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Abstract

Bilevel Optimization has witnessed notable progress recently with new emerging
efficient algorithms. However, its application in the Federated Learning setting
remains relatively underexplored, and the impact of Federated Learning’s inherent
challenges on the convergence of bilevel algorithms remain obscure. In this
work, we investigate Federated Bilevel Optimization problems and propose a
communication-efficient algorithm, named FedBiOAcc. The algorithm leverages
an efficient estimation of the hyper-gradient in the distributed setting and utilizes
the momentum-based variance-reduction acceleration. Remarkably, FedBiOAcc
achieves a communication complexity O(ϵ−1), a sample complexity O(ϵ−1.5) and
the linear speed up with respect to the number of clients. We also analyze a special
case of the Federated Bilevel Optimization problems, where lower level problems
are locally managed by clients. We prove that FedBiOAcc-Local, a modified
version of FedBiOAcc, converges at the same rate for this type of problems. Finally,
we validate the proposed algorithms through two real-world tasks: Federated Data-
cleaning and Federated Hyper-representation Learning. Empirical results show
superior performance of our algorithms.

1 Introduction

Bilevel optimization [51, 48] has increasingly drawn attention due to its wide-ranging applications in
numerous machine learning tasks, including hyper-parameter optimization [42], meta-learning [61]
and neural architecture search [36]. A bilevel optimization problem involves an upper problem
and a lower problem, wherein the upper problem is a function of the minimizer of the lower prob-
lem. Recently, great progress has been made to solve this type of problems, particularly through
the development of efficient single-loop algorithms that rely on diverse gradient approximation
techniques [23]. However, the majority of existing bilevel optimization research concentrates on stan-
dard, non-distributed settings, and how to solve the bilevel optimization problems under distributed
settings have received much less attention. Federated learning (FL) [40] is a recently promising
distributed learning paradigm. In FL, a set of clients jointly solve a machine learning task under
the coordination of a central server. To protect user privacy and mitigate communication overhead,
clients perform multiple steps of local update before communicating with the server. A variety of
algorithms [50, 59, 16, 26, 1] have been proposed to accelerate this training process. However, most
of these algorithms primarily address standard single-level optimization problems. In this work,
we study the bilevel optimization problems in the Federated Learning setting and investigate the
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Table 1: Comparisons of the Federated/Non-federated bilevel optimization algorithms for
finding an ϵ-stationary point of (1). Gc(f, ϵ) and Gc(g, ϵ) denote the number of gradient evaluations
w.r.t. f (m)(x, y) and g(m)(x, y); JV (g, ϵ) denotes the number of Jacobian-vector products; HV (g, ϵ)
is the number of Hessian-vector products; κ = L/µ is the condition number, p(κ) is used when no
dependence is provided. Sample complexities are measured by client.

Setting Algorithm Communication Gc(f, ϵ) Gc(g, ϵ) JV (g, ϵ) HV (g, ϵ) Heterogeneity

Non-Fed StocBiO [24] O(κ5ϵ−2) O(κ9ϵ−2) O(κ5ϵ−2) O(κ6ϵ−2)
MRBO [56] O(p(κ)ϵ−1.5) O(p(κ)ϵ−1.5) O(p(κ)ϵ−1.5) O(p(κ)ϵ−1.5)

Federated

CommFedBiO [33] O(p(κ)ϵ−2) O(p(κ)ϵ−2) O(p(κ)ϵ−2) O(p(κ)ϵ−2) O(p(κ)ϵ−2) ✓
FedNest [49] O(κ9ϵ−2) O(κ5ϵ−2) O(κ9ϵ−2) O(κ5ϵ−2) O(κ9ϵ−2) ✓
AggITD [53] O(p(κ)ϵ−2) O(p(κ)ϵ−2) O(p(κ)ϵ−2) O(p(κ)ϵ−2) O(p(κ)ϵ−2) ✓
FedMBO [21] O(M−1p(κ)ϵ−2) O(M−1p(κ)ϵ−2) O(M−1p(κ)ϵ−2) O(M−1p(κ)ϵ−2) O(M−1p(κ)ϵ−2) ✓
SimFBO [58] O(p(κ)ϵ−1) O(M−1p(κ)ϵ−2) O(M−1p(κ)ϵ−2) O(M−1p(κ)ϵ−2) O(M−1p(κ)ϵ−2) ✓

Local-BSGVR [12] O(p(κ)ϵ−1) O(M−1p(κ)ϵ−1.5) O(M−1p(κ)ϵ−1.5) O(M−1p(κ)ϵ−1.5) O(M−1p(κ)ϵ−1.5) ✗

FedBiOAcc (Ours) O(κ19/3ϵ−1) O(M−1κ8ϵ−1.5) O(M−1κ8ϵ−1.5) O(M−1κ8ϵ−1.5) O(M−1κ8ϵ−1.5) ✓

following research question: Is it possible to develop communication-efficient federated algorithms
tailored for bilevel optimization problems that also ensure a rapid convergence rate?

More specifically, a general Federated Bilevel Optimization problem has the following form:

min
x∈Rp

h(x) :=
1

M

M∑
m=1

f (m)(x, yx), s.t. yx = argmin
y∈Rd

1

M

M∑
m=1

g(m)(x, y) (1)

A federated bilevel optimization problem consists of an upper and a lower level problem, the
upper problem f(x, y) := 1

M

∑M
m=1 f

(m)(x, y) relies on the solution yx of the lower problem,
and g(x, y) := 1

M

∑M
m=1 g

(m)(x, y). Meanwhile, both the upper and the lower level problems are
federated: In Eq.(1), we have M clients, and each client has a local upper problem f (m)(x, y) and
a lower level problem g(m)(x, y). Compared to single-level federated optimization problems, the
estimation of the hyper-gradient in federated bilevel optimization problems is much more challenging.
In Eq.(1), the hyper-gradient is not linear w.r.t the local hyper-gradients of clients, whereas the gradient
of a single-level Federated Optimization problem is the average of local gradients. Consequently,
directly applying the vanilla local-sgd method [40] to federated bilevel problems results in a large
bias. In the literature [49, 33, 21, 53], researchers evaluate the hyper-gradient through multiple rounds
of client-server communication, however, this approach leads to high communication overhead. In
contrast, we view the hyper-gradient estimation as solving a quadratic federated problem and solving
it with the local-sgd method. More specifically, we formulate the solution of the federated bilevel
optimization as three intertwined federated problems: the upper problem, the lower problem and
the quadratic problem for the hyper-gradient estimation. Then we address the three problems using
alternating gradient descent steps, furthermore, to manage the noise of the stochastic gradient and
obtain the fast convergence rate, we employ a momentum-based variance reduction technique.

Beyond the standard federated bilevel optimization problem as defined in Eq. 1, another variant of
Federated Bilevel Optimization problem, which entails locally managed lower-level problems, is also
frequently utilized in practical applications. For this type of problem, we can get an unbiased estimate
of the global hyper-gradient using local hyper-gradient, thus we can solve it with a local-SGD like
algorithm, named FedBiOAcc-Local. However, it is challenging to analyze the convergence of
the algorithm. In particular, we need to bound the intertwined client drift error, which is intrinsic
to FL and the bilevel-related errors e.g. the lower level solution bias. In fact, we prove that the
FedBiOAcc-Local algorithm attains the same fast rate as FedBiO algorithm.

Finally, we highlight the main contributions of our paper as follows:
1. We propose FedBiOAcc to solve Federated Bilevel Optimization problems, the algorithm

evaluates the hypergradient of federated bilevel optimization problems efficiently and
achieves optimal convergence rate through momentum-based variance reduction. Fed-
BiOAcc has sample complexity of O(ϵ−1.5), communication complexity of O(ϵ−1) and
achieves linear speed-up w.r.t the number of clients.

2. We study Federated Bilevel Optimization problem with local lower level problem for the
first time, where we show the convergence of a modified version of FedBiOAcc, named
FedBiOAcc-Local for this type of problems.

3. We validate the efficacy of the proposed FedBiOAcc algorithm through two real-world tasks:
Federated Data Cleaning and Federated Hyper-representation Learning.
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Notations ∇ denotes full gradient, ∇x denotes partial derivative for variable x, higher order deriva-
tives follow similar rules. [K] represents the sequence of integers from 1 to K, x̄ represents average
of the sequence of variables {x(m)}Mm=1. t̄s represents the global communication timestamp s.

2 Related Works

Bilevel optimization dates back to at least the 1960s when [51] proposed a regularization method, and
then followed by many research works [10, 48, 55, 45], while in machine learning community, similar
ideas in the name of implicit differentiation were also used in Hyper-parameter Optimization [30, 3,
2, 8]. Early algorithms for Bilevel Optimization solved the accurate solution of the lower problem
for each upper variable. Recently, researchers developed algorithms that solve the lower problem
with a fixed number of steps, and use the ‘back-propagation through time’ technique to compute the
hyper-gradient [9, 39, 11, 43, 47]. Very Recently, it witnessed a surge of interest in using implicit
differentiation to derive single loop algorithms [14, 17, 23, 28, 4, 56, 19, 32, 7, 20, 18]. In particular,
[32, 7] proposes a way to iteratively evaluate the hyper-gradients to save computation. In this work,
we view the hyper-gradient estimation of Federated Bilevel Optimization as solving a quadratic
federated optimization problem and use a similar iterative evaluation rule as [32, 7] in local update.

The bilevel optimization problem is also considered in the more general settings. For example, bilevel
optimization with multiple lower tasks is considered in [15], furthermore, [5, 57, 38, 13] studies the
bilevel optimization problem in the decentralized setting, [25] studies the bilevel optimization problem
in the asynchronous setting. In contrast, we study bilevel optimization problems under Federated
Learning [40] setting. Federated learning is a promising privacy-preserving learning paradigm
for distributed data. Compared to traditional data-center distributed learning, Federated Learning
poses new challenges including data heterogeneity, privacy concerns, high communication cost, and
unfairness. To deal with these challenges, various methods [26, 35, 46, 60, 41, 34] are proposed.
However, bilevel optimization problems are less investigated in the federated learning setting. [54]
considered the distributed bilevel formulation, but it needs to communicate the Hessian matrix for
every iteration, which is computationally infeasible. More recently, FedNest [49] has been proposed
to tackle the general federated nest problems, including federated bilevel problems. However, this
method evaluates the full hyper-gradient at every iteration; this leads to high communication overhead;
furthermore, FedNest also uses SVRG to accelerate the training. Similar works that evaluate the
hyper-gradient with multiple rounds of client-server communication are [33, 21, 53, 58]. Finally,
there is a concurrent work [12] that investigates the possibility of local gradients on Federated Bilevel
Optimization, however, it only considers the homogeneous case, this setting is quite constrained
and much simpler than the more general heterogeneous case we considered. Furthermore, [12] only
considers the case where both the upper and the lower problem are federated, and omit the equally
important case where the lower level problem is not federated.

3 Federated Bilevel Optimization

3.1 Some Mild Assumptions

Note that the formulation of Eq.(1) is very general, and we consider the stochastic heterogeneous
case in this work. More specifically, we assume:

f (m)(x, y) := E
ξ∼D(m)

f

[f (m)(x, y, ξ)], g(m)(x, y) := E
ξ∼D(m)

g
[g(m)(x, y; ξ)]

where D(m)
f and D(m)

g are some probability distributions. Furthermore, we assume the local objectives
could be potentially different: f (m)(x, y) ̸= f (k)(x, y) or g(m)(x, y) ̸= g(k)(x, y) for m ̸= k,m, k ∈
[M ]. Furthermore, we assume the following assumptions in our subsequent discussion:

Assumption 3.1. Function f (m)(x, y) is possibly non-convex and g(m)(x, y) is µ-strongly convex
w.r.t y for any given x.

Assumption 3.2. Function f (m)(x, y) is L-smooth and has Cf -bounded gradient;

Assumption 3.3. Function g(m)(x, y) is L-smooth, and ∇xyg
(m)(x, y) and ∇y2g(m)(x, y) are

Lipschitz continuous with constants Lxy and Ly2 respectively;
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Algorithm 1 Accelerated Federated Bilevel Optimization (FedBiOAcc)
1: Input: Constants cω , cν , cu, γ, η, τ , r; learning rate schedule {αt}, t ∈ [T ], initial state (x1, y1,

u1);
2: Initialization: Set y(m)

1 = y1, x(m)
1 = x1, u(m)

1 = u1, ω(m)
1 = ∇yg

(m)(x1, y1,By), ν
(m)
1 =

∇xf
(m)(x1, y1;Bf,1) − ∇xyg

(m)(x1, y1;Bg,1)u1 and q1 = ∇y2g(m)(x
(m)
1 , y

(m)
1 ;Bg,2)u1 −

∇yf
(m)(x

(m)
1 , y

(m)
1 ;Bf,2) for m ∈ [M ]

3: for t = 1 to T do
4: ŷ

(m)
t+1 = y

(m)
t − γαtω

(m)
t , x̂(m)

t+1 = x
(m)
t − ηαtν

(m)
t , û(m)

t+1 = Pr(u
(m)
t − ταtq

(m)
t )

5: if t mod I = 0 then
6: y

(m)
t+1 = 1

M

∑M
j=1 ŷ

(j)
t+1; x(m)

t+1 = 1
M

∑M
j=1 x̂

(j)
t+1, u(m)

t+1 = 1
M

∑M
j=1 û

(j)
t+1

7: else
8: y

(m)
t+1 = ŷ

(m)
t+1 , x(m)

t+1 = x̂
(m)
t+1, u(m)

t+1 = û
(m)
t+1

9: end if
10: Get ω̂(m)

t+1 , ν̂(m)
t+1 and q̂

(m)
t+1 following Eq. (7)

11: if t mod I = 0 then
12: ω

(m)
t+1 = 1

M

∑M
j=1 ω̂

(j)
t+1, ν(m)

t+1 = 1
M

∑M
j=1 ν̂

(j)
t+1, q(m)

t+1 = 1
M

∑M
j=1 q̂

(j)
t+1,

13: else
14: ω

(m)
t+1 = ω̂

(m)
t+1 , ν(m)

t+1 = ν̂
(m)
t+1 , q(m)

t+1 = q̂
(m)
t+1

15: end if
16: end for

Assumption 3.4. We have unbiased stochastic first-order and second-order gradient oracle with
bounded variance.
Assumption 3.5. For any m, j ∈ [M ] and z = (x, y), we have: ∥∇f (m)(z) − ∇f (j)(z)∥ ≤ ζf ,
∥∇g(m)(z)−∇g(j)(z)∥ ≤ ζg , ∥∇xyg

(m)(z)−∇xyg
(j)(z)∥ ≤ ζg,xy , ∥∇y2g(m)(z)−∇y2g(j)(z)∥ ≤

ζg,yy, where ζf , ζg , ζg,xy , ζg,yy, are constants.

As stated in The assumption 3.1, we study the non-convex-strongly-convex bilevel optimization
problems, this class of problems is widely studied in the non-distributed bilevel literature [22, 14].
Furthermore, Assumption 3.2 and Assumption 3.3 are also standard assumptions made in the non-
distributed bilevel literature. Assumption 3.4 is widely used in the study of stochastic optimization
problems. For Assumption 3.5, gradient difference is widely used in single level Federated Learning
literature as a measure of client heterogeneity [28, 52]. Please refer to the full version of Assumptions
in Appendix.

3.2 The FedBiOAcc Algorithm

A major difficulty in solving a Federated Bilevel Optimization problem Eq. (1) is evaluating the
hyper-gradient ∇h(x). For the function class (non-convex-strongly-convex) we consider, the
explicit form of hypergradient h(x) exists as ∇h(x) = Φ(x, yx), where Φ(x, y) is denoted as:

Φ(x, y) =∇xf(x, y)−∇xyg(x, y)× [∇y2g(x, y)]−1∇yf(x, y), (2)

Based on Assumption 3.1∼3.3, we can verify Φ(x, yx) is the hyper-gradient [14]. But since the
clients only have access to their local data, for ∀m ∈ [M ], the client evaluates:

Φ(m)(x, y) =∇xf
(m)(x, y)−∇xyg

(m)(x, y)× [∇y2g(m)(x, y)]−1∇yf
(m)(x, y), (3)

It is straightforward to verify that Φ(m)(x, y) is not an unbiased estimate of the full hyper-gradient,
i.e. Φ(x, yx) ̸= 1

M

∑M
m=1 Φ

(m)(x, yx). To address this difficulty, we can view the Hyper-gradient
computation as the process of solving a federated optimization problem.

In fact, Evaluating Eq. (2) is equivalent to the following two steps: first, we solve the quadratic
federated optimization problem l(u):

min
u∈Rd

l(u) =
1

M

M∑
m=1

uT (∇y2g(m)(x, y))u− ⟨∇yf
(m)(x, y), u⟩ (4)
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Suppose that we denote the solution of the above problem as u∗, then we have the following linear
operation to get the hypergradient:

∇h(x) =
1

M

M∑
m=1

(
∇xf

(m)(x, yx)−∇xyg
(m)(x, yx)u

∗
)

(5)

Compared to the formulation Eq. (2), Eq. (4) and Eq. (5) are more suitable for the distributed setting.
In fact, both Eq. (4) and Eq. (5) have a linear structure. Eq. (4) is a (single-level) quadratic federated
optimization problem, and we could solve Eq. (4) through local-sgd [40], suppose that each client
maintains a variable u

(m)
t , and performs the following update:

u
(m)
t+1 = Pr(u

(m)
t − τt∇l(m)(u

(m)
t ;B))

∇l(m)(u
(m)
t ;B) = ∇y2g(m)(x

(m)
t , y

(m)
t ;Bg,2))u

(m)
t −∇yf

(m)(x
(m)
t , y

(m)
t ;Bf,2)

where ∇l(m)(u
(m)
t ;B) is client m’s the stochastic gradient of Eq. (4), and (x

(m)
t , y

(m)
t ) denotes the

upper and lower variable state at the timestamp t, the Pr(·) denotes the projection to a bounded
ball of radius-r. Note that Clients perform multiple local updates of u(m)

t before averaging. As for
Eq. (5), each client evaluates ∇h(m)(x) locally: ∇h(m)(x) = ∇xf

(m)(x, yx)−∇xyg
(m)(x, yx)u

∗

and the server averages ∇h(m)(x) to get ∇h(x). In summary, the linear structure of Eq. (4) and
Eq. (5) makes it suitable for local updates, therefore, reduce the communication cost.

More specifically, we perform alternative update of upper level variable x(m)
t , the lower level variable

y
(m)
t and hyper-gradient computation variable u

(m)
t . For example, for each client m ∈ [M ], we

perform the following local updates:

y
(m)
t+1 = y

(m)
t − γt∇yg

(m)(x
(m)
t , y

(m)
t ,By), u

(m)
t+1 = Pr(u

(m)
t − τt∇l(m)(u

(m)
t ;B))

x
(m)
t+1 = x

(m)
t − ηt

(
∇xf

(m)(x
(m)
t , y

(m)
t ;Bf,1)−∇xyg

(m)(x
(m)
t , y

(m)
t ;Bg,1)u

(m)
t

)
(6)

Every I steps, the server averages clients’ local states, this resembles the local-sgd method for single
level federated optimization problems. Note that in the update of the upper variable x

(m)
t , we use

u
(m)
t as an estimation of u∗ in Eq. (5). An algorithm follows Eq. (6) is shown in Algorithm 2 of

Appendix and we refer to it as FedBiO.

Comparison with FedNest. The update rule of Eq. 6 is very different from that of FedNest [49]
and its follow-ups [21, 53]. In FedNest, a sub-routine named FedIHGP is used to evaluate Eq. (2)
at every global epoch. This involves multiple rounds of client-server communication and leads to
higher communication overhead. In contrast, Eq. (6) formulates the hyper-gradient estimation as
an quadratic federated optimization problem, and then solves three intertwined federated problems
through alternative updates of x, y and u.

Note that Eq. 6 updates the related variables through vanilla gradient descent steps. In the non-
federated setting, gradient-based methods such as stocBiO [23] requires large-batch size (O(ϵ−1))
to reach an ϵ-stationary point, and we also analyze Algorithm 2 in Appendix to show the same
dependence. To control the noise and remove the dependence over large batch size, we apply the
momentum-based variance-reduction technique STORM [6]. In fact, Eq. (6) solves three intertwined
optimization problems: the bilevel problem h(x), the lower level problem g(x, y) and the hyper-
gradient computation problem Eq (4). So we control the noise in the process of solving each of the
three problems. More specifically, we have ω

(m)
t , ν(m)

t and q
(m)
t to be the momentum estimator for

x
(m)
t , y(m)

t and u
(m)
t respectively, and we update them following the rule of STORM [6]:

ω̂
(m)
t+1 = ∇yg

(m)(x
(m)
t+1, y

(m)
t+1 ,By) + (1− cωα

2
t )(ω

(m)
t −∇yg

(m)(x
(m)
t , y

(m)
t ,By))

ν̂
(m)
t+1 =

(
∇xf

(m)(x
(m)
t+1, y

(m)
t+1 ;Bf,1)−∇xyg

(m)(x
(m)
t+1, y

(m)
t+1 ;Bg,1)u

(m)
t+1

)
+ (1− cνα

2
t )
(
ν
(m)
t −

(
∇xf

(m)(x
(m)
t , y

(m)
t ;Bf,1)−∇xyg

(m)(x
(m)
t , y

(m)
t ;Bg,1)u

(m)
t

))
q̂
(m)
t+1 =

(
∇y2g(m)(x

(m)
t+1, y

(m)
t+1 ;Bg,2)u

(m)
t+1 −∇yf

(m)(x
(m)
t+1, y

(m)
t+1 ;Bf,2)

)
+ (1− cuα

2
t )
(
q
(m)
t −

(
∇y2g(m)(x

(m)
t , y

(m)
t ;Bg,2)u

(m)
t −∇yf

(m)(x
(m)
t , y

(m)
t ;Bf,2)

))
(7)
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where cω, cν and cu are constants, αt is the learning rate. Then we update the x
(m)
t , y(m)

t and u
(m)
t

as follows:
ŷ
(m)
t+1 = y

(m)
t − γαtω

(m)
t , x̂

(m)
t+1 = x

(m)
t − ηαtν

(m)
t , û

(m)
t+1 = Pr(u

(m)
t − ταtq

(m)
t ) (8)

where γ, η, τ are constants and αt is the learning rate. The FedBiOAcc algorithm following Eq. (8)
is summarized in Algorithm 1. As shown in line 6 and 12 of Algorithm 1, Every I iterations, we
average both variables and the momentum.

3.3 Convergence Analysis

In this section, we study the convergence property for the FedBiOAcc algorithm. For any t ∈ [T ], we
define the following virtual sequence:

x̄t =
1

M

M∑
m=1

x
(m)
t , ȳt =

1

M

M∑
m=1

y
(m)
t , ūt =

1

M

M∑
m=1

u
(m)
t

we denote the average of the momentum similarly as ω̄t, ν̄t and q̄t. Then we consider the following
Lyapunov function Gt:

Gt = h(x̄t) +
18ηL̃2

µγ
(∥ȳt − yx̄t

∥2 + ∥ūt − ux̄t
∥2) + 9bMη

64αt
∥ω̄t −

1

M

M∑
m=1

∇yg
(m)(x

(m)
t , y

(m)
t )∥2

+
9bMη

64αt
∥q̄t −

1

M

M∑
m=1

(∇y2g(m)(x
(m)
t , y

(m)
t )u

(m)
t −∇yf

(m)(x
(m)
t , y

(m)
t )))∥2

+
9bMη

64αt
∥ν̄t −

1

M

M∑
m=1

(∇xf
(m)(x

(m)
t , y

(m)
t )−∇xyg

(m)(x
(m)
t , y

(m)
t )u

(m)
t )∥2 (9)

where yx̄t denotes the solution of the lower level problem g(x̄t, ·), ux̄t = [∇y2g(x̄, yx̄)]
−1∇yf(x̄, yx̄)

denotes the solution of Eq (4) at state x̄t. Besides, γ, η, τ are learning rates and L, L̃ are constants.
Note that the first three terms of Gt: h(x̄t), ∥ȳt − yx̄t

∥2, ∥ūt − ux̄t
∥2 measures the errors of

three federated problems: the upper level problem, the lower level problem and the hyper-gradient
estimation. Then the last three terms measure the estimation error of the momentum variables: ω̄t, ν̄t
and q̄t. The convergence proof primarily concentrates on bounding these errors, please see Lemma
C.2 - C.6 in the Appendix for more details. Meanwhile, as in the single level federated optimization
problems, local updates lead to client-drift error. More specifically, we need to bound ∥x(m)

t − x̄t∥2,
∥y(m)

t − ȳt∥2 and ∥u(m)
t − ūt∥2, please see Lemma C.7 - C.11 for more details. Finally, we have the

following convergence theorem:
Theorem 3.6. Suppose in Algorithm 1, we choose learning rate αt =

δ
(u+t)1/3

, t ∈ [T ], for some
constant δ and u, and let cν , cω, cu choose some value, η, γ and τ , r be some small values decided
by the Lipschitz constants of h(x), we choose the minibatch size to be bx = by = b and the first batch
to be b1 = O(Ib), then we have:

1

T

T−1∑
t=1

E
[
∥∇h(x̄t)∥2

]
= O

(
κ19/3I

T
+

κ16/3

(bMT )2/3

)
To reach an ϵ-stationary point, we need T = O(κ8(bM)−1ϵ−1.5), I = O(κ5/3(bM)−1ϵ−0.5).

As stated in the Theorem, to reach an ϵ-stationary point, we need T = O(κ8(bM)−1ϵ−1.5), then
the sample complexity for each client is Gc(f, ϵ) = O(M−1κ8ϵ−1.5), Gc(g, ϵ) = O(M−1κ8ϵ−1.5),
Jv(g, ϵ) = O(M−1κ8ϵ−1.5), Hv(g, ϵ) = O(M−1κ8ϵ−1.5). So FedBiOAcc achieves the linear
speed up w.r.t. to the number of clients M . Next, suppose we choose I = O(κ5/3(bM)−1ϵ−0.5), then
the number of communication round E = O(κ19/3ϵ−1). This matches the optimal communication
complexity of the single level optimization problems as in the STEM [27]. Furthermore, compared
to FedNest and its variants, FedBiOAcc has improved both the communication complexity and the
iteration complexity. As for LocalBSCVR [12], FedBiOAcc obtains same rate, but incorporates the
heterogeneous case. Note that it is much more challenging to analyze the heterogeneous case. In
fact, if we assume homogeneous clients, we have local hyper-gradient (Eq. (3)) equals the global
hyper-gradient (Eq. (2)), then we do not need to use the quadratic federated optimization problem
view in Section 3.2, while the theoretical analysis is also simplified significantly.
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4 Federated Bilevel Optimization with Local Lower Level Problems

In this section, we consider an alternative formulation of the Federated Bilevel Optimization problems
as follows:

min
x∈Rp

h(x) :=
1

M

M∑
m=1

f (m)(x, y(m)
x ), s.t. y(m)

x = argmin
y∈Rd

g(m)(x, y) (10)

Same as Eq. (1), Eq. (10) has a federated upper level problem, however, Eq. (10) has a unique lower
level problem for each client, which is different from Eq. (1). In fact, federated bilevel optimization
problem Eq (10) can be viewed as a special type of standard federated learning problems. If we
denote h(m)(x) = f (m)(x, y

(m)
x ), then Eq. (10) can be written as min

x∈Rp
h(x) := 1

M

∑M
m=1 h

(m)(x).

But due to the bilevel structure of h(m)(x), Eq. (10) is more challenging than the standard Federated
Learning problems.

Hyper-gradient Estimation. Assume Assumption 3.1∼Assumption 3.3 hold, then the hyper-gradient
is Φ(x, yx) = 1

M

∑M
m=1 Φ

(m)(x, yx), where Φ(m)(x, y) is defined in Eq. (3), in other words, the
local hyper-gradient Φ(m)(x, y) is an unbiased estimate of the full hyper-gradient. This fact makes it
possible to solve Eq. (10) with local-sgd like methods. More specifically, we solve the local bilevel
problem h(m)(x) multiple steps on each client and then the server averages the local states from
clients. Please refer to Algorithm 3 and the variance-reduction acceleration Algorithm 4 in the
Appendix. For ease of reference, we name them FedBiO-Local and FedBiOAcc-Local, respectively.

Several challenges exist in analyzing FedBiO-Local and FedBiOAcc-Local. First, Eq. (3) involves
Hessian inverse, so we only evaluate it approximately through the Neumann series [37] as:

Φ(m)(x, y; ξx) = ∇xf
(m)(x, y; ξf )− τ∇xyg

(m)(x, y; ξg)

×
Q−1∑
q=−1

Q∏
j=Q−q

(I − τ∇y2g(m)(x, y; ξj))∇yf
(m)(x, y; ξf ) (11)

where ξx = {ξj(j = 1, . . . , Q), ξf , ξg}, and we assume its elements are mutually independent.
Φ(m)(x, y; ξx) is a biased estimate of Φ(m)(x, y), but with bounded bias and variance (Please see
Proposition D.2 for more details.) Furthermore, to reduce the computation cost, each client solves the
local lower level problem approximately and we update the upper and lower level variable alternatively.
The idea of alternative update is widely used in the non-distributed bilevel optimization [23, 56].
However, in the federated setting, client variables drift away when performing multiple local steps.
As a result, the variable drift error and the bias caused by inexact solution of the lower level problem
intertwined with each other. For example, in the local update, clients optimize the lower level variable
y(m) towards the minimizer y(m)

x(m) , but after the communication step, x(m) is smoothed among clients,

as a result, the target of y(m)
t changes which causes a huge bias.

In the appendix, we show the FedBiOAcc-Local algorithm achieves the same optimal convergence
rate as FedBiOAcc, which has iteration complexity O(ϵ−1.5) and communication complexity O(ϵ−1).
However, since the lower level problem in Eq. (10) is unique for each client, FedBiOAcc-Local does
not have the property of linear speed-up w.r.t the number of clients as FedBiOAcc does.

5 Numerical Experiments

In this section, we assess the performance of the proposed FedBiOAcc algorithm through two
federated bilevel tasks: Federated Data Cleaning and Federated Hyper-representation Learning. The
Federated Data Cleaning task involves global lower level problems, while the Hyper-representation
Learning task involves local lower level problems. The implementation is carried out using PyTorch,
and the Federated Learning environment is simulated using the PyTorch.Distributed package. Our
experiments were conducted on servers equipped with an AMD EPYC 7763 64-core CPU and 8
NVIDIA V100 GPUs.
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Figure 1: Validation Error vs Communication Rounds. From Left to Right: ρ = 0.1, 0.4, 0.8, 0.95.
The local step I is set as 5 for FedBiO, FedBiOAcc and FedAvg.

Figure 2: Validation Error vs Communication Rounds with different number of clients per epoch.
From Left to Right: ρ = 0.1, 0.4, 0.8, 0.95. The local step I is set as 5.

5.1 Federated Data Cleaning

In this section, we consider the Federated Data Cleaning task. In this task, we are given a noisy
training dataset whose labels are corrupted by noise and a clean validation set. Then we aim to
find weights for training samples such that a model that is learned over the weighted training set
performs well on the validation set. This is a federated bilevel problem when the noisy training set is
distributed over multiple clients. The formulation of the task is included in Appendix B.1. This task
is a specialization of Eq. (1).

Dataset and Baselines. We create 10 clients and construct datasets based on MNIST [31]. For
the training set, each client randomly samples 4500 images (no overlap among clients) from 10
classes and then randomly uniformly perturb the labels of ρ (0 ≤ ρ ≤ 1) percent samples. For
the validation set, each client randomly selects 50 clean images from a different class. In other
words, the mth client only has validation samples from the mth class. This single-class validation
setting introduces a high level of heterogeneity, such that individual clients are unable to conduct
local cleaning due to they only have clean samples from one class. In our experiments, we test our
FedBiOAcc algorithm, including the FedBiO algorithm (Algorithm 2 in Appendix) which does not
use variance reduction; additionally, we also consider some baseline methods: a baseline that directly
performs FedAvg [40] on the noisy dataset, this helps to verify the usefulness of data cleaning;
Local-BSGVR [12], FedNest [49], CommFedBiO [33], AggITD [53] and FedMBO [21]. Note that
Local-BSGVR is designed for the homogeneous setting, and the last four baselines all need multiple
rounds of client-server communication to evaluate the hyper-gradient at each global epoch. We
perform grid search to find the best hyper-parameters for each method and report the best results.
Specific choices are included in Appendix B.1.

In figure 1, we compare the performance of different methods at various noise levels ρ. Note that
the larger the ρ value, the more noisy the training data are. The noise level can be illustrated by
the performance of the FedAvg algorithm, which learns over the noisy data directly. As shown in
the figure, FedAvg learns almost nothing when ρ = 0.95. Next, our algorithms are robust under
various heterogeneity levels. When the noise level in the training set increases as the value of ρ
increases, learning relies more on the signal from the heterogeneous validation set, and our algorithms
consistently outperform other baselines. Finally, in figure 2, we vary the number of clients sampled
per epoch, and the experimental results show that our FedBiOAcc converges faster with more clients
in the training per epoch; in figure 3, we vary the number of local steps under different noisy levels.
Interestingly, the algorithm benefit more from the local training under larger noise.

8



Figure 3: Validation Error vs Communication Rounds with different number of local steps I . From
Left to Right: ρ = 0.1, 0.4, 0.8, 0.95.

Figure 4: Validation Error vs Communication Rounds. The top row shows the result for the Omniglot
Dataset and the bottom row shows MiniImageNet. From Left to Right: 5-way-1-shot, 5-way-5-shot,
20-way-1-shot, 20-way-5-shot. The local step I is set to 5.

5.2 Federated Hyper-Representation Learning

In the Hyper-representation learning task, we learn a hyper-representation of the data such that a linear
classifier can be learned quickly with a small number of data samples. A mathematical formulation
of the task is included in Appendix B.2. Note that this task is an instantiation of Eq. (10), due to
the fact that each client has its own tasks, and thus only the upper level problem is federated. We
consider the Omniglot [29] and MiniImageNet [44] data sets. As in the non-distributed setting, we
perform N -way-K-shot classification.

In this experiment, we compare FedBiOAcc-Local (Algorithm 4 in the Appendix) with three baselines
FedBiO-Local (Algorithm 3 in the Appendix), DistBiO and DistBiOAcc. Note that DistBiO and
DistBiOAcc are the distributed version of FedBiO-Local and FedBiOAcc-Local, respectively. In the
experiments, we implement DistBiO and DistBiOAcc by setting the local steps as 1 for FedBiO-Local
and FedBiOAcc-Local. We perform grid search for the hyper-parameter selection for both methods
and choose the best ones, the specific choices of hyper-parameters are deferred to Appendix B.2. The
results are summarized in Figure 4 (full results are included in Figure 5 and Figure 6 of Appendix.
As shown by the results, FedBiOAcc converges faster than the baselines on both datasets and on all
four types of classification tasks, which demonstrates the effectiveness of variance reduction and
multiple steps of local training.

6 Conclusion

In this paper, we study the Federated Bilevel Optimization problems and introduce FedBiOAcc. In
particular, FedBiOAcc evaluates the hyper-gradient by solving a federated quadratic problem, and
mitigates the noise through momentum-based variance reduction technique. We provide a rigorous
convergence analysis for our proposed method and show that FedBiOAcc has the optimal iteration
complexity O(ϵ−1.5) and communication complexity O(ϵ−1), and it also achieves linear speed-up
w.r.t the number of clients. Besides, we study a type of novel Federated Bilevel Optimization
problems with local lower level problems. We modify FedBiO for this type of problems and propose
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FedBiOAcc-Local. FedBiOAcc-Local achieves the same optimal convergence rate as FedBiOAcc.
Finally, we validate our algorithms with real-world tasks.
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