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Abstract

Many common types of data can be represented as functions that map coordi-
nates to signal values, such as pixel locations to RGB values in the case of an im-
age. Based on this view, data can be compressed by overfitting a compact neural
network to its functional representation and then encoding the network weights.
However, most current solutions for this are inefficient, as quantization to low-bit
precision substantially degrades the reconstruction quality. To address this issue,
we propose overfitting variational Bayesian neural networks to the data and com-
pressing an approximate posterior weight sample using relative entropy coding
instead of quantizing and entropy coding it. This strategy enables direct optimiza-
tion of the rate-distortion performance by minimizing the β-ELBO, and target
different rate-distortion trade-offs for a given network architecture by adjusting β.
Moreover, we introduce an iterative algorithm for learning prior weight distribu-
tions and employ a progressive refinement process for the variational posterior that
significantly enhances performance. Experiments show that our method achieves
strong performance on image and audio compression while retaining simplicity.
Our code is available at https://github.com/cambridge-mlg/combiner.

1 Introduction

With the celebrated development of deep learning, we have seen tremendous progress of neural data
compression, particularly in the field of lossy image compression [1–4]. Taking inspiration from
deep generative models, especially variational autoencoders (VAEs, [5]), neural image compression
models have outperformed the best manually designed image compression schemes, in terms of
both objective metrics, such as PSNR and MS-SSIM [6, 7] and perceptual quality [8, 9]. However,
these methods’ success is largely thanks to their elaborate architectures designed for a particular data
modality. Unfortunately, this makes transferring their insights across data modalities challenging.

A recent line of work [10–12] proposes to solve this issue by reformulating it as a model compression
problem: we treat a single datum as a continuous signal that maps coordinates to values, to which
we overfit a small neural network called its implicit neural representation (INR). While INRs were
originally proposed in [13] to study structural relationships in the data, Dupont et al. [10] have
demonstrated that we can also use them for compression by encoding their weights. Since the data
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Figure 1: Framework overview of COMBINER. It first encodes a datum D into Bayesian implicit
neural representations, as variational posterior distribution qw. Then an approximate posterior sam-
ple w˚ is communicated from the sender to the receiver using relative entropy coding.

is conceptualised as an abstract signal, INRs allow us to develop universal, modality-agnostic neural
compression methods. However, despite their flexibility, current INR-based compression methods
exhibit a substantial performance gap compared to modality-specific neural compression models.
This discrepancy exists because these methods cannot optimize the compression cost directly and
simply quantize the parameters to a fixed precision, as opposed to VAE-based methods that rely on
expressive entropy models [2, 3, 14–17] for end-to-end joint rate-distortion optimization.

In this paper, we propose a simple yet general method to resolve this issue by extending INRs
to the variational Bayesian setting, i.e., we overfit a variational posterior distribution qw over the
weights w to the data, instead of a point estimate. Then, to compress the INRs, we use a relative
entropy coding (REC) algorithm [18–20] to encode a weight sample w „ qw from the posterior.
The average coding cost of REC algorithms is approximately DKLrqw}pws, where pw is the prior
over the weights. Therefore, the advantage of our method is that we can directly optimize the
rate-distortion trade-off of our INR by minimising its negative β-ELBO [21], in a similar fashion
to VAE-based methods [22, 2]. We dub our method Compression with Bayesian Implicit Neural
Representations (COMBINER), and present a high-level description of it in Figure 1.

We propose and extensively evaluate two methodological improvements critical to enhancing COM-
BINER’s performance further. First, we find that a good prior distribution over the weights is cru-
cial for good performance in practice. Thus, we derive an iterative algorithm to learn the optimal
weight prior when our INRs’ variational posteriors are Gaussian. Second, adapting a technique from
Havasi et al. [23], we randomly partition our weights into small blocks and compress our INRs pro-
gressively. Concretely, we encode a weight sample from one block at a time and perform a few
gradient descent steps between the encoding steps to improve the posteriors over the remaining un-
compressed weights. Our ablation studies show these techniques can improve PSNR performance
by more than 4dB on low-resolution image compression.

We evaluate COMBINER on the CIFAR-10 [24] and Kodak [25] image datasets and the LibriSpeech
audio dataset [26], and show that it achieves strong performance despite being simpler than its
competitors. In particular, COMBINER is not limited by the expensive meta-learning loop present
in current state-of-the-art INR-based works [11, 12]. Thus we can directly optimize INRs on entire
high-resolution images and audio files instead of splitting the data into chunks. As such, our INRs
can capture dependencies across all the data, leading to significant performance gains.

To summarize, our contributions are as follows:

• We propose variational Bayesian implicit neural representations for modality-agnostic data
compression by encoding INR weight samples using relative entropy coding. We call our
method Compression with Bayesian Implicit Neural Representations (COMBINER).

• We propose an iterative algorithm to learn a prior distribution on the weights, and a pro-
gressive strategy to refine posteriors, both of which significantly improve performance.

• We conduct experiments on the CIFAR-10, Kodak and LibriSpeech datasets, and show that
COMBINER achieves strong performance despite being simpler than related methods.
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2 Background and Motivation

In this section, we briefly review the three core ingredients of our method: implicit neural repre-
sentations (INRs; [10]) and variational Bayesian neural networks (BNNs; [21]), which serve as the
basis for our model of the data, and relative entropy coding, which we use to compress our model.

Implicit neural representations: We can conceptualise many types of data as continuous signals,
such as images, audio and video. Based on neural networks’ ability to approximate any continu-
ous function arbitrarily well [27], Stanley [13] proposed to use neural networks to represent data.
In practice, this involves treating a datum D as a point set, where each point corresponds to a
coordinate-signal value pair px,yq, and overfitting a small neural network fpx | wq, usually a
multilayer perceptron (MLP) parameterised by weights w, which is then called the implicit neural
representation (INR) of D. Recently, Dupont et al. [10] popularised INRs for lossy data compres-
sion by noting that compressing the INR’s weights w amounts to compressing D. However, their
method has a crucial shortcoming: they assume a uniform coding distribution over w, leading to a
constant rate, and overfit the INR only using the distortion as the loss. Thus, unfortunately, they can
only control the compression cost by varying the number of weights since they show that quantizing
the weights to low precision significantly degrades performance. In this paper, we solve this issue
using variational Bayesian neural networks, which we discuss next.

Variational Bayesian neural networks: Based on the minimum description length principle, we
can explicitly control the network weights’ compression cost by making them stochastic. Concretely,
we introduce a prior ppwq (abbreviated as pw) and a variational posterior qpw|Dq (abbreviated as
qw) over the weights, in which case their information content is given by the Kullback-Leibler (KL)
divergence DKLrqw}pws, as shown in [28]. Therefore, for distortion measure ∆ and a coding budget
of C bits, we can optimize the constrained objective

min
qw

ÿ

px,yqPD

Ew„qw r∆py, fpx | wqs, subject to DKLrqw}pws ď C. (1)

In practice, we introduce a slack variable β and optimize the Lagrangian dual, which yields:

LβpD, qw, pwq “
ÿ

px,yqPD

Ew„qw r∆py, fpx | wqs ` β ¨ DKLrqw}pws ` const., (2)

with different settings of β corresponding to different coding budgets C. Thus, optimizing
LβpD, qw, pwq is equivalent to directly optimizing the rate-distortion trade-off for a given rate C.

Relative entropy coding with A* coding: We will use relative entropy coding to directly encode a
single random weight sample w „ qw instead of quantizing a point estimate and entropy coding it.
This idea was first proposed by Havasi et al. [23] for model compression, who introduced minimal
random coding (MRC) to encode a weight sample. In our paper, we use depth-limited, global-bound
A* coding instead, to which we refer as A* coding hereafter for brevity’s sake [29, 20]. We present
it in Appendix A for completeness. A* coding is an importance sampling algorithm that draws2

N “
X

2DKLrqw}pws`t
\

independent samples w1, . . . ,wN from the prior pw for some parameter
t ě 0, and computes their importance weights ri “ log

`

qwpwiq
L

pwpwiq
˘

. Then, in a similar
fashion to the Gumbel-max trick [31], it randomly perturbs the importance weights and selects the
sample with the greatest perturbed weight. Unfortunately, this procedure returns an approximate
sample with distribution q̃w. However, Theis and Yosri [32] have shown that the total variation
distance ∥qw ´ q̃w∥TV vanishes exponentially quickly as t Ñ 8. Thus, t can be thought of as a
free parameter of the algorithm that trades off compression rate for sample quality. Furthermore, A*
coding is more efficient than MRC [23] in the following sense: Let NMRC and NA˚ be the codes
returned by MRC and A* coding, respectively, when given the same target and proposal distribution
as input. Then, HrNA˚ s ď HrNMRCs, hence using A* coding is always strictly more efficient [32].

3 Compression with Bayesian Implicit Neural Representations

We now introduce our method, dubbed Compression with Bayesian Implicit Neural Representations
(COMBINER). It extends INRs to the variational Bayesian setting by introducing a variational pos-
terior qw over the network weights and fits INRs to the data D by minimizing Equation (2). Since

2In practice, we use quasi-random number generation with multi-dimensional Sobol sequences [30] to sim-
ulate our random variables to ensure that they cover the sample space as evenly as possible.
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Algorithm 1 Learning the model prior

Require: Training data tDiu “ tD1,D2, ...,DMu.
Initialize : The model posteriors qpiq

w “ N pµi, diagpσiqq of every training datum Di.
Initialize : The model priors pw;θp

“ N pµp, diagpσpqq.

repeat until convergence
for i Ð 1 to M do

tq
piq
w u Ð argmin

tq
piq
w u

Lpθp, tq
piq
w uq Ź Gradient descent for optimizing posteriors

end for
θp Ð argminθp

Lpθp, tq
piq
w uq Ź Closed-form solution in Equation (5)

end repeat
Return pw;θp “ N pµp, diagpσpqq

encoding the model weights is equivalent to compressing the data D, Equation (2) corresponds to
jointly optimizing a given rate-distortion trade-off for the data. This is COMBINER’s main advan-
tage over other INR-based compression methods, which optimize the distortion only while keeping
the rate fixed and cannot jointly optimize the rate-distortion. Moreover, another important difference
is that we encode a random weight sample w „ qw from the weight posterior using A* coding [20]
instead of quantizing the weights and entropy coding them. At a high level, COMBINER applies the
model compression approach proposed by Havasi et al. [23] to encode variational Bayesian INRs,
albeit with significant improvements which we discuss in Sections 3.1 and 3.2.

In this paper, we only consider networks with a diagonal Gaussian prior pw “ N pµp,diagpσpqq

and posterior qw “ N pµq,diagpσqqq for mean and variance vectors µp,µq,σp,σq . Here, diagpvq

denotes a diagonal matrix with v on the main diagonal. Following Havasi et al. [23], we optimize the
variational parameters µq and σq using the local reparameterization trick [33] and, in Section 3.1,
we derive an iterative algorithm to learn the prior parameters µp and σp.

3.1 Learning the Model Prior on the Training Set

To guarantee that COMBINER performs well in practice, it is critical that we find a good prior
pw over the network weights, since it serves as the proposal distribution for A* coding and thus
directly impacts the method’s coding efficiency. To this end, in Algorithm 1 we describe an iterative
algorithm to learn the prior parameters θp “ tµp,σpu that minimize the average rate-distortion
objective over some training data tD1, . . . ,DMu:

sLβpθp, tqpiq
w uq “

1

M

M
ÿ

i“1

LβpDi, q
piq
w , pw;θp

q . (3)

In Equation (3) we write q
piq
w “ N pµ

piq
q , diagpσ

piq
q qq, and pw;θp

“ N pµp, diagpσpqq, explicitly
denoting the prior’s dependence on its parameters. Now, we propose a coordinate descent algorithm
to minimize the objective in Equation (3), shown in Algorithm 1. To begin, we randomly initialize
the model prior and the posteriors, and alternate the following two steps to optimize tq

piq
w u and θp:

1. Optimize the variational posteriors: We fix the prior parameters θp and optimize the
posteriors using the local reparameterization trick [33] with gradient descent. Note that,
given θp, optimizing sLβpθp, tq

piq
w uq can be split into M independent optimization prob-

lems, which we can perform in parallel:

for each i “ 1, . . . ,M : qpiq
w “ argmin

q
LβpDi, q, pw;θpq . (4)

2. Updating prior: We fix the posteriors tq
piq
w u and update the model prior by computing

θp “ argminθ sLβpθp, tq
piq
w uq. In the Gaussian case, this admits a closed-form solution:

µp “
1

M

M
ÿ

i“1

µpiq
q , σp “

1

M

M
ÿ

i“1

rσpiq
q ` pµpiq

q ´ µpq2s. (5)
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We provide the full derivation of this procedure in Appendix B. Note that by the definition of co-
ordinate descent, the value of sLβpθp, tq

piq
w uq decreases after each iteration, which ensures that our

estimate of θp converges to some optimum.

3.2 Compression with Posterior Refinement

Once the model prior is obtained using Algorithm 1, the sender uses the prior to train the variational
posterior distribution for a specific test datum, as illustrated by Equation (2). To further improve
the performance of INR compression, we also adopt a progressive posterior refinement strategy, a
concept originally proposed in [23] for Bayesian model compression.

To motivate this strategy, we first consider the optimal weight posterior q˚
w. Fixing the data D,

trade-off parameter β and weight prior pw, q˚
w is given by q˚

w “ argminq LβpD, q, pwq, where
the minimization is performed over the set of all possible target distributions q. To compress D
using our Bayesian INR, ideally we would like to encode a sample w˚ „ q˚

w, as it achieves optimal
performance on average by definition. Unfortunately, finding q˚

w is intractable in general, hence
we restrict the search over the set of all factorized Gaussian distributions in practice, which yields
a rather crude approximation. However, note that for compression, we only care about encoding
a single, good quality sample using relative entropy coding. To achieve this, Havasi et al. [23]
suggest partitioning the weight vector w into K blocks w1:K “ tw1, . . . ,wKu. For example, we
might partition the weights per MLP layer with wi representing the weights on layer i, or into a
preset number of random blocks; at the extremes, we could partition w per dimension, or we could
just set K “ 1 for the trivial partition. Now, to obtain a good quality posterior sample given a
partition w1:K , we start with our crude posterior approximation and obtain

qw “ qw1
ˆ . . . ˆ qwK

“ argmin
q1,...,qK

LβpD, q1 ˆ . . . ˆ qK , pwq, (6)

where each of the K minimization procedures takes place over the appropriate family of factorized
Gaussian distributions. Then, we draw a sample w1 „ qw1

and refine the remaining approximation:

qw|w1
“ qw2|w1

ˆ . . . ˆ qwK |w1
“ argmin

q2,...,qK

LβpD, q2 ˆ . . . ˆ qK , pw | w1q, (7)

where Lβp¨ | w1q indicates that w1 is fixed during the optimization. We now draw w2 „ qw2|w1
to

obtain the second chunk of our final sample. In total, we iterate the refinement procedure K times,
progressively conditioning on more blocks, until we obtain our final sample w “ w1:K . Note that
already after the first step, the approximation becomes conditionally factorized Gaussian, which
makes it far more flexible, and thus it approximates q˚

w much better [18].

Combining the refinement procedure with compression: Above, we assumed that after each re-
finement step k, we draw the next weight block wk „ qwk|w1:k´1

. However, as suggested in [23],
we can also extend the scheme to incorporate relative entropy coding, by encoding an approximate
sample w̃k „ q̃wk|w̃1:k´1

with A* coding instead. This way, we actually feed two birds with one
scone: the refinement process allows us to obtain a better overall approximate sample w̃ by extend-
ing the variational family and by correcting for the occasional bad quality chunk w̃k at the same
time, thus making COMBINER more robust in practice.

3.3 COMBINER in Practice

Given a partition w1:K of the weight vector w, we use A* coding to encode a sample w̃k from each
block. Let δk “ DKLrqwk|w̃1:k´1

}pwk
s represent the KL divergence in block k after the completion

of the first k ´ 1 refinement steps, where we have already simulated and encoded samples from the
first k´1 blocks. As we discussed in Section 2, we need to simulate

X

2δk`t
\

samples from the prior
pwk

to ensure that the sample w̃k encoded by A* coding has low bias. Therefore, for our method
to be computationally tractable, it is important to ensure that there is no block with large divergence
δk. In fact, to guarantee that COMBINER’s runtime is consistent, we would like the divergences
across all blocks to be approximately equal, i.e., δi « δj for 0 ď i, j ď K. To this end, we set a
bit-budget of κ bits per block and below we describe the to techniques we used to ensure δk « κ for
all k “ 1, . . . ,K. Unless stated otherwise, we set κ “ 16 bits and t “ 0 in our experiments.

First, we describe how we partition the weight vector based on the training data, to approximately
enforce our budget on average. Note that we control COMBINER’s rate-distortion trade-off by
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varying β in its training loss in Equation (3). Thus, when we run Algorithm 1 to learn the prior, we
also estimate the expected coding cost of the data given β as cβ “ 1

M

řM
i“1 DKLrq

piq
w }pws. Then, we

set the number of blocks as Kβ,κ “ rcβ{κs and we partition the weight vector such that the average
divergence sδk of each block estimated on the training data matches the coding budget, i.e., sδk « κ
bits. Unfortunately, allocating individual weights to the blocks under this constraint is equivalent to
the NP-hard bin packing problem [34]. However, we found that randomly permuting the weights
and greedily assigning them using the next-fit bin packing algorithm [35] worked well in practice.

Relative entropy coding-aware fine-tuning: Assume we now wish to compress some data D, and
we already selected the desired rate-distortion trade-off β, ran the prior learning procedure, fixed a
bit budget κ for each block and partitioned the weight vector using the procedure from the previous
paragraph. Despite our effort to set the blocks so that the average divergence sδk « κ in each block
on the training data, if we optimized the variational posterior qw using LβpD, qw, pwq, it is unlikely
that the actual divergences δk would match κ in each block. Therefore, we adapt the optimization
procedure from [23], and we use a modified objective for each of the k posterior refinement steps:

Lλk:K
pD, qw|w̃1:k´1

, pwq “
ÿ

px,yqPD

Ew„qw r∆py, fpx | wqs `

K
ÿ

i“k

λi ¨ δi, (8)

where λk:K “ tλk, . . . , λKu are slack variables, which we dynamically adjust during optimization.
Roughly speaking, at each optimization step, we compute each δi and increase its penalty term λi if
it exceeds the coding budget (i.e., δi ą κq and decrease the penalty term otherwise. See Appendix
D for the detailed algorithm.

The comprehensive COMBINER pipeline: We now provide a brief summary of the entire COM-
BINER compression pipeline. To begin, given a dataset tD1, . . . ,DMu, we select an appropriate
INR architecture, and run the prior learning procedure (Algorithm 1) with different settings for β to
obtain priors for a range of rate-distortion trade-offs.

To compress a new data point D, we select a prior with the desired rate-distortion trade-off and pick
a blockwise coding budget κ. Then, we partition the weight vector w based on κ, and finally, we run
the relative entropy coding-aware fine-tuning procedure from above, using A* coding to compress
the weight blocks between the refinement steps to obtain the compressed representation of D.

4 Related Work

Neural Compression: Despite their short history, neural image compression methods’ rate-
distortion performance rapidly surpassed traditional image compression standards [16, 7, 9]. The
current state-of-the-art methods follow a variational autoencoder (VAE) framework [2], optimizing
the rate-distortion loss jointly. More recently, VAEs were also successfully applied to compressing
other data modalities, such video [36] or point clouds [37]. However, mainstream methods quantize
the latent variables produced by the encoder for transmission. Since the gradient of quantization is
zero almost everywhere, learning the VAE encoder with standard back-propagation is not possible
[38]. A popular solution [22] is to use additive uniform noise during training to approximate the
quantization error, but it suffers from a train-test mismatch [39]. Relative entropy coding (REC)
algorithms [19] eliminate this mismatch, as they can directly encode samples from the VAEs’ latent
posterior. Moreover, they bring unique advantages to compression with additional constraints, such
as lossy compression with realism constraints [40, 41] and differentially private compression [42].

Compressing with INRs: INRs are parametric functional representations of data that offer many
benefits over conventional grid-based representations, such as compactness and memory-efficiency
[43–45]. Recently, compression with INRs has emerged as a new paradigm for neural compres-
sion [10], effective in compressing images [46], climate data [11], videos [47] and 3D scenes [48].
Usually, obtaining the INRs involves overfitting a neural network to a new signal, which is compu-
tationally costly [49]. Therefore, to ease the computational burden, some works [11, 46, 12] employ
meta-learning loops [50] that largely reduce the fitting times during encoding. However, due to the
expensive nature of the meta-learning process, these methods need to crop the data into patches to
make training with second-order gradients practical. The biggest difficulty the current INR-based
methods face is that quantizing the INR weights and activations can significantly degrade their per-
formance, due to the brittle nature of the heavily overfitted parameters. Our method solves this issue
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COMBINER (ours) MSCN [12] COIN++ [11] COIN [10]
CVPR2020 [4] ICLR2018 [2] BPG JPEG2000
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Figure 2: Rate-distortion curves on two image datasets. In both figures, solid lines denote INR-
based methods, dotted lines denote VAE-based methods and dashed lines denote classical methods.
Examples of decoded Kodak images are provided in Appendix F.3

by fitting a variational posterior over the parameters, from which we can encode samples directly
using REC, eliminating the mismatch caused by quantization. Concurrent to our work, Schwarz
et al. [51] introduced a method to learn a better coding distribution for the INR weights using a
VAE, in a similar vein to our prior learning method in Algorithm 1. Their method achieves impres-
sive performance on image and audio compression tasks, but is significantly more complex than our
method: they run an expensive meta-learning procedure to learn the backbone architecture for their
INRs and train a VAE to encode the INRs, making the already long training phase even longer.

5 Experiments

To assess COMBINER’s performance across different data regimes and modalities, we con-
ducted experiments compressing images from the low-resolution CIFAR-10 dataset [24], the high-
resolution Kodak dataset [25], and compressing audio from the LibriSpeech dataset [26]; the ex-
periments and their results are described in Sections 5.1 and 5.2. Furthermore, in Section 5.3, we
present analysis and ablation studies on COMBINER’s ability to adaptively activate or prune the
INR parameters, the effectiveness of its posterior refinement procedure and on the time complexity
of its encoding procedure.

5.1 Image Compression

Datasets: We conducted our image compression experiments on the CIFAR-10 [24] and Kodak [25]
datasets. For the CIFAR-10 dataset, which contains 32 ˆ 32 pixel images, we randomly selected
2048 images from the training set for learning the model prior, and evaluated our model on all 10,000
images in the test set. For the high-resolution image compression experiments we use 512 randomly
cropped 768ˆ 512 pixel patches from the CLIC training set [52] to learn the model prior and tested
on the Kodak images, which have matching resolution.

Models: Following previous methods [10–12], we utilize SIREN [43] as the network architecture.
Input coordinates x are transformed into Fourier embeddings [44] before being fed into the MLP
network, depicted as γpxq in Figure 1. For the model structure, we experimentally find a 4-layer
MLP with 16 hidden units per layer and 32 Fourier embeddings works well on CIFAR-10. When
training on CLIC and testing on Kodak, we use models of different sizes to cover multiple rate points.
We describe the model structure and other experimental settings in more detail in Appendix E.
Remarkably, the networks utilized in our experiments are quite small. Our model for compressing
CIFAR-10 images has only 1,123 parameters, and the larger model for compressing high-resolution
Kodak images contains merely 21,563 parameters.

Performance: In Figure 2, we benchmark COMBINER’s rate-distortion performance against clas-
sical codecs including JPEG2000 and BPG, and INR-based codecs including COIN [10], COIN++
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[11], and MSCN [12]. Additionally, we include results from VAE-based codecs such as ICLR2018
[2] and CVPR2020 [4] for reference. We observe that COMBINER exhibits competitive perfor-
mance on the CIFAR-10 dataset, on par with COIN++ and marginally lower than MSCN. Fur-
thermore, our proposed method achieves impressive performance on the Kodak dataset, surpassing
JPEG2000 and other INR-based codecs. This superior performance is in part due to our method
not requiring an expensive meta-learning loop [11, 46, 12], which would involve computing second-
order gradients during training. Since we avoid this cost, we can compress the whole high-resolution
image using a single MLP network, thus the model can capture global patterns in the image.

5.2 Audio Compression

To demonstrate the effectiveness of COMBINER for compressing data in other modalities, we also
conduct experiments on audio data. Since our method does not need to compute the second-order
gradient during training, we can directly compress a long audio segment with a single INR model.
We evaluate our method on LibriSpeech [26], a speech dataset recorded at a 16kHz sampling rate.
We train the model prior with 3-second chunks of audio, with 48000 samples per chunk. The detailed
experimental setup is described in Appendix E. Due to COMBINER’s time-consuming encoding
process, we restrict our evaluation to 24 randomly selected audio chunks from the test set. Since we
lack COIN++ statistics for this subset of 24 audio chunks, we only compare our method with MP3
(implemented using the ffmpeg package), which has been shown to be much better than COIN++
on the complete test set [11]. Figure 3 shows that COMBINER outperforms MP3 at low bitrate
points, which verifies its effectiveness in audio compression. We also conducted another group of
experiments where the audios are cropped into shorter chunks, which we describe in Appendix F.2.

5.3 Analysis, Ablation Study and Time Complexity

Model Visualizations: To provide more insight into COMBINER’s behavior, we visualize its pa-
rameters and information content on the second hidden layer of two small 4-layer models trained on
two CIFAR-10 images with β “ 10´5. We use the KL in bits as an estimate of their coding cost,
and do not encode the weights with A* coding or perform fine-tuning.

In Figure 6, we visualize the learned model prior parameters µp and σp in the left column, the
variational parameters of two distinct images in the second and third column and the KL divergence
DKLrqw}pws in bits in the rightmost column. Since this layer incorporates 16 hidden units, the
weight matrix of parameters has a 17 ˆ 16 shape, where weights and bias are concatenated (the
bias is represented by the last row). Interestingly, there are seven “active” columns within σp,
indicating that only seven hidden units of this layer would be activated for signal representation at
this rate point. For instance, when representing image 1 that is randomly selected from the CIFAR-
10 test set, four columns are activated for representation. This activation is evident in the four
blue columns within the KL map, which require a few bits to transmit the sample of the posterior
distribution. Similarly, three hidden units are engaged in the representation of image 2. As their
variational Gaussian distributions have close to zero variance, the posterior distributions at these

8



Prior mean Posterior mean, image 1 Posterior mean, image 2 KL / bits, image 1

Prior s.d. Posterior s.d., image 1 Posterior s.d., image 2 KL / bits, image 2

Figure 6: Visualizations of the weight prior, posterior and information content of a variational INR
trained on two CIFAR-10 images. We focus on the INR’s weights connecting the first and second
hidden layers. Each heatmap is 17 ˆ 16 because both layers have 16 hidden units and we concate-
nated the weights and the biases (last row). We write s.d. for standard deviation.

activated columns basically approach a Dirac delta distribution. In summary, by optimizing the
rate-distortion objective, our proposed method can adaptively activate or prune network parameters.

Ablation Studies: We conducted ablation studies on the CIFAR-10 dataset to verify the effective-
ness of learning the model prior (Section 3.1) and posterior fine-tuning (Section 3.2). In the first
ablation study, instead of learning the prior parameters, we follow the methodology of Havasi ([53],
p. 73) and use a layer-wise zero-mean isotropic Gaussian prior pℓ “ N p0, σℓIq, where pℓ is the
weight prior for the ℓth hidden layer. We learn the σℓ’s jointly with the posterior parameters by
optimizing Equation (3) using gradient descent, and encode them at 32-bit precision alongside the
A*-coded posterior weight samples. In the second ablation study, we omit the fine-tuning steps be-
tween encoding blocks with A* coding, i.e. we never correct for bad quality approximate samples.
In both experiments, we compress each block using 16 bits. Finally, as a reference, we also compare
with the theoretically optimal scenario: we draw an exact sample from each blocks’s variational
posterior between refinement steps instead of encoding an approximate sample with A* coding, and
estimate the sample’s codelength with the block’s KL divergence.

We compare the results of these experiments with our proposed pipeline (Section 3.3) using the
above mentioned techniques in Figure 4. We find that both the prior learning and posterior refine-
ment contribute significantly to COMBINER’s performance. In particular, fine-tuning the posteriors
is more effective at higher bitrates, while prior learning increases yields a consistent 4dB in gain
in PSNR across all bitrates. Finally, we see that fine-tuning cannot completely compensate for the
occasional bad approximate samples that A* coding yields, as there is a consistent 0.8 – 1.3dB
discrepancy between COMBINER’s and the theoretically optimal performance.

In Appendix C, we describe a further experiments we conducted to estimate how much each fine-
tuning step contributes to the PSNR gain between compressing two blocks. The results are shown in
Figure 7, which demonstrate that quality of the encoded approximate posterior sample doesn’t just
monotonically increase with each fine-tuning step, see Appendix C for an explanation.

Time Complexity: COMBINER’s encoding procedure is slow, as it requires several thousand gra-
dient descent steps to infer the parameters of the INR’s weight posterior, and thousands more for the
progressive fine-tuning. To get a better understanding of COMBINER’s practical time complexity,
we evaluate its coding time on both the CIFAR-10 and Kodak datasets at different rates and report
our findings in Tables 1 and 2. We find that it can take between 13 minutes (0.91 bpp) to 34 minutes
(4.45 bpp) to encode 500 CIFAR-10 images in parallel with a single A100 GPU, including posterior
inference (7 minutes) and progressive fine-tuning. Note, that the fine-tuning takes longer for higher
bitrates, as the weights are partitioned into more groups as each weight has higher individual in-
formation content. To compress high-resolution images from the Kodak dataset, the encoding time
varies between 21.5 minutes (0.070 bpp) and 79 minutes (0.293 bpp).
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bit-rate Encoding (500 images, GPU A100 80G) Decoding (1 image, CPU)
Learning Posterior REC + Fine-tuning Total

0.91 bpp

„7 min

„6 min „13 min 2.06 ms
1.39 bpp „9 min „16 min 2.09 ms
2.28 bpp „14 min 30 s „21 min 30 s 2.86 ms
3.50 bpp „21 min 30 s „28 min 30 s 3.82 ms
4.45 bpp „27 min „34 min 3.88 ms

Table 1: The encoding time and decoding time of COMBINER on CIFAR-10 dataset.

bit-rate Encoding (1 image, GPU A100 80G) Decoding (1 image, CPU)
Learning Posterior REC + Fine-tuning Total

0.07 bpp
„9 min

„12 min 30 s „21 min 30 s 348.42 ms
0.11 bpp „18 mins „27 min 381.53 ms
0.13 bpp „22 min „31 min 405.38 ms
0.22 bpp

„11 min „50 min „61 min 597.39 ms
0.29 bpp „68 min „79 min 602.32 ms

Table 2: The encoding time and decoding time of COMBINER on Kodak dataset.

To assess the effect of the fine-tuning procedure’s length, we randomly selected a CIFAR-10 image
and encoded it using the whole COMBINER pipeline, but varied the number of fine-tuning steps
between 2148 and 30260; we report the results of our experiment in Figure 5. We find that running
the fine-tuning process beyond a certain point has diminshing returns. In particular, while we used
around 30k iterations in our other experiments, just using 3k iterations would sacrifice a mere 0.3
dB in the reconstruction quality, while saving 90% on the original tuning time.

On the other hand, COMBINER has fast decoding speed, since once we decode the compressed
weight sample, we can reconstruct the data with a single forward pass through the network at each
coordinate, which can be easily parallelized. Specifically, the decoding time of a single CIFAR-10
image is between 2 ms and 4 ms using an A100 GPU, and less than 1 second for a Kodak image.

6 Conclusion and Limitations

In this paper, we proposed COMBINER, a new neural compression approach that first encodes
data as variational Bayesian implicit neural representations and then communicates an approximate
posterior weight sample using relative entropy coding. Unlike previous INR-based neural codecs,
COMBINER supports joint rate-distortion optimization and thus can adaptively activate and prune
the network parameters. Moreover, we introduced an iterative algorithm for learning the prior pa-
rameters on the network weights and progressively refining the variational posterior. Our abla-
tion studies show that these methods significantly enhance the COMBINER’s rate-distortion perfor-
mance. Finally, COMBINER achieves strong compression performance on low and high-resolution
image and audio compression, showcasing its potential across different data regimes and modalities.

COMBINER has several limitations. First, as discussed in Section 5.3, while its decoding process
is fast, its encoding time is considerably longer. Optimizing the variational posterior distributions
requires thousands of iterations, and progressively fine-tuning them is also time-consuming. Second,
Bayesian neural networks are inherently sensitive to initialization [21]. Identifying the optimal
initialization setting for achieving training stability and superior rate-distortion performance may
require considerable effort. Despite these challenges, we believe COMBINER paves the way for
joint rate-distortion optimization of INRs for compression.
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A Relative Entropy Coding with A* Coding

Algorithm 2 A* encoding

Require: Proposal distribution pw and target distribution qw.

Initialize : N,G0,w
˚, N˚, L Ð 2|C|,8,K,K,´8

for i “ 1, . . . , N do Ź N samples from proposal distribution
wi „ pw
Gi „ TruncGumbelpGi´1q

Li Ð Gi ` log pqwpwiq{pwpwiqq Ź Perturbed importance weight
if Li ď L then

L Ð Li

w˚, N˚ Ð wi, i
end if

end for
return w˚, N˚ Ź Transmit the index N˚

Algorithm 3 A* decoding

Simulate twiu “ tw1, ¨ ¨ ¨ ,wNu Ź Simulate N samples from pw with the shared seed
Receive N˚

return w˚ Ð wN˚ Ź Receive the approximate posterior sample

Recall that we would like to communicate a sample from the variational posterior distribution qw
using the proposal distribution pw. In our experiments, we used global-bound depth-limited A*
coding to achieve this [20]. We describe the encoding procedure in Algorithm 2 and the decoding
procedure in Algorithm 3. For brevity, we refer to this particular variant of the algorithm as A*
coding for the rest of the appendix.

A* coding is an importance sampler that draws N samples w1, . . . ,wN „ pw from the pro-
posal distribution pw, where N is a parameter we pick. Then, it computes the importance weights
rpwnq “ qwpwnq{pwpwnq, and sequentially perturbs them with truncated Gumbel3 noise:

r̃n “ rpwnq ` Gn, Gn „ TruncGumbelpGn´1q, G0 “ 8 (9)

Then, it can be shown that by setting

N˚ “ argmax
nPr1:Ns

r̃n, (10)

we have that wN˚ „ q̃w is approximately distributed according to the target, i.e. q̃w « qw. More
preciesly, we have the following result:
Lemma A.1 (Bound on the total variation between q̃w and qw (Lemma D.1 in [32])). Let us set the
number of proposal samples simulated by Algorithm 2 to N “ 2DKLrqw}pws`t for some parameter
t ě 0. Let q̃w denote the approximate distribution of the algorithm’s output for this choice of N .
Then,

DTV pqw, q̃wq ď 4ϵ, (11)

where

ϵ “

ˆ

2´t{4 ` 2
b

PZ„qw rlog2 rpZq ě DKLrQ}P s ` t{2s

˙1{2

. (12)

This result essentially tells us that we should draw at least around 2DKLrqw}pws samples to ensure
low sample bias, and beyond this, the bias decreases exponentially quickly as t Ñ 8. However,

3The PDF of a standard Gumbel random variable truncated to p´8, bq is given by
TruncGumbelpx | bq “ 1rx ď bs ¨ expp´x ´ expp´xq ` expp´bqq.

14



note that the number of samples we need also increases exponentially quickly with t. In practice,
we observed that when DKLrqw}pws is sufficiently large (around 16-20 bits), setting t “ 0 already
gave good results. To encode N˚, we built an empirical distribution over indices using our training
datasets and used it for entropy coding to find the optimal variable-length code for the index.

In short, on the encoder side, N random samples are obtained from the proposal distribution pw.
Then we select the sample wi and transmit its index N˚ that has the greatest perturbed importance
weight. On the decoder side, those N random samples can be simulated with the same seed held by
the encoder. The decoder only needs to find the sample with the index N˚. Therefore, the decoding
process of our method is very fast.

B Closed-Form Solution for Updating Model Prior

In this section, we derive the analytic expressions for the prior parameter updates in our iterative
prior learning procedure when both the prior and the posterior are Gaussian distributions. Given a
set of training data tDiu “ tD1,D2, ...,DMu, we fit a variational distribution q

piq
w to represent each

of the Dis. To do this, we minimize the loss (abbreviated as L later)

sLβpθp, tqpiq
w uq “

1

M

M
ÿ

i“1

LβpDi, q
piq
w , pw;θp

q (13)

“
1

M

M
ÿ

i“1

t
ÿ

px,yqPD

Ew„qw r∆py, fpx | wqs ` β ¨ DKLrqw}pw;θps u. (14)

Now calculate the derivative w.r.t. the prior distribution parameter pw;θp
,

BL
Bθp

“
1

M

M
ÿ

i“1

BDKLrqw}pw,θp
s

Bθp
(15)

Considering we choose factorized Gaussian as variational distributions, the KL divergence is

DKLrqpiq
w }pw,θp

s “ DKLrN pµi, diagpσiqq}N pµi, diagpσiqqs (16)

“
1

2
log

σp

σ
piq
q

`
σ

piq
q ` pµ

piq
q ´ µpq2

σp
´

1

2
(17)

To compute the analytical solution, let

BL
Bθp

“
1

M

M
ÿ

i“1

BDKLrqw}pw,θp
s

Bθp
“ 0. (18)

Note here σ refers to variance rather than standard deviation. The above equation is equivalent to

BL
Bµp

“

M
ÿ

i“1

µp ´ µ
piq
q

σp
“ 0,

BL
Bσp

“

M
ÿ

i“1

r
1

σp
´

σ
piq
q ` pµ

piq
q ´ µpq2

σ2
p

s “ 0.

(19)

We finally can solve these equations and get

µp “
1

M

M
ÿ

i“1

µpiq
q , σp “

1

M

M
ÿ

i“1

rσpiq
q ` pµpiq

q ´ µpq2s (20)

as the result of Equation (5) in our main text. In short, this closed-form solution provides an efficient
way to update the model prior from a bunch of variational posteriors. It makes our method simple
in practice, unlike some previous methods [11, 12] that require expensive meta-learning loops.
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Figure 7: The approximated PSNR value changes as the fine-tuning process goes on.

C The Approximated PSNR Changes As Fine-tuning Goes On

We compressed some of the parameters using A* coding, directly sampled the rest from the poste-
rior distributions, and used their corresponding KL divergence to estimate the coding cost. At the
same time, we can obtain the approximated PSNR value by using the posterior samples to estimate
the decoding quality. As shown in Figure 7, the PSNR tends to increase as the fine-tuning pro-
cess goes on. However, it tends to drop when the fine-tuning process is nearing completion. This
phenomenon occurs because, at the initial fine-tuning stage, the fine-tuning gain is more than the
loss from A* coding, as many uncompressed groups can be fine-tuned to correct the errors of A*
coding. But when the fine-tuning process nears completion, there are fewer uncompressed groups
which could compensate for the bad sample of A* coding. Therefore, the general PSNR curve tends
to decrease when it approaches the end of fine-tuning. This figure shows that while A* coding’s
sample results may have a distance to the accurate posterior, our proposed progressive fine-tuning
strategy effectively mitigates most of these discrepancies.

D Dynamic Adjustment of β

When learning the model prior, the value of β that controlling the rate-distortion trade-off is defined
in advance to train the model prior at a specific bitrate point. After obtaining the model prior, we
will first partition the network parameters into K groups w1:K “ tw1, . . . ,wKu according to the
average approximate coding cost of training data, as described in Section 3.3. Now for training
the variational posterior for a given test datum, to ensure the coding cost of each group is close to
κ “ 16 bits, we adjust the value of β dynamically when optimizing the posteriors. The detailed
algorithm is illustrated here in Algorithm 4.

The algorithm is improved from Havasi et al. [23] to stabilize training, in the way that we set an
interval rκ ´ 0.4, κs as buffer area where we do not change the value of λk. Here we only adjust λk

every 15 iterations to avoid frequent changes at the initial training stage.

E Experiment Details

We introduce the experimental settings here and summarize the settings in Table 3.

E.1 CIFAR-10

We use a 4-layer MLP with 16 hidden units and 32 Fourier embeddings for the CIFAR-10 dataset.
The model prior is trained with 128 epochs to ensure convergence. Here, the term “epoch” is used
to refer to optimizing the posteriors and updating the prior in the Algorithm 1 in the main text. For
each epoch, the posteriors of all 2048 training data are optimized for 100 iterations using the local
reparameterization trick [33], except the first epoch that contains 250 iterations. We use the Adam
optimizer with learning rate 0.0002. The posterior variances are initialized as 9 ˆ 10´6.
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Algorithm 4 Dynamic β adjustment for optimizing the posteriors

Require: β,w1:K “ tw1, . . . ,wKu

Initialize: λk “ β, k “ 1, ¨ ¨ ¨ ,K
Initialize: variational posterior qwk

, k “ 1, ¨ ¨ ¨ ,K

for i Ð NumberIter do

δk “ DKLrqwk
}pwk

s, k “ 1, ¨ ¨ ¨ ,K

qw1:K
Ð VariationalUpdate(Lλ1:K

) Ź Lλ1:K
is defined in Equation 8 in the main text

if pi mod 15q “ 0 then
if δk ą κ then λk “ λk ¨ 1.05
end if
if δk ă κ ´ 0.4 then λk “ λk / 1.05
end if

end if
end for
return qwk

, λk, k “ 1, ¨ ¨ ¨ ,K

After obtaining the model prior, given a specific test CIFAR-10 image to be compressed, the pos-
terior of this image is optimized for 25000 iterations, with the same optimizer. When we finally
progressively compress and fine-tune the posterior, the posteriors of the uncompressed parameter
groups are fine-tuned for 15 iterations with the same optimizer once a previous group is compressed.

E.2 Kodak

For Kodak dataset, since training on high-resolution image takes much longer time, the model prior
is learned using fewer training data, i.e., only 512 cropped CLIC images [52]. We also reduce the
learning rate of the Adam optimizer to 0.0001 to stabilize training. In each epoch, the posterior of
each image is trained for 200 iterations, except the first epoch that contains 500 iterations. We also
reduce the total epoch number to 96 which is empirically enough to learn the model prior.

We use two models with different capacity for compressing high-resolution Kodak images. The
smaller model is a 6-layer SIREN with 48 hidden units and 64 Fourier embeddings. This model is
used to get the three low-bitrate points in Figure 2b in our main text, where the corresponding beta
is set as t10´7, 10´8, 4 ˆ 10´8u. Another larger model comprises a 7-layer MLP with 56 hidden
units and 96 Fourier embeddings, which is used for evaluation at the two relatively higher bitrate
points in Figure 2b in our main text. The betas of these two models have the same value 2 ˆ 10´9.
We empirically adjust the variance initialization from the set t4 ˆ 10´6, 4 ˆ 10´10u and find they
can affect the converged bitrate and achieve good performance. In particular, the posterior variance
is initialized as 4ˆ10´10 to reach the highest bitrate point in the rate-distortion curve. The posterior
variance of other bitrate-points on Kodak dataset are all initialized as 4 ˆ 10´6.

Important note: It required significant empirical effort to find the optimal parameter settings we
described above, hence our note in the Conclusion and Limitations section that Bayesian neural
networks are inherently sensitive to initialization [21].

E.3 LibriSpeech

We randomly crop 1024 audio samples from LibriSpeech “train-clean-100” set [26] for learning the
model prior and randomly crop 24 test samples from “test-clean” set for evaluation. The model
structure is the same as the small model used for compressing Kodak images. We evaluate on four
bitrate points by setting β “ t10´7, 3 ˆ 10´8, 10´8, 10´9u. There are 128 epochs, and each epoch
has 100 iterations with learning rate as 0.0002. The first epoch has 250 iterations. In addition, the
posterior variance is initialized as 4ˆ 10´9. The settings for optimizing and fine-tuning posterior of
a test datum are the same as the experiments on Kodak dataset.
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CIFAR-10 Kodak LibriSpeech
Smaller Model Larger Model

Network Structure

number of MLP layer 4 6 7 6
hidden unit 16 48 56 48

Fourier embedding 32 64 96 64
number of parameters 1123 12675 21563 12675

Learning Model Prior from Training Data

number of training data 2048 512 512 1024
epoch number 128 96 96 128
learning rate 0.0002 0.0001 0.0001 0.0002

iteration / epoch
(except the first epoch)

100 200 200 100

iteration number
in the first epoch

250 500 500 250

initialization of
posterior variance

9 ˆ 10´6 4 ˆ 10´6 4 ˆ 10´6, 4 ˆ 10´10 4 ˆ 10´9

β
2 ˆ 10´5, 5 ˆ 10´6, 2 ˆ 10´6

1 ˆ 10´6, 5 ˆ 10´7 10´7, 10´8, 4 ˆ 10´8 4 ˆ 10´6 10´7, 3 ˆ 10´8

10´8, 10´9

Optimize the Posterior of a Test Datum

iteration number 25000 25000 25000 25000
learning rate 0.0002 0.0001 0.0001 0.0002
training with

1/4 the points (pixels)
✗ ✓ ✓ ✗

number of group
(KL budget =

16 bits / group)

(58, 89, 146,
224, 285)

(1729, 2962, 3264) (5503, 7176)
(1005, 2924,
4575, 6289)

bitrate, (bpp for images,
Kbps for audios)

(0.91, 1.39, 2.28,
3.50, 4.45)

(0.070, 0.110, 0.132) (0.224, 0.293)
(5.36, 15.59,
24.40, 33.54)

PSNR, dB
(0.91, 1.39, 2.28,

3.50, 4.45)
(0.070, 0.110, 0.132) (0.224, 0.293)

(5.36, 15.59,
24.40, 33.54)

Table 3: Hyper parameters in our experiments.

F Supplementary Experimental Results

F.1 Number of Training Samples

Since the model prior is learned from a few training data, the number of training data may influence
the quality of the learned model prior. We train the model prior with a different number of training
images from the CIFAR-10 training set and evaluate the performance on 100 randomly selected test
images from the CIFAR-10 test set. Surprisingly, as shown in Figure 8, we found that even merely
16 training images can help to learn a good model prior. Considering the randomness of training
and testing, the performance on this test subset is almost the same when the number of training data
exceeds 16. This demonstrates that the model prior is quite robust and generalizes well to test data.
In our final experiments, the number of training samples is set to 2048 (on CIFAR-10 dataset) to
ensure the prior converges to a good optimum.

F.2 Compressing Audios with Small Chunks

The proposed approach does not need to compute the second-order gradient during training, which
helps to learn the model prior of the entire datum. Hence, compression with a single Bayesian INR
network helps to fully capture the global dependencies of a datum. That is the reason for our strong
performance on Kodak and LibriSpeech datasets. Here, we also conduct a group of experiment to
compare the influence of cropping audios into chunks. Unlike the experimental setting in our main
text that compresses every 3-second audio (1 ˆ 48000) with a single MLP network, here we try to
crop all the 24 audios into small chunks, each of the chunk has the shape of 1ˆ200. We use the same
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Figure 8: Impact of the number of training data.
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Figure 9: Compressing audios.

network used for compressing CIFAR-10 images for our experiments here. As shown in Figure 9,
if we do not compress the audio as an entire entity, the performance will drops for around 5 dB.
It demonstrates the importance of compressing with a single MLP network to capture the inherent
redundancies within the entire data.

F.3 Additional Figures

We provide some examples of the decoded Kodak images in Figure 10.

Ground Truth 0.0703 bpp, 23.02 dB 0.2928 bpp, 25.43 dB

Ground Truth 0.0703 bpp, 29.73 dB 0.2928 bpp, 33.59 dB

Figure 10: Decoded Kodak images.
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