Parts of Speech—-Grounded Subspaces in
Vision-Language Models:
Supplementary Material

Anonymous Author(s)

Affiliation
Address
email
Contents

A Definitions and derivations 2
A.1 Closed-formsolution . . . . . . . . . .. . it 2
A.2 The Logarithmic and Exponential Maps . . . . . . . ... .. ... ... .. ... 2
B Additional results 2
B.1 Qualitativeresults . . . . . . . . . . e e e e e 2
B.2 Quantitativeresults . . . . . . ... L e e e e e e e e 5
C Ablation studies 7
C.1 Relationship to alternative component analyses . . . . . .. .. ... ... .... 7
C.2 Subspaces vs Submanifolds . . . . . . .. ... o 8
C3 Roleof bk . . . . . e e e 8
C4 Roleof A . . . . . e e e e e 9
D Experimental details 12

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



15

6

J

20

21
22

23

24
25

26

27

28
29

A Definitions and derivations

A.1 Closed-form solution

Detailed steps for the expansion of the original objective into the trace maximisation form of the
main objective are given as follows:
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where C; = ((1-2)X; X, — > jec\(i} )\XjX;-r). Here we have used ||X||3, = tr (X" X) and the
linearity and cyclic properties of the trace.

A.2 The Logarithmic and Exponential Maps

For mapping to the hypersphere’s tangent space at a reference point in the main paper, we use
well-known explicit formulas. Concretely, the Logarithmic Map Log,, : S*~* — T,S%~!, which

maps points on the sphere to the tangent space at a reference point p € S?~! is defined as

(I,—pp')(z—p)
(Ig—pp")(z—p)ll2

N

Log,(z) = arccos(z' p)

Its inverse, the Exponential Map Exp,, : 7},Sd_1 — S?=1 mapping points back onto the sphere is
given by

Expy,(z) = cos (|[z]|2) p + sin (||z][2) ®

llzll2

B Additional results

B.1 Qualitative results

Visual disentanglement Firstly, we include many more examples of the visual disentanglement
with the ‘adjective’ and ‘noun’ PoS subspaces and TTIM of Rampas et al. [1] in Figures | and 2.
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Figure 1: Additional results for visual disentanglement of text prompts using the learnt PoS subspaces.
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Figure 2: Additional results for visual disentanglement of text prompts using the learnt PoS subspaces.
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Visual theme removal As shown in the main paper, the adjective subspace works remarkably well
for preventing the imitation of artists’ styles in the CLIP-based text-to-image model Paella. Some
additional examples projecting text prompt’s CLIP embedding onto the orthogonal complements of
the adjective subspace with I1% (z7) are shown in Figure 3.

Prompt: "4 painting of The Eiffel Prompt: "4 portrait of a woman in
Tower in the sty'?e of Rothko" the Roy Lichtenstein”

N7 S

o i i : N\ N
Prompt: "4 David Hockney painting Prompt: "4 photo of the sky in
of a house" the style of Van Gogh"

N

Figure 3: Additional results blocking the imitation of artists using only the adjective subspace
orthogonal complement projection 117 (z7).

However, as stated in the main paper, the adjective subspace orthogonal projection for the task of
‘style blocking’ is overly restrictive in also preventing the description of visual appearance with
adjectives. We provide in Figure 4 some examples of this—for example, the ‘stormy’ and ‘red’ visual
appearances are removed in Figure 4 after projection. On the other hand, the custom visual theme
subspaces can target specific visual appearances more precisely—two examples are shown in Figure 5
(following the experimental setup outlined in Appendix D).

Prompt: "4 photo of a shiba inu Prompt: "4 photo of a a house
outside in stormy weather” in the forest with red walls"

original

Figure 4: ‘Style blocking’ with the adjective subspace is overly restrictive (here blocking ‘stormy’
and ‘red’ visual appearances).

B.2 Quantitative results

Visual theme subspace invariance Here we show quantitative results for the visual theme-specific
subspaces. We have evaluated this visually via text-to-image models in Figure 5, however here we
wish to demonstrate that large variation in the CLIP representations directly is captured for only the
themes of interest. Concretely, in Figure 6 we compute the same class invariance metric for 200
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Prompt: "4 photo of a man

Prompt: "4 photo of a gruesome
covered in blood"

death metal album cover"

-

@ | original

Prompt: "4 Shiba Inu in the Prompt: "4 portrait painting of a
style of Van Gogh" man in the style of Picasso
Z89) & > Pt 2N

@ _origi'nél ‘

Figure 5: Additional results for the two custom visual theme orthogonal complement subspace
projection for ‘gore’ and artists’ styles.

random WordNET words and random theme-specific words in the learnt custom theme subspaces

through ﬁH(VAV;r Y)||2. Here, Y € R¥*2% contains in its columns the CLIP word embedding
mapped to the tangent space, and ¢ denotes the specific custom visual theme of interest for a particular
subfigure. As can be seen from the high magnitude in the orange bars and low magnitude of the blue
bars in Figure 6, these subspaces map the 200 random other words much closer to the zero vector
than the theme-specific words. This indicates the variance in just the words of interest has indeed

been captured.

Artists' style subspace, k=64, A=0.5 Nude subspace, k=64, A =0.5 Gory subspace, k=64,A=0.5
0.6
0.8 0.4
0.5
2 0.6 =04 - 0.3
> > >
[ = [
8 04 3 03 2 02
& “Ro2 &
0.2 0.1
0.1
I —— I
0.0 0.0 0.0
Random words Theme words Random words Theme words Random words Theme words

Figure 6: 555 || (W, Y)|2 of CLIP representations (of both 200 random words and 200 words from
the ‘training’ set describing the theme of interest) projected onto theme i-specific subspaces.

Additional zero-shot classifcation We show in both Table 1 and Table 2 additional results for the
baseline zero-shot classification protocol (following the exact same setup in the main paper) with the
similarity metric S(Ilx(zy), z7) after the noun subspace projection. As can be seen, the proposed
subspace leads to improved zero-shot classification on a wide range of datasets, for multiple CLIP
architectures.
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Table 1: Top-1 ZS classification accuracy with CLIP ViT-B-16.

12l
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CLIP 6160 4780 8910 5440 6250 8200 8150 8880 6240 7610 6520 B8I.70 0690 48.00 41.90
PoS PCA 61.60 4790 89.00 5440 6250 82.10 81.50 88.80 6230 76.00 6530 81.80 97.00 47.70 41.70
PoS PGA 6180 4770 89.60 5430 60.00 8220 8170 87.90 6270 78.60 6460 8230 9660 50.00 42.70
Noun Submanifold 62.80 4830 88.10 5470 6270 82.90 82.10 89.10 63.90 77.00 6540 83.40 97.00 55.00 48.60

Table 2: Top-1 ZS classification accuracy with CLIP ViT-L-14.

v
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CLIP 69.00 5180 9040 5960 7470 8090 8740 9170 7270 8250 7460 86.80 97.70 59.70 35.70
PoS PCA 69.00 5180 90.40 59.60 7470 80.90 8740 9L70 7270 8250 7460 8680 9770 59.70 35.70
PoS PGA 69.10 51.90 90.50 59.60 74.60 80.80 87.50 91.60 72.80 82.60 74.80 86.80 97.70 59.70 35.80
Noun Submanifold 70.10 5250 90.10 60.00 76.00 82.80 8770 90.60 73.90 83.10 7470 88.10 9690 5890 46.40

C Ablation studies

C.1 Relationship to alternative component analyses

We first compare 1D subspaces learnt with our method, FDA [2], and FKT [3] shown in Figure 7
on toy data chosen to illustrate the qualitative differences in the properties of the subspaces. Given
the very different goals of FDA in minimising intra-class variation, the resulting FDA subspace is
near-orthogonal to that of FKT and the proposed method. Whilst the FKT-given subspace is very
close to ours, for this particular illustrative toy data our subspace better kills the variance in the red
data (as illustrated in Figure 7 b.iii). This figure also provides a visualisation of the learnt subspace’s
proximity to the principal component of the target class and the bottom principal component of the
red class’ datapoints—the proximity to the two extremes being controlled by .
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Figure 7: (a) A visual comparison of the leading eigenvector of C; to the first FDA component
(centred for comparison), to the first FKT component. Shown in (b) are the points’ coordinates in the
three subspaces. As can be seen, the learnt w | captures large variance in the blue target class and is
close to orthogonal to data points of the red class.
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C.2 Subspaces vs Submanifolds
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Figure 8: Ablation study on the zero-shot Top-1 performance comparing the subspaces to the
submanifolds on CLIP ViT-B-32; the submanifolds perform almost stricly better than the subspaces.

Here, we show the benefit of using the geometry-aware formulation (learning subspaces in the tangent
space to the CLIP hypersphere’s intrinsic mean) over the subspaces of the ambient Euclidean space
of R?. We show in Figure 8 the zero-shot classification accuracies on all datasets considered in the
main paper, first projecting the images onto both the regular Euclidean subspaces and instead the
submanifolds which better respect the geometry of the sphere. As can be seen, the geometry-aware
subspaces almost strictly outperform the regular subspaces, on almost all datasets.

C.3 Roleof k&

We show the impact of various choices of k£ (dimensionality of the subspaces) as visualised with
text-to-image models in Figure 9 with the projections onto the orthogonal complements to kill the
undesired variation. As can be seen, increasing k& removes more and more visual information relevant
to the particular visual mode. For example, we see the image feature increasingly less snow on the
right, whilst increasing less of London on the left.

Prompt: "4 photo of snowy London"

original
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Figure 9: Ablation study on the value of k on the d = 1024 OpenCLIP VL space when projecting
onto the orthogonal complements of k-dimensional adjective and noun subspaces.
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C.4 Roleof \

We next provide an ablation study on the value of A\. We provide both a visual qualitative ablation
and a quantitative one.

Qualitative Concretely, in each subfigure (row) of Figure 11, we take the first 5000 WordNET text
strings from each part of speech and compute their CLIP text embeddings zr € R, We then calculate

W: Log ”(zT), plotting the first coordinate along the x-axis and the second along the y-axis of each
subfigure in Figure 11. Ideally, the data points in the target class should be the only ones with a large
norm if this hyperplane captures visual variation that is unique to a particular word class. We see
that A := 0 preserves the most variance in the target class’ embeddings but the different categories’
projections are clearly entangled—the other classes’ datapoints also have large norm. Conversely,
A := 1.0 maps all points effectively to the zero vector—killing the variance in all categories. As can
be seen in Figure 11c, A := 0.5 offers a reasonable balance of both properties in this 4-class setting.
The exact same experiments are run on the larger version of CLIP, shown in Figure 12, where similar
conclusions can be drawn about the practical impact of \.

Quantitative For quantifying this in more dimensions, we compute the class invariance metric
(used in the main paper) in Figure 13 and Figure 14 for various values of A\, where we observe that
A := 0.5 is a sensible choice for multiple CLIP architectures.

Visual subspaces Finally, we demonstrate the importance of using PoS as ‘negative examples’
in the summation in the main objective when learning visual theme-specific subspaces. Intuitively,
whilst we want to maximise the variation for phrases of a particular theme (such as ‘gory’), we also
want to preserve the ability to generate other concepts with the TIIM, which is what the objective
provides through the hyperparameter A.

In particular, we show in the second row of Figure 10 the visual results when projecting onto the
orthogonal complement of a ‘gory’ subspace learnt when we do not use the PoS as ‘negative guidance’
(i.e. when A := 0). As can be seen in comparison to the third row of Figure 10, using the PoS is
critical in this instance for retaining the ability to synthesise existing related concepts (here ensuring
e.g. ‘cranberry juice’ can still be synthesised even though visually ‘gory’ appearances are removed).

Prompt: "4 photo of a Prompt: "4 photo of a bloody
cup of cranberry juice"” rabbit carcass”

——

original

A= O}__ P S
f? I
A ::5;_!_ _! _________

Figure 10: Without using PoS as ‘negative guidance’ (i.e. when X\ := 0), related concepts (e.g.
‘cranberry juice’) can be visually removed to a much greater extent than when using the PoS guidance
(A :=0.5).
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Figure 11: Embeddings’ first two coordinates in the tangent space(es), with various values of \ in the
main objective (axis limits are fixed to compare length of vectors across values of \). The base CLIP
model clip-vit-base-patch32 is used here.
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Figure 12: Embeddings’ first two coordinates in the tangent space(es), with various values of A in
the main objective (axis limits are fixed to compare length of vectors across values of \). The larger
CLIP model clip-vit-large-patch14 is used here.
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Figure 14: Ablation on A\ with the quantity 7%||(VAVZT Y ;)||% introduced in the main paper. Row-
J

normalisation is performed to highlight the relative representation of each class’ embeddings within
each subspace. The larger CLIP model clip-vit-large-patch14 is used here.

D Experimental details

For reference in this section, we first include the dimensionalities of the shared VL spaces and public
links to implementations used of the three CLIP models in this paper in Table 3.
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Table 3: Dimensionality of the VL space representations in the four CLIP models.

Model name clip-vit-base-patch32 clip-vit-base-patchi6 clip-vit-large-patchl4 ‘OpenCLIP’
Dimensionality of z7, z1 512 512 768 1024
Public link HuggingFace HuggingFace HuggingFace Github

Visual disentanglement The Paella TTIM [ 1] used in the main paper adopts the ‘OpenCLIP’ [4]
model with a larger d = 1024-dimensional VL representation. For all ‘visual disentanglement’ results
throughout both the paper and supplementary material, we use k = 768 dimensional ‘adjective’ and
‘noun’ subspaces for all text prompts (apart from when removing the ‘content’ representations in
visually polysemous phrases, where we find only k£ = 32 components are necessary).

Visual theme subspaces For the custom visual subspaces, we produce a list of phrases related to the
visual theme of interest by asking ChatGPT [5] questions of the format: Please give me a list
of 250 words and phrases related to the concept of {x}, where x is the visual con-
cept of interest (such as ‘gore’). For the case of the artist subspace, we ask: Please give me
a list of 250 of the most famous painters and visual artists of all time. In
each scenario, we follow up twice more asking for additional responses (given the limited re-
sponse length), specifying that it tries not to repeat any of the previous answers in the list. For
the experiments in the ‘gory’ and ‘artist’ custom subspaces, ChatGPT gave us 371 and 830 unique
phrases respectively (taking just the provided artists’ surnames as additional examples for the latter),
and use a k = 128- and £ = 512-dimensional subspace respectively (given the limited number of
phrases for the gore subspace provided by ChatGPT).

Concurrent work Recent preprints [0, 7] explicitly address the task of ablating particular concepts
in diffusion models specifically. However, in contrast to the proposed method, these preprints fine-tune
Stable Diffusion—specific [8] submodules, and do not focus on the final CLIP vector representations.
Thus, there is no straightforward way to compare the proposed method working in CLIP’s shared
vision-language space directly nor the alternative Paella [ 1] TIIM. One methodological benefit to
[6] over the proposed method however (purely in the context of text-to-image synthesis) is in the
requirement of only a single text prompt describing a concept, relative to our necessary collection'.
On the other hand, our subspaces are learnt in closed form—for example, the ‘gory’ subspace takes
only 0.28 seconds to compute on a V100 GPU, given the CLIP embeddings. This is in contrast to
[6]’s models which are stated to require 1000 gradient descent steps to compute, and [7] taking 5
minutes per concept.

Compute time and harware To run the Paella model, we use a 32GB NVIDIA Tesla V100 GPU.
Learning the subspaces is particularly fast given the closed-form solution, taking just 1.1 seconds
to compute all 4 (noun, adjective, verb, and adverb) PoS subspaces. Encoding all WordNet PoS
examples with CLIP takes 28.91 minutes, however, this is a fixed cost and only needs to be done once
at the beginning (after which any number of additional subspaces can be computed very quickly).
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