Riemannian Score-Based Generative Modelling

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental


Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, Arnaud Doucet


Score-based generative models (SGMs) are a powerful class of generative models that exhibit remarkable empirical performance.Score-based generative modelling (SGM) consists of a noising'' stage, whereby a diffusion is used to gradually add Gaussian noise to data, and a generative model, which entails adenoising'' process defined by approximating the time-reversal of the diffusion. Existing SGMs assume that data is supported on a Euclidean space, i.e. a manifold with flat geometry. In many domains such as robotics, geoscience or protein modelling, data is often naturally described by distributions living on Riemannian manifolds and current SGM techniques are not appropriate. We introduce here \emph{Riemannian Score-based Generative Models} (RSGMs), a class of generative models extending SGMs to Riemannian manifolds. We demonstrate our approach on a variety of compact manifolds, and in particular with earth and climate science spherical data.