.1, see Theorem 2, we discuss how to set b with respect to the tasks at hand. Proposition 2
provides another intuition: to ensure constant regularization, parameter λ should decrease with b.
This key observation was overlooked in [6], partly explaining our better guarantees, see Section 3.1.

Another way to gain intuition about the setting is to compute the feature map induced by the multitask
kernel k. Let ϕ : X → Rd be the canonical feature map associated to kX 3, and ψ : X × [N ] → RNd

such that ψ(i, x) = (0, . . . , ϕ(x), . . . , 0), with non-zero entry at block i. Further define A⊗ =
A⊗ Id ∈ RNd×Nd, where ⊗ denote the kronecker product. It is immediate to check that

ψ̃(i, x) = A
−1/2
⊗ ψ(i, x) =

(
A

−1/2
1i ϕ(x) , . . . , A

−1/2
ii ϕ(x) , . . . , A

−1/2
Ni ϕ(x)

)
∈ RNd (10)

is a feature map associated to k. Indeed, for any tasks i, i′ ∈ [N ], and points x, x′ ∈ X , we have
that

〈
ψ̃(i, x), ψ̃(i′, x′)

〉
=
∑

k A
−1/2
ik A

−1/2
i′k ⟨ϕ(x), ϕ(x′)⟩ = A−1

ii′ kX (x, x′) = k
(
(i, x), (i′, x′)

)
.

Hence, ψ̃(i, x) stores the feature map ϕ(x) in each block j, weighted by some coefficient A−1/2
ji (b),

3For the sake of the exposition we consider finite dimensional feature maps. Our results naturally extend to
infinite dimensional ones.
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which quantifies how similar tasks i and j are assumed to be. When b = 0, only block i receives
ϕ(x). When b = +∞, each block receives ϕ(x)/N . Denoting abusively f = (f1, . . . , fN ), note that

fmt(i, x) = ⟨fi, ϕ(x)⟩ = ⟨f, ψ(i, x)⟩ =
〈
A

1/2
⊗ f,A

−1/2
⊗ ψ(i, x)

〉
=
〈
f̃ , ψ̃(i, x)

〉
, (11)

where f̃ =
(∑

j A
1/2
1j fj , . . . ,

∑
j A

1/2
Nj fj

)
∈ Hk is a transformed representation of fmt that will

play a key role in the subsequent analysis.

Comparison to the model of [9]. We note that an online multitask kernel regression setting has also
been considered in [9]. However, the setting of [9] considers multioutput functions fmo : X → RN

such that the ith output of fmo is given by fi. The authors learn fmo by leveraging matrix-valued
kernels, a multiple output extension of scalar-valued kernel methods. Although the functions modeled
by kernel k defined in (1) are isomorphic to that associated to the matrix-valued decomposable kernel
given by kMV(x, x

′) = kX (x, x′)A−1, where we recall that A−1
ii′ = kT (i, i

′), we highlight that both
models are drastically different. Indeed, while we only observe a single measurement at each time
step t, namely a noisy version of fit(xt), the model in [9] assumes that the learner can access N
different measurements, that of the fi(xt) for all i ∈ [N ]. This key difference makes our model more
flexible. In particular, in [9] all tasks must be observed the same number of times, and in addition at
the same observation points.

A.1.1 Proof of Proposition 2

Recall first that problem (9) writes

µt = argmin
h∈Hk

t∑
s=1

(
h(is, xs)− ys

)2
+ λ∥h∥2Hk

.

Using identity (11), we obtain

µt = argmin
h∈Hk

t∑
s=1

(〈
h, ψ̃(is, xs)

〉
− ys

)2
+ λ∥h∥2Hk

,

such that standard results for kernel Ridge regression gives that µt(x) =
〈
wt, ψ̃(x)

〉
, with

wt =

( t∑
s=1

ψ̃(is, xs)ψ̃(is, xs)
⊤ + λINd

)−1( t∑
s=1

ys ψ̃(is, xs)

)
. (12)

Now, recall that ψ̃(i, x) = A
−1/2
⊗ ψ(i, x) =

(
A

−1/2
1i ϕ(x) , . . . , A

−1/2
ii ϕ(x) , . . . , A

−1/2
Ni ϕ(x)

)
,

such that

ψ̃(i, x | b = 0) = (0, . . . , 0, ϕ(x)
block i

, 0, . . . , 0) , (13)

ψ̃(i, x | b = +∞) = (ϕ(x)/N, . . . , ϕ(x)/N) . (14)

Substituting (13) in (12), we obtain

wt =



∑
s≤t

s.t. is=1

ϕ(xs)ϕ(xs)
⊤ + λId (0)

. . .
(0)

∑
s≤t

s.t. is=N

ϕ(xs)ϕ(xs)
⊤ + λId



−1

∑
s≤t

s.t. is=1

ysϕ(xs)

...∑
s≤t

s.t. is=N

ysϕ(xs)


,

or again,

∀ i ∈ [N ], w
(i)
t =

 ∑
s≤t : is=i

ϕ(xs)ϕ(xs)
⊤ + λId

−1 ∑
s≤t : is=i

ysϕ(xs)

 ,

14



where w(i) ∈ Rd denotes the ith block of concatenated vector w ∈ RNd. We thus recover the
solutions to the independent regressions stated in the first claim of Proposition 2.

Alternatively, substituting (14) into (12), we obtain

wt =



1

N

t∑
s=1

ϕ(xs)ϕ(xs)
⊤ + λN Id

1

N

t∑
s=1

ϕ(xs)ϕ(xs)
⊤

. . .

1

N

t∑
s=1

ϕ(xs)ϕ(xs)
⊤ 1

N

t∑
s=1

ϕ(xs)ϕ(xs)
⊤ + λN Id



−1

t∑
s=1

ysϕ(xs)

...
t∑

s=1

ysϕ(xs)



=



t∑
s=1

ϕ(xs)ϕ(xs)
⊤ + λN Id (0)

. . .

(0)

t∑
s=1

ϕ(xs)ϕ(xs)
⊤ + λN Id



−1

t∑
s=1

ysϕ(xs)

...
t∑

s=1

ysϕ(xs)


,

such that for any i ∈ [N ] we have w(i)
t =

(∑t
s=1 ϕ(xs)ϕ(xs)

⊤ + λN Id

)−1 (∑t
s=1 ysϕ(xs)

)
,

which are exactly the solutions to the regression problem on the full dataset stated in the second
claim of Proposition 2. Note that the above equality can be easily checked by left multiplying both
expressions by 1N1

⊤
N ⊗ 1

N

∑t
s=1 ϕ(xs)ϕ(xs)

⊤ + λN INd.

A.2 Proof of Theorem 1

Theorem 1 (Multitask confidence intervals). Let fmt : [N ] × X → R such that for all i ∈ [N ],
fi := fmt(i, ·) belongs to the RKHS associated to kX and ∥fi∥ ≤ B. Moreover, let µt and σt be the
regression estimates of Equations (3) and (4) with task kernel kT (i, j) = [Ktask(b)]ij , parameter
λ ∈ [1/(1 + b), 1], and noise {ξτ}tτ=1 i.i.d. 1-sub-Gaussian. Then, with probability at least 1− 2δ,∣∣µt(i, x | b)− fmt(i, x)

∣∣ ≤ βnew
t (b) · σt(i, x | b), ∀ t ∈ N, i ∈ [N ], x ∈ X ,

where βnew
t (b) = min

{
βnaive
t (b), βsmall-b

t (b), βlarge-b
t (b)

}
,

βsmall-b
t (b) = B(1 + bϵ)

√
1 + bN

1 + b
+ λ−1/2

√
2(1 + bN)

(
γst
t + ln(N/δ)

)
,

βlarge-b
t (b) = B

√
(1 + bϵ)2

1 + b
+

2bN

1 + b
+

2b(1 + bϵ)2

Nλ2(1 + b)3
t2 + λ−1/2

√
2
(
γmt
t (b) + ln(1/δ)

)
.

Proof. Recall that we are interested in obtaining high probability error bounds of the form∣∣µt(i, x)− fmt(i, x)
∣∣ ≤ βt(b) · σt(i, x | b)

for a suitable choice of confidence width βt(b).

A.2.1 A naive confidence width

Using identity (11) and a direct application of [1, Theorem 3.11 and Remark 3.13], together with the
definition of γmt

t (b), we can select

βt =
∥∥f̃∥∥+ λ−1/2

√
2
(
γmt
t (b) + ln(1/δ)

)
.

We now upper bound
∥∥f̃∥∥ explicitly. Recall that

f̃ =

∑
j

A
1/2
1j fj , . . . ,

∑
j

A
1/2
Nj fj

 ,

15



with A = (1 + b)IN − (b/N)11⊤, so that we have∥∥f̃∥∥2 =

N∑
i=1

∥∥∥ N∑
j=1

A
1/2
ij fj

∥∥∥2 =

N∑
i=1

N∑
j=1

N∑
k=1

A
1/2
ij A

1/2
ik ⟨fj , fk⟩

=

N∑
j,k=1

Ajk⟨fj , fj⟩ =
N∑
i=1

∥fi∥2 + b

 N∑
i=1

∥fi∥2 −
1

N

N∑
j,k=1

⟨fj , fk⟩

 . (15)

On the other side, it holds

N∑
i=1

∥∥∥∥fi − 1

N

N∑
j=1

fj

∥∥∥∥2 =

N∑
i=1

∥fi∥2 +
1

N2

∥∥∥∥ N∑
j=1

fj

∥∥∥∥2 − 2

N

N∑
j=1

⟨fi, fj⟩


=

N∑
i=1

∥fi∥2 +
1

N

N∑
i,j=1

⟨fi, fj⟩ −
2

N

N∑
i,j=1

⟨fi, fj⟩

=

N∑
i=1

∥fi∥2 −
1

N

N∑
i,j=1

⟨fi, fj⟩ . (16)

Substituting (16) into (15), we obtain∥∥f̃∥ =

N∑
i=1

∥fi∥2 + b

N∑
i=1

∥fi − favg∥2 ≤ NB2(1 + bϵ2) .

Overall, we can thus choose

βnaive
t (b) = B

√
N(1 + bϵ2) + λ−1/2

√
2
(
γmt
t (b) + ln(1/δ)

)
. (17)

Note that this choice corresponds also to the confidence intervals utilized in the multitask regression
setting of [6]. However, we highlight that width (17) is too conservative. Indeed, when setting b = 0
our model consists in solving single tasks independently, see Proposition 2, such that the confidence
width should be of the order B +O(

√
γst
t ). Instead, we have

βnaive
t (0) =

√
NB +O

(√
γmt
t (0)

)
=

√
N
(
B +O

(√
γst
t

))
,

which is
√
N bigger. In the next subsection, we derive an improved confidence width which is tight

at b = 0.

A.2.2 An improved confidence width

As in [8, 2, Proof of Theorem 2], we start by bounding the prediction error as∣∣fmt(i, x)− µt(i, x)
∣∣ = ∣∣fmt(i, x)− kt(i, x)

⊤(Kt + λIt)
−1(ȳ1:t + ξ1:t)

∣∣
≤
∣∣fmt(i, x)− kt(i, x)

⊤(Kt + λIt)
−1ȳ1:t

∣∣︸ ︷︷ ︸
bias error

+
∣∣kt(i, x)

⊤(Kt + λIt)
−1ξ1:t

∣∣︸ ︷︷ ︸
variance error

,

where ȳ1:t ∈ Rt is the vector of noise-free outputs such that ȳs = fmt(is, xs) = fis(xs), and
ξ1:t ∈ Rt is the vector of noises. Below, we derive separate bounds for the bias and variance errors.
But before doing so, we depart from [8, Proof of Theorem 2] and obtain an explicit lower bound for
the predictive variance for task i at point x.

Lower bounding the predictive variance. First, we introduce some notation. Let A⊗ ∈ RNd×Nd

such that
A⊗ := A⊗ Id = (1 + b)INd −

b

N
1N1

⊤
N ⊗ Id ,

Moreover, for every t ∈ N and i ∈ [N ], let ti =
∑

s≤t I{is = i}. We denote by Φti ∈ Rti×d the
matrix storing in rows the ϕ(xs) for all s such that is = i. Similarly, let Ψt, Ψ̃t ∈ Rt×Nd storing in
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rows the ψ(is, xs) and ψ̃(is, xs) respectively, for all s ≤ t. Recall that ψ̃(i, x) = A⊗ψ(i, x), such
that Ψ̃t = ΨtA⊗. Further, define

M := Ψ⊤
t Ψt + λ(1 + b)INd =

M1 0
. . .

0 MN

 , with Mi = Φ⊤
tiΦti + λ(1 + b)Id . (18)

By properties of the multitask kernel, see (1), the predictive variance for task i at decision point x
can be lower bounded as:

σ2
t (i, x) = k

(
(i, x), (i, x)

)
− kt(i, x)

⊤(Kt + λIt)
−1kt(i, x)

= ψ̃(i, x)⊤
(
INd − Ψ̃⊤

t

(
Ψ̃tΨ̃

⊤
t + λIt

)−1
Ψ̃t

)
ψ̃(i, x)

= ψ̃(i, x)⊤
(
INd −

(
Ψ̃⊤

t Ψ̃t + λINd

)−1
Ψ̃⊤

t Ψ̃t

)
ψ̃(i, x) (19)

= λ ψ̃(i, x)⊤
(
Ψ̃⊤

t Ψ̃t + λINd

)−1
ψ̃(i, x)

= λψ(i, x)⊤A
−1/2
⊗

(
A

−1/2
⊗ Ψ⊤

t ΨtA
−1/2
⊗ + λA

−1/2
⊗ A⊗A

−1/2
⊗

)−1

A
−1/2
⊗ ψ(i, x)

= λψ(i, x)⊤
(
Ψ⊤

t Ψt + λA⊗
)−1

ψ(i, x)

= λψ(i, x)⊤
(
M − λb

N
1N1

⊤
N ⊗ Id

)−1

ψ(i, x)

= λψ(i, x)⊤M−1ψ(i, x)

+ λψ(i, x)⊤M−1

1N1
⊤
N ⊗ λb

N

(
INd −

λb

N

N∑
i=1

M−1
i

)−1
M−1 ψ(i, x) (20)

= λϕ(x)⊤M−1
i ϕ(x) + λϕ(x)⊤M−1

i

λb

N

(
Id −

λb

N

N∑
i=1

M−1
i

)−1

︸ ︷︷ ︸
:=X−1

M−1
i ϕ(x)

= λ

(∥∥M−1/2
i ϕ(x)

∥∥2 + λb

N

∥∥X−1/2M−1
i ϕ(x)

∥∥2)
≥ λ

∥∥M−1/2
i ϕ(x)

∥∥2 + b

(1 + b)N

∥∥λX−1M−1
i ϕ(x)

∥∥2 (21)

≥ (1 + b)
∥∥λM−1

i ϕ(x)
∥∥2 + b

(1 + b)N

∥∥λX−1M−1
i ϕ(x)

∥∥2 , (22)

where (19) comes from the push-through equality, (20) from Lemma 2 applied to D = M and
P = −λb

N Id, (21) from the fact that X ⪰ 1/(1 + b) Id, and (22) from Mi ⪰ λ(1 + b)Id. Indeed,
the later can easily be checked from (18), which also implies that (λb)/N

∑
iM

−1
i ⪯ b/(1 + b) Id,

such that X ⪰ 1/(1 + b) Id. We now upper bound the bias error in terms of σ2
t (i, x).

Bounding the bias error. Using similar steps as before, we have∣∣fmt(i, x)− kt(i, x)
⊤(Kt + λIt)

−1ȳ1:t

∣∣
=
∣∣ψ̃(i, x)⊤f̃ − ψ̃(i, x)⊤Ψ̃⊤

t (Ψ̃tΨ̃
⊤
t + λIt)

−1Ψ̃tf̃
∣∣

=
∣∣∣ψ̃(i, x)⊤f̃ − ψ̃(i, x)⊤(Ψ̃⊤

t Ψ̃t + λINd)
−1Ψ̃⊤

t Ψ̃tf̃
∣∣∣

=
∣∣λ ψ̃(i, x)⊤(Ψ⊤

t Ψt + λINd)
−1f̃

∣∣
=
∣∣λψ(i, x)⊤(Ψ⊤

t Ψt + λA⊗)
−1A

1/2
⊗ f̃

∣∣
=

∣∣∣∣∣∣λψ(i, x)⊤
M−1 +M−1

11
⊤ ⊗ λb

N

(
Id −

N∑
i=1

M−1
i

)−1
M−1

A1/2
⊗ f̃

∣∣∣∣∣∣
17



=

∣∣∣∣∣(λM−1
i ϕ(x)

)⊤ [
A

1/2
⊗ f̃

]
[i]

+
λb

N

(
λX−1M−1

i ϕ(x)
)⊤ N∑

l=1

[
M−1A

1/2
⊗ f̃

]
[l]

∣∣∣∣∣
≤
∥∥λM−1

i ϕ(x)
∥∥ · ∥∥fi + b(fi − favg)

∥∥+ λb

N

∥∥λX−1M−1
i ϕ(x)

∥∥ · ∥∥∥∥∥
N∑
l=1

M−1
l

[
A

1/2
⊗ f̃

]
[l]

∥∥∥∥∥
≤

√
1 + b

∥∥λM−1
i ϕ(x)

∥∥ B(1 + bϵ)√
1 + b

+

√
b

(1 + b)N

∥∥λX−1M−1
i ϕ(x)

∥∥ · λ√b(1 + b)

N

∥∥∥∥∥
N∑
l=1

M−1
l

[
A

1/2
⊗ f̃

]
[l]

∥∥∥∥∥︸ ︷︷ ︸
:=∥D∥

≤

√√√√((1 + b)
∥∥λM−1

i ϕ(x)
∥∥2 + b

∥∥λX−1M−1
i ϕ(x)

∥∥2
(1 + b)N

)(
B2(1 + bϵ)2

1 + b
+
λ2b(1 + b)

N
∥D∥2

)
(23)

≤ σt(i, x) ·
√
B2(1 + bϵ)2

1 + b
+
λ2b(1 + b)

N
∥D∥2 , (24)

where we have used v[i] to denote the block i of a concatenated vector in RNd, Cauchy-Schwarz
inequality to derive (23), and lower bound (22) to obtain (24). Note that D depends on the products
between data matrices Ml and task vectors fi, . . . , fN , such that it is unknown in general. Below, we
provide two upper bounds for ∥D∥.

Bound 1 (small b range). We can bound ∥D∥ using Cauchy-Schwarz. We have

∥D∥ ≤
N∑
l=1

∥∥M−1
l

∥∥
∗

∥∥∥∥[A1/2
⊗ f̃

]
[l]

∥∥∥∥ ≤ 1

λ(1 + b)

N∑
l=1

∥∥fl + b(fl − favg)
∥∥ ≤ NB(1 + bϵ)

λ(1 + b)
,

which yields∣∣fmt(i, x)− kt(i, x)
⊤(Kt + λIt)

−1ȳ1:t
∣∣ ≤ σt(i, x) ·B(1 + bϵ)

√
1 + bN

1 + b
. (25)

The above bound is useful when b is small. Indeed, when b = 0, according to the above we recover the
single-task confidence width B · σt(i, x). However, as b goes to +∞, the bound grows as O

(√
Nbϵ

)
,

which is an order of
√
b faster than the naive one, see (17). We thus provide another upper bound on

∥D∥, which is tighter for large values of b.

Bound 2 (large b range). Alternatively, we can bound ∥D∥ leveraging the SVD of the data matrices

used to build Ml (recall that Ml = λ(1+ b)Id +Φ⊤
tl
Φtl ). For l ≤ N , let Φ⊤

tl
Φtl =

∑
k σ

(l)
k u

(l)
k u

(l)
k

⊤

be the SVD of the data matrix Φ⊤
tl
Φtl . We have

M−1
l =

∑
k

1

σ
(l)
k + λ(1 + b)

u
(l)
k u

(l)
k

⊤
=

1

λ(1 + b)
Id −

∑
k

σ
(l)
k

λ(1 + b)
(
σ
(l)
k + λ(1 + b)

)u(l)k u
(l)
k

⊤
,

so that

∥D∥ =

∥∥∥∥ N∑
l=1

M−1
l

(
fl + b(fl − favg)

)∥∥∥∥
≤ 1

λ(1 + b)

∥∥∥∥∥
N∑
l=1

fl

∥∥∥∥∥+ 1

λ(1 + b)

∥∥∥∥∥∥
∑
k,l

σ
(l)
k

σ
(l)
k + λ(1 + b)

u
(l)
k u

(l)
k

⊤(
fl + b(fl − favg)

)∥∥∥∥∥∥
≤ NB

λ(1 + b)
+

1

λ(1 + b)

∑
k,l

σ
(l)
k

σ
(l)
k + λ(1 + b)

∥∥fl + b(fl − favg)
∥∥
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≤ NB

λ(1 + b)
+
B(1 + bϵ)

λ(1 + b)

N∑
l=1

Tr
(
Ktl

(
Ktl + λ(1 + b)Itl

)−1
)

(26)

≤ NB

λ(1 + b)
+
B(1 + bϵ)

λ(1 + b)

N∑
l=1

Tr(Ktl) · λmax

((
Ktl + λ(1 + b)Itl

)−1
)

≤ NB

λ(1 + b)
+
B(1 + bϵ)

λ2(1 + b)2

N∑
l=1

tl

≤ NB

λ(1 + b)
+
B(1 + bϵ)

λ2(1 + b)2
t .

We note that in practice the data-dependent bound (26) might be tighter than the latter one when λ
is small. However, for simplicity of the exposition we focus on the latter data-independent bound.
Substituting it into (24), we obtain∣∣fmt(i, x)− kt(i, x)

⊤(Kt+λIt)
−1ȳ1:t|

≤ σt(i, x) ·

√
B2(1 + bϵ)2

1 + b
+ 2B2

bN

1 + b
+ 2t2

B2(1 + bϵ)2b

λ2(1 + b)3N

= σt(i, x) ·B

√
(1 + bϵ)2

1 + b
+

2bN

1 + b
+

2b(1 + bϵ)2

Nλ2(1 + b)3
t2 . (27)

When b goes to 0, we recover B · σt(i, x), as for Bound 1. However, the above bound is more useful
when b is large. Indeed, when b goes to +∞, we obtain B

√
bϵ2 + 2N + 2ϵ2t2/Nλ2 σt(i, x) =

O
(
B
√
bϵ
)
σt(i, x), which improves by a factor

√
N over the O

(
B
√
bNϵ

)
σt(i, x) term obtained

with the naive bound. Recall that when b goes to +∞, MT regression is equivalent to solve a single
averaged task based on the whole dataset, see Proposition 2, such that obtaining a confidence width
independent from N is expected. Overall, combining (17), (25) and (27), we obtain that∣∣fmt(i, x)− kt(i, x)

⊤(Kt + λIt)
−1ȳ1:t

∣∣ ≤ βbias
t (b) · σt(i, x) , (28)

where βbias
t (b) = B min

{√
N(1 + bϵ2), (1 + bϵ)

√
1+bN
1+b ,

√
(1+bϵ)2

1+b + 2bN
1+b + 2b(1+bϵ)2

Nλ2(1+b)3 t
2
}

.
We now turn to the variance error.

Bounding the variance error. Using (17), the variance error can be naively bounded by

βnaive, var
t (b) · σt(i, x), where βnaive, var

t (b) = λ−1/2
√
2
(
γmt
t (b) + ln(1/δ)

)
. However, note that the

above bound is conservative when parameter b is small. Indeed, in the limit of b = 0 (tasks are treated
independently), we know that such error should only depend on the information gain of task i, i.e.,
γst
ti . Instead, γmt

t (0) = O
(
N γst

ti

)
, which is N times bigger. Let Pi := Φ⊤

tiΦti + Id, and note that
M−1

i ⪯ P−1
i , since λ ≥ 1/(1 + b). Looking at a single task i, with probability 1− δ we have∥∥M−1/2

i Φ⊤
tiξ[ti]

∥∥2 ≤
∥∥P−1/2

i Φ⊤
tiξ[ti]

∥∥2
= ξ⊤[ti]ΦtiP

−1
i Φ⊤

tiξ[ti]

= ξ⊤[ti]Φti

(
Φ⊤

tiΦti + Id
)−1

Φ⊤
tiξ[ti]

= ξ⊤[ti]
(
Kti + Iti

)−1
Kti ξ[ti]

= ξ⊤[ti]
(
Iti +K−1

ti

)−1
ξ[ti]

≤ 2

(
1

2
ln
∣∣Iti +Kti

∣∣+ ln(1/δ)

)
(29)

≤ 2

(
1

2
ln
∣∣Iti + λ−1Kti

∣∣+ ln(1/δ)

)
(30)

≤ 2
(
γst
ti + ln(1/δ)

)
,
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where ξ[ti] ∈ Rti contains the observation noises related to the time steps when task i was active, and
Kti ∈ Rti×ti is the individual Gram matrix based on such observations. Equation (29) is obtained
by applying [8, Theorem 1] with η = 0, while (30) derives from λ ≤ 1. By the union bound, we get
that with probability at least 1− δ, we have

sup
i≤N

∥∥P−1/2
i Φ⊤

tiξ[ti]
∥∥2 ≤ 2

(
γst
t + ln(N/δ)

)
.

Then, we obtain∣∣kt(i, x)⊤(Kt + λIt)
−1ξ1:t

∣∣
=
∣∣∣ψ̃(i, x)⊤(Ψ̃⊤

t Ψ̃t + λINd

)−1
Ψ̃⊤

t ξ1:t

∣∣∣
=
∣∣∣ψ(i, x)⊤(Ψ⊤

t Ψt + λA⊗
)−1

Ψ⊤
t ξ1:t

∣∣∣
=

∣∣∣∣∣ϕ(x)⊤M−1
i Φ⊤

tiξ[ti] +
λb

N

(
X−1M−1

i ϕ(x)
)⊤ N∑

l=1

[
M−1Ψ⊤

t ξ1:t
]
[l]

∣∣∣∣∣
≤

√
λ
∥∥∥M−1/2

i ϕ(x)
∥∥∥ · 1√

λ

∥∥∥M−1/2
i Φ⊤

tiξ[ti]

∥∥∥
+

√
b

(1 + b)N

∥∥∥λX−1M−1
i ϕ(x)

∥∥∥ ·√b(1 + b)

N

∥∥∥∥∥
N∑
l=1

M−1
l Φ⊤

tl
ξ[tl]

∥∥∥∥∥
≤

√
λ
∥∥∥M−1/2

i ϕ(x)
∥∥∥ · 1√

λ

∥∥∥M−1/2
i Φ⊤

tiξ[ti]

∥∥∥
+

√
b

(1 + b)N

∥∥∥λX−1M−1
i ϕ(x)

∥∥∥ ·√b(1 + b)N sup
l≤N

∥∥M−1/2
l

∥∥
∗ ·
∥∥M−1/2

l Φ⊤
tl
ξ[tl]

∥∥
≤

√
λ
∥∥∥M−1/2

i ϕ(x)
∥∥∥ · 1√

λ

∥∥∥M−1/2
i Φ⊤

tiξ[ti]

∥∥∥
+

√
b

(1 + b)N

∥∥∥λX−1M−1
i ϕ(x)

∥∥∥ ·√bN

λ
sup
l≤N

∥∥M−1/2
l Φ⊤

tl
ξ[tl]

∥∥
≤
(
λ
∥∥∥M−1/2

i ϕ(x)
∥∥∥2 + b

(1 + b)N

∥∥∥λX−1M−1
i ϕ(x)

∥∥∥2)1/2

·
(
1

λ

∥∥∥P−1/2
i Φ⊤

tiξ[ti]

∥∥∥2 + bN

λ
sup
l≤N

∥∥P−1/2
l Φ⊤

tl
ξ[tl]

∥∥2)1/2

≤ λ−1/2 σt(i, x) sup
l≤N

∥∥P−1/2
l Φ⊤

tl
ξ[tl]

∥∥√1 + bN (31)

≤ λ−1/2
√

2(1 + bN)
(
γst
t + ln(N/δ)

)
σt(i, x) ,

where (31) comes from lower bound (21). Finally, we can take the minimum of this bound and the
naive one. Using the union bound again, with probability at least 1− 2δ, we have∣∣kt(i, x)

⊤(Kt + λIt)
−1ξ1:t

∣∣ ≤ βvar
t (b) · σt(i, x), (32)

where βvar
t (b) = λ−1/2 min

{√
2
(
γmt
t (b) + ln(1/δ)

)
,
√
2(1 + bN)

(
γst
t + ln(N/δ)

)}
.

Overall error bound. We can obtain the overall prediction error bound by combining bounds (28)
and (32) for the bias and variance errors respectively. Hence, with probability 1− 2δ, we have∣∣fmt(i, x)− µt(i, x)

∣∣ = ∣∣fmt(i, x)− kt(i, x)
⊤(Kt + λIt)

−1(ȳ1:t + ξ1:t)
∣∣

≤
∣∣fmt(i, x)− kt(i, x)

⊤(Kt + λIt)
−1ȳ1:t

∣∣︸ ︷︷ ︸
bias error

+
∣∣kt(i, x)

⊤(Kt + λIt)
−1ξ1:t

∣∣︸ ︷︷ ︸
variance error

≤
(
βbias
t (b) + βvar

t (b)
)
· σt(i, x) ,
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with βbias
t (b) = Bmin

{√
N(1 + bϵ2), (1 + bϵ)

√
1+bN
1+b ,

√
(1+bϵ)2

1+b + 2bN
1+b + 2b(1+bϵ)2

Nλ2(1+b)3 t
2
}

, and

βvar
t (b) = λ−1/2 min

{√
2
(
γmt
t (b) + ln(1/δ)

)
,
√
2(1 + bN)

(
γst
t + ln(N/δ)

)}
. In particular, we

obtain Theorem 1 by considering specific combinations among the minimums involved in the
definitions of βbias

t (b) and βvar
t (b). The resulting βsmall-b

t (b) and βlarge-b
t (b) are chosen to be tight when

b goes to 0 or +∞ respectively.

A.2.3 A Kronecker Sherman-Morrison Lemma

We now provide a lemma which extends the Sherman-Morrison formula to kronecker matrices.
Lemma 2. Let D1, . . . , DN ∈ Rd×d be invertible, D = diag

(
D1, . . . , DN

)
∈ RNd×Nd, and

P ∈ Rd×d that commutes with Di for all i ∈ [N ]. Then we have(
D + 1N1

⊤
N ⊗ P

)−1
= D−1 +D−1

(
1N1

⊤
N ⊗Q

)
D−1 ,

where Q = −
(
Id + P

(
D−1

1 + . . .+D−1
N

))−1

P = −P
(
Id + P

(
D−1

1 + . . .+D−1
N

))−1

.

Proof. It is immediate to check that
(
D + 1N1

⊤
N ⊗ P

) (
D−1 +D−1

(
1N1

⊤
N ⊗Q

)
D−1

)
=(

D−1 +D−1
(
1N1

⊤
N ⊗Q

)
D−1

) (
D + 1N1

⊤
N ⊗ P

)
= INd.

B New Guarantees for Multitask Online Learning

Details on the independent regret bound. We analyze the regret of the strategy which runs N
independent instances of IGP-UCB [8], one per task. Choosing the single-task confidence width

βst
t = B+

√
2
(
γst
t + ln(N/δ)

)
, one can control the individual task regrets and obtain with probability

at least 1− δ:

Rmt(T ) =

N∑
i=1

∑
t : it=i

max
x∈X

fmt(i, x)− fmt(i, xt)

≤ 4

N∑
i=1

βst
Ti

√
Ti γ

st
Ti

≤ 6

(
B
√
NTγst

T +
√
NTγst

T

(
γst
T + ln(N/δ)

))
,

where we have used that γst
Ti

≤ γst
T and Jensen’s inequality. We exactly recover the first bound in

Theorem 2.

B.1 Proof of Lemma 1

Lemma 1. Suppose that λ ≥ (N + b)/(N + bN), and that for all tasks i, point x, and time t, we
have fmt(i, x | b) ∈ [µt(i, x | b)± βt(b) · σt(i, x | b) ]. Then, the multitask regret of MT-UCB satisfies

Rmt(T ) ≤ 4βT (b)
√
λTγmt

T (b) .

Proof. The proof follows from standard arguments, see e.g., [25, Theorem 1] and [8, Theorem 3],
reproduced here for completeness. For, i ∈ [N ], let x∗i = argmaxx∈X f

mt(i, x). With probability
1− δ, we have

T∑
t=1

max
x∈X

fmt(it, x)− fmt(it, xt)

≤
T∑

t=1

ucbt−1(it, x
∗
it | b)− ucbt−1(it, xt | b) + 2βt(b) · σt−1(it, xt | b)
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≤ 2

T∑
t=1

βt(b) · σt−1(it, xt | b)

≤ 2βT (b)

√√√√T

T∑
t=1

σ2
t−1(it, xt | b) . (33)

The main twist is that our regularization parameter λ might be smaller than 1, preventing from a
direct adaptation of [8, Lemma 4] to bound

∑T
t=1 σ

2
t−1(it, xt | b). However, this happens not to be a

problem since our multitask predictive variance are also smaller than in the single-task case. Indeed,
as long as λ ≥ (N + b)/(N + bN) = A(b)−1

ii , we have for all i and x

σ2
t (i, x) = k

(
(i, x), (i, x)

)
− kt(i, x)

⊤(Kt + λIt)
−1kt(i, x)

≤ k
(
(i, x), (i, x)

)
= A−1

ii kX (x, x)

≤ λ .

Therefore, we have
T∑

t=1

σ2
t−1(it, xt) = λ

T∑
t=1

λ−1σ2
t−1(it, xt) ≤ 2λ

T∑
t=1

ln
(
1 + λ−1σ2

t−1(it, xt)
)
≤ 4λ γmt

T (b) , (34)

where we have used that x ≤ ln(1 + x) for any x ∈ [0, 1], applied to the λ−1σ2
t−1(it, xt) ≤ 1, and

[8, Lemma 3]. Substituting (34) into (33) concludes the proof.

B.2 Proof of Proposition 1

Proposition 1. Let λ ≤ 1, N ≥ 2, and Ti ≥ 1 for all i ∈ [N ]. Then, for any b ≥ 0, we have

γmt
T (b) ≤ Nγst

T − Nb

8(1 + b)
, and γmt

T (b) ≤ γst
T +

T

2λ(1 + b)
.

Proof. Recall that the multitask kernel writes k
(
(i, x), (i′, x′)

)
= kT (i, i

′) · kX (x, x′). Hence, the
multitask Gram matrix KT can be written as KT = KT ⊙KX , where KT ,KX ∈ RT×T are the
task (respectively domain) Gram matrices. Moreover, up to rearranging the rows and columns of KT
(which does not change the determinant), we can assume that points are ordered by task activations.
Let Ti =

∑T
t=1 I{it = i} be the number of times task i has been queried. We have

KT =


b+N

(1+b)N 1T11
⊤
T1

b
(1+b)N 1T11

⊤
T−T1

. . .
b

(1+b)N 1TN
1
⊤
T−TN

b+N
(1+b)N 1TN

1
⊤
TN



=
b

1 + b

1T1
⊤
T

N
+

1

1 + b

1T1
1
⊤
T1

0
. . .

0 1TN
1
⊤
TN

 .

We also introduce the block notation K(i,j)
X ∈ RTi×Tj and Kdiag

X ∈ RT×T such that

KX =

 K
(i,j)
X

 , and Kdiag
X =

K
(1,1)
X 0

. . .
0 K

(N,N)
X

 .

Our bounds are based on the observation that g : t 7→ ln |tX + (1− t)Y | is concave, with derivative
g′(t) = Tr

((
tX + (1− t)Y

)−1
(X − Y )

)
. Applying the concavity inequality at t = 0 and t = 1,

we obtain that for any positive semi-definite matrices X and Y and any t ∈ [0, 1] we have

ln |tX + (1− t)Y | ≤ ln |Y |+ t ·
(
Tr
(
Y −1X

)
− T

)
, (35)

22



ln |tX + (1− t)Y | ≤ ln |X|+ (1− t) ·
(
Tr
(
X−1Y

)
− T

)
. (36)

Hence, for any b ≥ 0 we have

2γmt
T (b) = ln

∣∣IT + λ−1KT

∣∣
= ln

∣∣IT + λ−1KT ⊙KX
∣∣

= ln

∣∣∣∣IT + λ−1

(
b

1 + b

KX

N
+

1

1 + b
Kdiag

X

)∣∣∣∣
= ln

∣∣∣∣ b

1 + b

(
IT + λ−1KX

N

)
+

1

1 + b

(
IT + λ−1Kdiag

X

)∣∣∣∣
≤ ln

∣∣∣IT + λ−1Kdiag
X

∣∣∣+ b

1 + b

[
Tr

((
IT + λ−1Kdiag

X

)−1(
IT + λ−1KX

N

))
− T

]
(37)

= 2

N∑
i=1

γst
Ti

+
b

1 + b

[
Tr

((
IT + λ−1Kdiag

X

)−1(
IT + λ−1KX

N

))
− T

]
, (38)

where (37) derives from (35). We now take a closer look at the second term. We have

Tr

((
IT + λ−1Kdiag

X

)−1
(
IT + λ−1KX

N

))

= Tr



(
IT1 + λ−1K

(1,1)
X

)−1

0

. . .

0
(
ITN

+ λ−1K
(N,N)
X

)−1


(
IT + λ−1KX

N

)
=

N∑
i=1

Tr

((
ITi

+ λ−1K
(i,i)
X

)−1
(
ITi

+ λ−1K
(i,i)
X
N

))

=

N∑
i=1

Ti∑
τ=1

λ+ σ
(i)
τ /N

λ+ σ
(i)
τ

(39)

where
{
σ
(i)
τ

}
τ≤Ti

are the eigenvalues of K(i,i)
X , possibly equal to 0. For any i, let F (i) : RTi → R

the functions which to any σ = (σ1, . . . , σTi) associates F (i)(σ) =
∑Ti

τ=1(λ+ στ/N)/(λ+ στ ).
For any τ0, τ1, we have

(στ0−στ1)
(
∂F (i)(σ)

∂στ0
− ∂F (i)(σ)

∂στ1

)
= (στ0 − στ1)

(
(1/N)(λ+ στ0)− (λ+ στ0/N)

(λ+ στ0)
2

− (1/N)(λ+ στ1)− (λ+ στ1/N)

(λ+ στ1)
2

)
= λ

N − 1

N
(στ1 − στ0)

(
1

(λ+ στ0)
2
− 1

(λ+ στ1)
2

)
≥ 0 ,

such that F (i) is Schur-convex. Hence, (39) is maximized at eigenvalues of the form (Ti, 0, . . . , 0),
since the latter majorizes any other admissible distribution of the eigenvalues (recall that we must
have σ(i)

τ ≥ 0 and
∑Ti

τ=1 σ
(i)
τ = Tr

(
K

(i,i)
X
)
≤ Ti ), with value

N∑
i=1

(Ti − 1) +
λ+ Ti/N

λ+ Ti
≤ T −N +N

1 + 1/N

2
≤ T − N

4
,

where we have used that λ ≤ 1, Ti ≥ 1, and N ≥ 2. Substituting into (38), we finally obtain

γmt
T (b) ≤ Nγst

T − Nb

8(1 + b)
. (40)
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The second bound is obtained by modifying (37). Instead, we now apply (36) and obtain

2γmt
T (b) ≤ ln

∣∣∣∣IT + λ−1KX

N

∣∣∣∣+ 1

1 + b

[
Tr

((
IT + λ−1KX

N

)−1(
IT + λ−1KX

diag
))

− T

]
≤ 2 γst

T +
1

1 + b

(
Tr
(
IT + λ−1Kdiag

X

)
− T

)
(41)

≤ 2 γst
T +

T

λ(1 + b)

where (41) comes from von Neumann’s trace inequality and is tight when N → +∞.

B.3 Proof of Theorem 2

Theorem 2. Assume that B ≥ 1, and that MT-UCB is run with βt = βnew
t from Theorem 1, and

λ = (N + b)/(N + bN). Let b = N/ϵ2 if T ≤ N , b = 1/ϵ2 if T ≥ N and ϵ ≤ N−1/4T−1/2, and

b = 0 otherwise. Let Rst(T ) = B
√
Tγst

T +
√
Tγst

T

(
γst
T + ln(1/δ)

)
be the single task regret bound

achieved by IGP-UCB (up to constant factors). Then, there exists a universal constant C such that
with probability 1− 2δ we have (up to logN factors)

Rmt(T ) ≤ Cmin
{√

NRst(T ) , Rst(T ) + ϵBT 3/2
(√

γst
T + ln(1/δ) + ϵ

√
T
)
,

Rst(T ) + ϵBT
√
N
(√

γst
T + ln(1/δ) + ϵ

√
NT

)}
.

Proof. From Lemma 1 and the choice βt = βnew
t , we have with probability at least 1− 2δ

Rmt(T ) ≤ 4βnew
T (b)

√
λT γmt

T (b) .

First bound, recovering independent learning. Hence, in particular, we have

Rmt(T )

≤ 4βsmall-b
T (b)

√
λT γmt

T (b)

= 4

(
B(1 + bϵ)

√
1 + bN

1 + b
+ λ−1/2

√
2(1 + bN)

(
γst
T + ln(N/δ)

))√
λT γmt

T (b)

≤ 6

(
B

1 + bϵ

1 + b

√
(1 + bN)(b+N)

N
+
√
(1 + bN)

(
γst
T + ln(N/δ)

))√
T

(
Nγst

T − Nb

8(1 + b)

)
,

where we have used the first claim of Proposition 1 and the choice λ = (N + b)/(N + bN).
Substituting b = 0 in the above equation, we recover the independent learning bound, i.e.,

Rmt(T ) ≤ 6

(
B
√
NTγst

T +
√
NTγst

T

(
γst
T + ln(N/δ)

))
. (42)

Hence, even in the least favorable cases, the multitask approach allows to recover the independent
baseline by using b = 0. Note that this is only made possible by the fact that βsmall-b

t is tight at b = 0.

A first bound for small ϵ. Here, we instead use the bound

Rmt(T ) ≤ 4βnaive
T (b)

√
λT γmt

T (b)

= 4

(
B
√
N(1 + bϵ2) + λ−1/2

√
2
(
γmt
T (b) + ln(1/δ)

))√
λT γmt

T (b)

≤ 4

(
B

√
(1 + bϵ2)(b+N)

1 + b
+

√
2

(
γst
T +

NT

b
+ ln(1/δ)

) )√
T

(
γst
T +

NT

b

)
,
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where we have used the second claim of Proposition 1 and the choice λ = (N + b)/(N + bN).
Substituting b = 1/ϵ2 in the above equation, we obtain

Rmt(T )

6
≤

(
B

√
N + 1/ϵ2

1 + 1/ϵ2
+
√
γst
T + ϵ2NT + ln(1/δ)

)√
T (γst

T + ϵ2NT )

≤
(
B
(
1 + ϵ

√
N
)
+
√
γst
T + ϵ2NT + ln(1/δ)

)√
T (γst

T + ϵ2NT )

≤
√
Tγst

T

(
B +

√
γst
T + ln(1/δ)

)
+ ϵ

[
B
√
NTγst

T + T
√
Nγst

T +B
√
NT

+ ϵBNT + ϵNT 3/2 + T
√
N
(
γst
T + ln(1/δ)

)]
=
√
Tγst

t

(
B +

√
γst
T + ln(1/δ)

)
+O

(
ϵBT

√
N
(
γst
T + ln(1/δ)

)
+ ϵ2BNT 3/2

)
.

(43)

Bound (43) is composed of two terms: the single-task regret, and an additional term which scales
with the deviation ϵ to the average task. Hence, as ϵ goes to 0, i.e., when tasks get more similar,
we adaptively recover the single-task bound. Moreover, note that (43) is smaller than (42) as long
as ϵ ≤ 1/(N1/4

√
T ). Hence, by choosing b = (1/ϵ2) · 1{ϵ ≤ 1/(N1/4

√
T )}, we can obtain the

minimum of the two bounds.

A second bound for small ϵ. Finally, we can use that

Rmt(T )

≤ 4βlarge-b
T (b)

√
λT γmt

T (b)

= 4

(
B

√
(1 + bϵ)2

1 + b
+

2bN

1 + b
+

2b(1 + bϵ)2

Nλ2(1 + b)3
T 2 + λ−1/2

√
2
(
γmt
T (b) + ln(1/δ)

))√
λT γmt

T (b)

≤ 6

(
B

√
(1 + bϵ)2(b+N)

(1 + b)2N
+

2b(b+N)

(1 + b)2

(
1 +

(1 + bϵ)2

(b+N)2
T 2

)
+

√
γst
T +

NT

b
+ ln(1/δ)

)

·

√
T

(
γst
T +

NT

b

)
,

where we have used the second claim of Proposition 1 and the choice λ = (N + b)/(N + bN).
Choosing b = N/ϵ2, we have

(1 + bϵ)2(b+N)

(1 + b)2N
=

(
1 + N

ϵ

)2 (
1 + 1

ϵ2

)(
1 + N

ϵ2

)2 ≤
2
(
1 + N2

ϵ2

)
(
1 + N

ϵ2

) 1 + ϵ2

N + ϵ2
≤ 2N

5

N
= 10 ,

2b(b+N)

(1 + b)2
≤ 2(b+N)

(1 + b)
= 2

N + N
ϵ2

1 + N
ϵ2

= 2N
1 + ϵ2

N + ϵ2
≤ 10 ,

1 + bϵ

b+N
=
bϵ+Nϵ−Nϵ+ 1

b+N
≤ ϵ+

1
N
ϵ2 +N

≤ ϵ+
ϵ2

N
≤ 3ϵ .

Substituing in the above bound, we obtain

Rmt(T ) = O
(
B
√

1 + ϵ2T 2 +
√
γst
T + ϵ2T + ln(1/δ)

)√
T (γst

T + ϵ2T )

= O

(√
Tγst

T

(
B +

√
γst
T + ln(1/δ)

)
+ ϵBT 3/2

√
γst
T

+ ϵT

(
B
√
1 + ϵ2T 2 +

√
γst
T + ϵ2T + ln(1/δ)

))
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Algorithm 3 AdaMT-UCB

Require: Finite set E ⊂ (0, 2], learning rate η > 0.
1: For e ∈ E , initialize learner MT-UCB(e) with b, λ, {βt}t∈N according to Theorem 2 using ϵ = e.
2: Initialize τ = U = R = 0, Le = 0, ∀e ∈ E .
3: for t=1,. . . , do
4: Choose learner et = minϵ∈E .
5: Observe it and play action from MT-UCB(et), i.e. xt = argmaxx∈X ucbet

t−1(it, x).
6: Observe: yt = fmt(it, xt)+ ξt, and update all learners {MT-UCB(e)}e∈E based on observation.
7: Accumulate:

τ += 1, U += yt, R += 2βet
t−1σ

et
t−1(it, xt), Le += lcbet−1(it, xt),∀e ∈ E .

8: Misspecification test: U +R+ c
√
τ ln(ln(τ)/δ) < max

e∈E
Le (46)

9: if condition (46) is true then
10: # Learner et is misspecified w.h.p.. Hence, start a new epoch.
11: E = E \ {et} and reset τ = U = R = 0, Le = 0,∀e ∈ E .

= O
(√

Tγst
T

(
B +

√
γst
T + ln(1/δ)

)
+ ϵBT 3/2

√
γst
T + ln(1/δ) + ϵ2BT 2

)
. (44)

Again, bound (44) is composed of two terms: the single-task regret, and an additional term which
goes to 0 as ϵ goes to 0. Interestingly, this last part is independent from N , which is a consequence
of βlarge-b

t being
√
N smaller than βnaive

t at b = +∞. For small values of T , namely when T ≤ N ,
(44) is thus smaller than (43). Choosing b = N/ϵ2 when T ≤ N , and as before otherwise, ensures to
obtain the minimum of (42), (43), and (44).

B.4 Adapting to unknown tasks’ similarity

In Algorithm 3 we summarize the AdaMT-UCB approach discussed in Section 4. In the misspecification
test (Line 8), lcbet are lower confidence bound functions, defined as:

lcbet (i, x) = µt

(
i, x | be

)
− βt(b

e) · σt
(
i, x | be

)
,

where be is the kernel parameter chosen (according to Theorem 2) by each learner e. Moreover, c is
an absolute constant such that, by standard concentration arguments and for all times τ ,∣∣∣∣∣U −

τ∑
t=1

fmt(it, xt)

∣∣∣∣∣ ≤ c
√
τ ln(ln(τ)/δ), (45)

with probability 1− δ, see, e.g., [22, Lemma B.1].

B.4.1 Proof of Theorem 3

Theorem 3. Assume that there exists e ∈ E such that e ≥ ϵ, and let M be the number of learners
e ∈ E such that e < ϵ (i.e., the number of misspecified learners in E). The regret of AdaMT-UCB
satisfies with high probability Rmt(T ) = O

(√
M + 1 ·Rmt

⋆ (T )
)
.

Among the set of learners defined by parameters e ∈ E , we have identified with e⋆ the (well-specified)
learner with the smallest e such that e ≥ ε. Then, our goal is to obtain a regret bound which grows
as the regret of learner e⋆. We have denoted with Rmt

⋆ (T ) the regret bound of such learner had it
been chosen from time 0.

We first prove the following auxiliary lemma, which is the analog of [22, Theorem 7.1].

Lemma 3. With probability at least 1− δ, the misspecification test in Equation (46) does not trigger
if all learners in E are well-specified and their confidence intervals contain fmt.

Proof. When all learners e ∈ E are well-specified and their intervals contain the true function, for all
t it holds lcbet (it, xt) ≤ maxx∈X f

mt(it, x). Thus, for each learner e ∈ E , with probability at least
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1− δ,

Le =

T∑
t=1

lcbet−1(it, xt)

≤
T∑

t=1

max
x∈X

fmt(it, x)

≤
T∑

t=1

fmt(it, xt) + 2βet
t−1σ

et
t−1(it, xt)

≤ U + c
√
T ln(ln(T )/δ) +R ,

where, in addition to Equation (45), we have used that
∑

t maxx∈X f
mt(it, x) − fmt(it, xt) ≤∑

t ucbt(it, xt)− lcbt(it, xt) =
∑

t 2β
et
t−1σ

et
t−1(it, xt). Thus, the misspecification test of (46) does

not trigger.

Let us now bound the overall regret of AdaMT-UCB. First, we can decompose it into the regrets inside
each epoch:

Rmt(T ) =

T∑
t=1

max
x∈X

fmt(it, x)− fmt(it, xt)

=

# of Epochs∑
s=1

∑
t∈Epoch-s

max
x∈X

fmt(it, x)− fmt(it, xt)

=

# of Epochs∑
s=1

Rmt
s (Ts) ,

where we have defined Ts to be the duration of epoch s and Rmt
s (Ts) its corresponding regret.

Note that by Lemma 3, the maximum number of terminated epochs corresponds to the number of
misspecified learners in the initial set E . Thus, letting M be such number, with high probability:

Rmt(T ) ≤
M+1∑
s=1

Rmt
s (Ts) . (47)

During each epoch. Let us now look at what happens during each epoch s. For simplicity, we
will condition on the event that the intervals of learner e⋆ contain the true fmt, and on the event
of Equation (45). Note that by definition, during each epoch the misspecification test has not triggered.
In particular, this is true when testing against learner e⋆. That is,

U +R+ c
√
Ts ln(ln(Ts)/δ) ≥

∑
t∈Epoch-s

lcbe
⋆

t−1(it, xt) ,

which, by letting es = mine∈E be the learner utilized in epoch s, implies:∑
t∈Epoch-s

fmt(it, xt) + 2βes
t−1σ

es
t−1(it, xt) + 2c

√
Ts ln(ln(Ts)/δ) ≥

∑
t∈Epoch-s

lcbe
⋆

t−1(it, xt) . (48)

Then, using the above condition:

Rmt
s (Ts)− 2c

√
Ts ln

ln(Ts)

δ

=
∑

t∈Epoch-s

max
x∈X

fmt(it, x)− fmt(it, xt)− 2c

√
Ts ln

ln(Ts)

δ

(By Eq. (48)) ≤
∑

t∈Epoch-s

max
x∈X

fmt(it, x)− lcbe⋆

t−1(it, xt) +
∑

t∈Epoch-s

2βes
t−1σ

es
t−1(it, xt)
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(e⋆ is well-specified) ≤
∑

t∈Epoch-s

2βe⋆

t−1σ
e⋆

t−1(it, xt) +
∑

t∈Epoch-s

2βes
t−1σ

es
t−1(it, xt)

≤ 4βTs(b
e⋆)
√
λ(be⋆)Ts γ

mt
Ts
(be⋆) + 4βTs(b

es)
√
λ(bes)Ts γ

mt
Ts
(bes)

≤ 2Rmt
⋆ (Ts) .

In the last two inequalities, we have used the same proof steps of Lemma 1 to bound the sum of
confidence widths for learners e⋆ and es, and finally, the fact that es ≤ e⋆ and thus the regret bound
of learner es is bounded by Rmt

⋆ (Ts) (since the bound from Theorem 2 increases with ϵ).

Overall, combining the latter with Equation (47), we obtain

Rmt(T ) ≤
M+1∑
s=1

2Rmt
⋆ (Ts) + 2c

√
Ts ln

ln(Ts)

δ

= 2

M+1∑
s=1

C⋆(Ts)
√
Ts + c

√
Ts ln

ln(Ts)

δ

≤ 2C⋆(T )
√
T
√
M + 1 + 2c

√
(M + 1)T ln

ln(T )

δ

= 2Rmt
⋆ (T )

√
M + 1 + 2c

√
(M + 1)T ln

ln(T )

δ
.

where we have use the fact that MT-UCB regret bounds are of the form Rmt
⋆ (Ts) = C⋆(Ts)

√
Ts for

some appropriate function C⋆(Ts), see Theorem 2, and Jensen’s inequality.

How many learners are needed? Let E be the exponential grid
{
1, ρ, ρ2, . . . , ρM−1

}
, for some

ρ < 1. Let ϵ ∈ [0, 2] be the true tasks similarity parameter. By definition, the best learner is better
than the learner m∗ such that ρm

∗+1 ≤ ϵ ≤ ρm
∗
. The estimate it uses for ϵ is better than ϵ∗ := ρm

∗
,

which satisfies ϵ/ϵ∗ ∈ [ρ, 1]. Hence, the bigger ρ, the more precise we are. However, the number of
learners needed also increases with ρ. Indeed, if we want to be able to identify up to ϵmin, we have to
choose M such that

ρM−1 ≤ ϵmin or again M ≥ 1 +
log(1/ϵmin)

log(1/ρ)
.

C Active Learning

C.1 Proof of Theorem 4

Theorem 4. Suppose that for all tasks i, point x, and time t, we have that fmt(i, x) ∈
[µt(i, x)±βi

t ·σt(i, x) ]. Then, the MT-AL algorithm ensures the active learning regret is bounded by

Rmt
AL ≤ 2

T∑
t=1

βit
t σt(it, x

it
t ) ,

where {it} is the sequence of queried tasks and {xitt } the strategies selected for each of them.

Proof. Let xi⋆ ∈ argmaxx∈X f
mt(i, x). Then, the active learning regret of MT-AL can be bounded as

Rmt
AL(T ) :=

T∑
t=1

1

N

N∑
i=1

fmt(i, xi⋆)−
T∑

t=1

1

N

N∑
i=1

fmt(i, xit)

≤
T∑

t=1

1

N

N∑
i=1

ucbt−1(i, x
i
⋆)−

T∑
t=1

1

N

N∑
i=1

ucbt−1(i, x
i
t) + 2

T∑
t=1

1

N

N∑
i=1

βi
t−1σt−1(i, x

i
t)

≤ 2

T∑
t=1

1

N

N∑
i=1

βi
t−1σt−1(i, x

i
t)

28



≤ 2

T∑
t=1

βi
t−1σt−1(it, x

it
t )

1

N

N∑
i=1

1︸ ︷︷ ︸
=1

The first inequality holds since by assumption, for all tasks i, point x, and time t, we have
fmt(i, x) ∈ [µt(i, x) ± βi

t · σt(i, x) ]. The second one follows since, at each round t MT-AL select
xit = argmaxx ucbt−1(i, x) for all i, and the third one since it = argmaxi β

i
t−1σt−1(i, x

i
t).

C.2 Proof of Corollary 2

Corollary 2. Let MT-AL utilize the MT regression estimates of Eq. (3)-(4) with parameters set
according to Theorem 2. Moreover, let Rmt(T ) be the bound on the online learning regret obtained
in Theorem 2. Then, with high probability, we have Rmt

AL(T ) ≤ Rmt(T ).

Proof. First, since MT-AL utilizes the MT regression estimates of Eq. (3)-(4) with parameters set
according to Theorem 2, with high probability fmt(i, x) ∈ [µt(i, x) ± βi

t · σt(i, x) ] and the re-
sults of Theorem 4 holds. Then, the result follows since, according to the proof of Theorem 2,
for every sequence of revealed tasks {it}Tt=1 (in particular the ones chosen by MT-AL), it holds
2
∑T

t=1 β
i
t−1σt−1(it, x

it
t ) ≤ Rmt(T ), see Appendix B.

C.3 Comparison with AE-LSVI [18]

The proposed MT-AL algorithm can be compared with the offline contextual Bayesian algorithm AE-
LSVI [18] whose goal is to quickly discover the optimal strategy for each context (task, in our case).
Like MT-AL, AE-LSVI selects strategy xit = argmaxx ucbt−1(i, x) for each task i. However, unlike
MT-AL, AE-LSVI queries the task it = argmaxi∈[N ][ucbt(i, x

i
t)−maxx∈X lcbt(i, x)]. This, together

with a terminal rule for the final reported actions {xiT }Ni=1, ensures the latter are O(βT
√
γmt
T /

√
T )-

approximate optimal for each task. We note that a similar error can also be proven when using MT-AL,
by turning the active learning regret bound into a last-iterate approximation error (effectively dividing
the regret by T ). However, unlike our approach, it is unclear whether the active learning regret of
AE-LSVI is sublinear. In particular, by querying the task with maximal uncertainty MT-AL controls
the regrets for all the other tasks (see last inequality in Proof of Theorem 4). Instead, the query
strategy of AE-LSVI considers a truncated uncertainty, since [ucbt(i, x

i
t) − maxx∈X lcbt(i, x)] ≤

[ucbt(i, x
i
t)− lcbt(i, xit)] = βi

tσt(i, x
i
t).

D Additional experimental results

All our experiments were run using 8 CPUs at 3.7 GHz.

In Figure 4 we report online learning an active learning regrets of additional synthetic experiments
for different values of N (number of tasks) and parameter δ (inversely proportional to the tasks’
similarity, see Section 5). We observe that the improvement of MT regression over independent
learning increases with the number of tasks and with their similarity (i.e., for small δ). Moreover, asN
increases, the improved confidence intervals further improve over the naive ones, as well as the benefit
of active learning compared to uniform sampling. All these considerations conform with our theory.

In our active learning experiments, we further analyze the frequencies of each task being queried
by the considered baselines. In Figure 5, we report such frequencies averaged over 10 runs for a
random instance of our synthetic experiments with N = 5 and δ = 0.4, i.e. the setup of Figure 3 (b).
We observe the active learning baselines (MT-AL, MTS, and AE-LSVI) query more frequently task-1
and task-5, which are found to be the tasks with the smallest norm ∥fi∥ and thus with the smallest
signal-to-noise ratio. In Figure 6, we report the query frequencies for our drug discovery experiments
averaged over 5 runs. We observe MT-AL and AE-LSVI (which both query tasks with maximal
uncertainty) query slightly more often task-3 (corresponding to allele A-0203). Instead, MTS (which
query the task yielding the maximum performance improvement) focuses significantly more often
task-1 (allele A-0201). This produces high rewards in the early rounds but incurs linearly growing
regret overall (see Figure 3 (b)).
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Figure 4: Online (left) and active (right) learning regrets of synthetic experiments for different
parameters: N is the number of tasks while parameter δ is inversely proportional to the tasks’
similarity, see Section 5 for how task vectors are generated.

task-1 task-2 task-3 task-4 task-5
0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

Synthetic

Uniform MT-AL MTS AE-LSVI

Figure 5: Frequency each task being queried by each of the considered baselines. The plot refers to
our synthetic experiments with N = 5, δ = 0.4, i.e. the setup of Figure 3 (b). We generate a single
set of task vectors {fi}Ni=1 and average results over 10 runs, each with horizon T = 100.
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Figure 6: Frequency of each task being queried by each of the considered baselines for our drug
discovery experiments (results averaged over 5 runs, each with horizon T = 600).
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