Fast Distance Oracles for Any Symmetric Norm

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental


Yichuan Deng, Zhao Song, OMRI WEINSTEIN, Ruizhe Zhang


In the \emph{Distance Oracle} problem, the goal is to preprocess $n$ vectors $x_1, x_2, \cdots, x_n$ in a $d$-dimensional normed space $(\mathbb{X}^d, \| \cdot \|_l)$ into a cheap data structure, so that given a query vector $q \in \mathbb{X}^d$, all distances $\| q - x_i \|_l$ to the data points $\{x_i\}_{i\in [n]}$ can be quickly approximated (faster than the trivial $\sim nd$ query time). This primitive is a basic subroutine in machine learning, data mining and similarity search applications. In the case of $\ell_p$ norms, the problem is well understood, and optimal data structures are known for most values of $p$. Our main contribution is a fast $(1\pm \varepsilon)$ distance oracle for \emph{any symmetric} norm $\|\cdot\|_l$. This class includes $\ell_p$ norms and Orlicz norms as special cases, as well as other norms used in practice, e.g. top-$k$ norms, max-mixture and sum-mixture of $\ell_p$ norms, small-support norms and the box-norm. We propose a novel data structure with $\tilde{O}(n (d + \mathrm{mmc}(l)^2 ) )$ preprocessing time and space, and $t_q = \tilde{O}(d + n \cdot \mathrm{mmc}(l)^2)$ query time, where $\mathrm{mmc}(l)$ is a complexity-measure (modulus) of the symmetric norm under consideration. When $l = \ell_{p}$ , this runtime matches the aforementioned state-of-art oracles.