Few-shot Relational Reasoning via Connection Subgraph Pretraining

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental


Qian Huang, Hongyu Ren, Jure Leskovec


Few-shot knowledge graph (KG) completion task aims to perform inductive reasoning over the KG: given only a few support triplets of a new relation $\bowtie$ (e.g., (chop,$\bowtie$,kitchen), (read,$\bowtie$,library), the goal is to predict the query triplets of the same unseen relation $\bowtie$, e.g., (sleep,$\bowtie$,?). Current approaches cast the problem in a meta-learning framework, where the model needs to be first jointly trained over many training few-shot tasks, each being defined by its own relation, so that learning/prediction on the target few-shot task can be effective. However, in real-world KGs, curating many training tasks is a challenging ad hoc process. Here we propose Connection Subgraph Reasoner (CSR), which can make predictions for the target few-shot task directly without the need for pre-training on the human curated set of training tasks. The key to CSR is that we explicitly model a shared connection subgraph between support and query triplets, as inspired by the principle of eliminative induction. To adapt to specific KG, we design a corresponding self-supervised pretraining scheme with the objective of reconstructing automatically sampled connection subgraphs. Our pretrained model can then be directly applied to target few-shot tasks on without the need for training few-shot tasks. Extensive experiments on real KGs, including NELL, FB15K-237, and ConceptNet, demonstrate the effectiveness of our framework: we show that even a learning-free implementation of CSR can already perform competitively to existing methods on target few-shot tasks; with pretraining, CSR can achieve significant gains of up to 52% on the more challenging inductive few-shot tasks where the entities are also unseen during (pre)training.