Parameter-free Regret in High Probability with Heavy Tails

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental


Jiujia Zhang, Ashok Cutkosky


We present new algorithms for online convex optimization over unbounded domains that obtain parameter-free regret in high-probability given access only to potentially heavy-tailed subgradient estimates. Previous work in unbounded domains con- siders only in-expectation results for sub-exponential subgradients. Unlike in the bounded domain case, we cannot rely on straight-forward martingale concentration due to exponentially large iterates produced by the algorithm. We develop new regularization techniques to overcome these problems. Overall, with probability at most δ, for all comparators u our algorithm achieves regret O ̃(∥u∥T 1/p log(1/δ)) for subgradients with bounded pth moments for some p ∈ (1, 2].