Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

*Jean Barbier, TianQi Hou, Marco Mondelli, Manuel Saenz*

We consider the problem of estimating a rank-$1$ signal corrupted by structured rotationally invariant noise, and address the following question: \emph{how well do inference algorithms perform when the noise statistics is unknown and hence Gaussian noise is assumed?} While the matched Bayes-optimal setting with unstructured noise is well understood, the analysis of this mismatched problem is only at its premises. In this paper, we make a step towards understanding the effect of the strong source of mismatch which is the noise statistics. Our main technical contribution is the rigorous analysis of a Bayes estimator and of an approximate message passing (AMP) algorithm, both of which incorrectly assume a Gaussian setup. The first result exploits the theory of spherical integrals and of low-rank matrix perturbations; the idea behind the second one is to design and analyze an artificial AMP which, by taking advantage of the flexibility in the denoisers, is able to "correct" the mismatch. Armed with these sharp asymptotic characterizations, we unveil a rich and often unexpected phenomenology. For example, despite AMP is in principle designed to efficiently compute the Bayes estimator, the former is \emph{outperformed} by the latter in terms of mean-square error. We show that this performance gap is due to an incorrect estimation of the signal norm. In fact, when the SNR is large enough, the overlaps of the AMP and the Bayes estimator coincide, and they even match those of optimal estimators taking into account the structure of the noise.

Do not remove: This comment is monitored to verify that the site is working properly