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Abstract

Despite recent advances in automated machine learning, model selection is still
a complex and computationally intensive process. For Gaussian processes (GPs),
selecting the kernel is a crucial task, often done manually by the expert. Addition-
ally, evaluating the model selection criteria for Gaussian processes typically scales
cubically in the sample size, rendering kernel search particularly computationally
expensive. We propose a novel, efficient search method through a general, struc-
tured kernel space. Previous methods solved this task via Bayesian optimization
and relied on measuring the distance between GP’s directly in function space
to construct a kernel-kernel. We present an alternative approach by defining a
kernel-kernel over the symbolic representation of the statistical hypothesis that is
associated with a kernel. We empirically show that this leads to a computationally
more efficient way of searching through a discrete kernel space.

1 Introduction

In many real-work applications of machine learning, tuning the hyperparameters or selecting the
machine learning method itself is a crucial part of the workflow. It is often done by experts and
data-scientist. However, the number of possible methods and models is constantly growing, and
it is becoming increasingly important to automatically select the right model for the task at hand.
Bayesian optimization (BO) is a prominent method that can be used for model selection and hyperpa-
rameter tuning. It can handle black-box oracles with expensive function evaluations, which are two
characteristics often encountered when doing model selection [17]. Important applications in this
context are choosing the hyperparameters in the training process of deep neural networks (DNN) [17],
or dealing with discrete and structured problems like choosing the architecture of DNN’s [5, 11].

Gaussian processes (GP) are another important model-class. They are often utilized as surrogate
models in BO [17], for time-series and statistical modeling [7, 3] or in active learning loops [23, 15].
The properties of GP’s are mainly governed by its kernel that specifies the assumptions made on the
underlying function. Choosing the right kernel is therefore a crucial part of applying GP’s and is
often done by the expert. Recent work [9] treated the kernel selection as a black-box optimization
problem and used Bayesian optimization to solve it. This allowed searching over a highly structured,
discrete space of kernels. However, their proposed kernel-kernel measures the distance between
two GP’s directly in function space, which is a computationally expensive task itself. This makes
the method difficult to apply for the frequent scenarios where the evaluation of the model selection
criteria requires only a medium amount of time.

We propose measuring the distance between two kernels via their symbolical representation of their
associated statistical hypothesis. We utilize the highly general kernel-grammar, presented in [3], as
underlying kernel space, where each kernel is build from base kernels and operators, like e.g.

LIN + ((SE× PER) + SE)
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forming effectively a description of the statistical hypothesis that is modeled by the GP. Our main idea
is to build a distance over these symbolical descriptions, rather than measuring the distance between
two GP’s directly in function space. We employ optimal transport principles, known from neural-
architecture search (see [11],[5]), to build a pseudo-distance between two hypotheses descriptions
and use it to construct a kernel-kernel, which is subsequently utilized in the BO loop. We will show
that the induced kernel search method is more efficient, in terms of number of function evaluations
and computational time, compared to alternative kernel search methods over discrete search spaces.

The main challenge we encountered is the quantification of dissimilarity between two symbolical
representations of kernels. We use the tree representation of each symbolical description and apply
optimal transport distances over tree features. Subsequently, we empirically show that the deduced
GP over GP’s provides a well-behaved meta-model and show its advantages for kernel search. In
summary, our contributions are:

1. We construct a pseudo-distance over GP’s that acts over the symbolical representations of
the underlying statistical hypothesis.

2. We use the pseudo-distance to construct a novel "kernel-kernel" and build it in a BO loop to
do model selection for GP’s.

3. We empirically show that our meta-GP model is well-behaved and that we outperform
previous methods in kernel search over discrete kernel spaces.

Related Work: There is considerable existing work on constructing flexible kernels and learning
their hyperparameters [1, 20, 21, 18, 22]. In these kinds of works, the structural form of the kernel
is predefined and the free parameters of the kernel are optimized, often via marginal likelihood
maximization. While being able to efficiently finding the hyperparameter due to the differentiability
of the marginal likelihood, one still needs to predefine the structural form of the kernel in the first
place. This is a hard task as one need to decide if long-range correlation or nonstationarity should
be considered or if dimensions are ignored or not. Our method is build to automatically select
the structure of the kernel. Some of the mentioned methods [20, 21] are able to approximate any
stationary kernel via Bochner’s Theorem and therefore consider a broad kernel space themselves.
However, even elementary statistical hypotheses require nonstationary kernels, such as linear trends
modeled by the linear kernel. Our search space is not restricted to stationary kernels.

We consider a highly general, discrete kernel space that is induced by the kernel grammar [3]. Recent
work [9] used BO to search through this space via a kernel that measures similarity in function space.
We also utilize BO but employ a fundamentally different principle of measuring the distance, which is
computationally more efficient. We dedicate Section 3.2 to a more precise comparison to the method
of [9]. Additionally, the original kernel grammar paper [3] suggested greedy search for searching
through the kernel grammar. Furthermore, [4] employed a genetic algorithm based on cross-over
mutations. We empirically compare against all approaches.

In the area of BO over structured spaces, our method is most similar to the neural-architecture search
(NAS) procedures presented in [11, 5] who use optimal transport distances over features extracted
from the graph-representation of neural networks. Compared to these methods we use OT principles
to do model selection for GP’s which is a fundamentally different task.

2 Background and Set-up

Our main task is efficient model selection for Gaussian processes. In order to provide background
information, we give a small introduction to GP’s and model selection for GP’s. Subsequently, we
present a review of the kernel-grammar [3] and show how we use it for our approach. We show how
a kernel can be represented via a symbolical description. In Section 3, we will present how we use
the symbolical description to construct a kernel over kernels and how we use it in the BO loop.

2.1 Gaussian Processes

A Gaussian process is a distribution over functions f : X → R over a given input space X which is
fully characterized via the covariance/kernel function k(x, x′) = Cov(f(x), f(x′)) and the mean
function µ(x) := E[f(x)]. We therefore can write as shorthand notation f ∼ GP(µ(·), k(·, ·)). The
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kernel can be interpreted as a similarity measure between two elements of the input space, with
the GP assigning higher correlations to function values whose inputs are more similar according to
the kernel. Furthermore, the kernel governs the main assumptions on the modeled function such as
smoothness, periodicity or long-range correlations and therefore provides the inductive-bias of the
GP. An important property of GP’s is that they are not restricted to euclidean input spaces X ⊂ Rd,
but can also be defined on highly structured spaces like trees and graphs, a property we will later use
to define a GP over GP’s.

While our method might also be used for model selection in classification, we consider from now on
Gaussian processes regression. For regression, a dataset D = (X,y) with X = {x1, . . . , xN} ⊂ X
and y = (y1, . . . , yN )ᵀ ∈ RN is given, where we suppose that f ∼ GP(µ(·), k(·, ·)) and yi =

f(xi) + εi with εi
i.i.d∼ N (0, σ2). Given the observed data D the posterior distribution f |D is again a

GP with mean and covariance functions

µD(x) = µ(x) + k(x)ᵀ(K + σ2I)−1(y − µ(X)),

kD(x, y) = k(x, y)− k(x)ᵀ(K + σ2I)−1k(y)

with K = [k(xm, xl)]
N
m,l=1 and k(x) = [k(x, x1), . . . , k(x, xN )]ᵀ (see [13]). Probabilistic predic-

tions can be done via the resulting predictive distribution p(f∗|x∗,D) = N (µD(x∗), kD(x∗, x∗)).

2.2 Model selection for GP’s

Typically, the kernel kθ comes with a set of parameters θ that can be learned via maximization of
the marginal likelihood p(y|X, θ, σ2) = N (y;µ(X), kθ(X,X) + σ2I) or via maximum a posteriori
(MAP) estimation, in case the parameters θ are equipped with a prior p(θ). This procedure is
sometimes also called model selection, as one selects the hyperparameters of the kernel given the data
(see [13]). However, we consider selecting the structural form of the kernel itself. The structural form
of the kernel determines the statistical hypothesis that is assumed to be true for the data-generating
process. Intuitively, the kernel is similar to the architecture in deep neural networks, which induces
an inductive bias.

Our goal is to do model selection over a discrete, possibly infinite space of kernels K := {k1, k2, . . . }.
As each kernel comes with its own parameters, we are actually dealing with a space of kernel families.
Thus, when mentioning a kernel k we associate it with its whole family over parameters {kθ|θ ∈ Θ}.
Once a kernel is selected, predictions are done with learned kernel parameters (that usually are a
by-product of calculating the model selection criteria). The parameters θ are potentially equipped
with a prior p(θ) depending on the selection criteria. As mean function, we always utilize the zero
mean function µ(x) := 0 in case y is centered and a constant mean function otherwise. This is a
common choice in GP regression. Given some model selection criteria g : K→ R our task is solving
k∗ = arg maxk∈K g(k|D). While our method is not restricted to a specific model selection criteria,
we focus on the model evidence p(y|X, k), which is a well-known selection criteria for probabilistic
models (see [9, 14, 8]). Given a prior on the kernel parameters p(θ) and the likelihood variance p(σ2),
the log-model evidence of the marginalized GP is given as

g(k|D) = log p(y|X, k) = log

∫
p(y|X, θ, σ2, k)p(σ2)p(θ|k)dθdσ2.

This quantity can be approximated via Laplace approximation of p(θ, σ2|D) (see Appendix A
for details). Computing this approximation includes performing a MAP estimation of the GP
parameters. Thus, once the log evidence has been computed, learned kernel hyperparameters θMAP

are automatically provided. Performing the MAP estimation scales cubically in the data set size N ,
which renders model selection for GP’s computationally intense.

2.3 Kernel Grammar

The kernel grammar introduced by [3] specifies a highly general search space over kernels. The
grammar is based on the observation that kernels are closed under addition and multiplication,
meaning, for kernels k1(x, x′) and k2(x, x′) also k1(x, x′) + k2(x, x′) and k1(x, x′)× k2(x, x′) are
kernels. Given some base kernels, such as the squared exponential kernel SE, the linear kernel LIN,
the periodic kernel PER or the rational quadratic kernel RQ, different statistical hypotheses can be
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generated via addition and multiplication. For example,
LIN + PER× SE

describes a linear trend with a locally periodic component, such that it might be a useful hypoth-
esis for time-series applications. For multidimensional data the base kernels are applied to single
dimensions, denoted e.g. with SEi for the squared exponential kernel defined on dimension i. The
grammar contains many popular hypotheses such as the ARD-RBF kernel that can be expressed via
multiplication over the dimensions

∏d
i=1 SEi as well as additive models

∑d
i=1 SEi or polynomials

of order m with
∏m
j=1 LIN.

The specification of the complete search space is given as a grammar, where a base kernel is denoted
as B and a subexpression is denoted with S . For example, in the expression LIN + (PER× SE) the
expression PER× SE is a subexpression. Starting with all base kernels, the search space is defined as
all kernels that can be reached via the following operations:

1. Add a base kernel to a subexpression: S → S + B
2. Multiply a subexpression with a base kernel: S → S × B
3. Exchange a base kernel with another base kernel: B → B′

Starting from the set of base kernels, these operations can lead to all algebraic expressions, showing
the expressiveness of the grammar [3]. The authors of [3] suggest using greedy search to search
through the grammar, where the kernel with the highest value for the selection criteria is selected and
expanded with all possible operations. After the selection criteria is calculated on the neighbors, the
search progresses to the next stage by expanding the neighbors of the best kernel found.

We consider a generalized notion of the kernel grammar, where we consider a set of base kernels
{B1, . . . ,Br}, r ∈ N and a set of operators {T1, . . . , Tl}, l ∈ N where Tj : K×K → K, j = 1, . . . , l
are closed operators on the space of all kernel functions K. Examples are addition and multiplication,
but also the change-point operator which was considered in [7]. Thus, in general the grammar
operations are

1. Apply operator Tj onto a subexpression and a base kernel1: S → Tj(S,B)

2. Exchange a base kernel with another base kernel: B → B′

The considered kernel space can be defined precisely in the following way:

Definition 1 For r, l ∈ N, let {k1, . . . , kr} be a set of (base-) kernels (symbollically represented as
{B1, . . . ,Br}) and {T1, . . . , Tl} a set of operators with Tj : K ×K → K, j = 1, . . . , l. Let

L0 := {k1, . . . , kr}
Li := {Tj(k1, k2) | k1, k2 ∈ Li−1, j = 1, . . . , l} ∪ Li−1

for i = 1, . . . ,M . We call K̃ := LM the kernel-grammar generated kernel space with depth M .

2.4 Representation of Kernels

The base kernels and their combination via the operators describe the structural assumptions of the
final kernel and imply the assumptions that are made in function space. Our main hypothesis is that
the symbolical representation of the kernel, given by the subexpressions S and base kernels, already
contains sufficient information for model selection. Therefore, we will define a kernel-kernel over the
symbolical representations and utilize it for Bayesian optimization. Concretely, each kernel k ∈ K̃ in
our described space can be written as a tree T , for example:

LIN + ((SE + PER)× SE) ←→

ADD

LIN MULT

ADD

SE PER

SE

1In case the operator Tj is not symmetric we also add the operation S → Tj(B,S). However, all operators
considered in this work are symmetric.
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Each operator Tj and each base kernel Bi is represented by their respective name, where operators
are the nodes of the tree and base kernels are the leafs. The way how the operators and base kernels
are connected is represented through the tree structure. For a given expression tree T , we denote the
multiset of all subexpressions/subtrees as Subtrees(T ). Furthermore, we consider paths to the leafs
of the tree, for example, for the tree above one path to a leaf would be:

ADD −→MULT −→ ADD −→ PER

We denote the multiset of all paths in the tree T as Paths(T ). Lastly, we also consider the multiset
of all base kernels that exist in a given expression tree as Base(T ). For each described multiset, we
denote the number of occurrences of element E in the multiset as n(E). When building the multisets
we also account for two symmetries in the elements that can be applied if an operator is associative
and commutative, which we elaborate further in Appendix A.

Depending on the operators that are used, several trees can describe the same kernel k ∈ K̃. For
technical reasons, we denote with f : K̃ 7→ T (K̃) a mapping that maps a given kernel k ∈ K̃ to one
tree T that induces this kernel, where T (K̃) denotes the set of all expression trees that can generate a
kernel in K̃ (see details in Appendix A).

3 Kernel-Kernel

Our kernel-kernel will be defined via a pseudo-metric over the expression trees. Optimal transport
(OT) principles have proven themselves to be effective in BO methods over structured spaces, as
shown in [5] and [11] for neural architecture search or in [6] for BO over molecule structures. We
follow this line of work and also rely on optimal transport, although we only use a simple ground
metric to allow for closed-form computations. To allow OT metrics to be used, we summarize each
expression tree T to discrete probability distributions of their building blocks Base(T ), Paths(T )
and Subtrees(T ) via

ωbase :=
∑

E∈Base(T )

ωEδE , ωpaths :=
∑

E∈Paths(T )

ωEδE , ωsubtrees :=
∑

E∈Subtree(T )

ωEδE ,

where δE is the Dirac delta and ωE is the frequency of the element E in the respective multiset. For
example, the frequency of expression SE× PER in the multiset Subtree(T ) is calculated as

ωSE×PER =
n(SE× PER)

|Subtree(T )|
.

Each probability distribution represents a different modeling aspect that is induced by a kernel k ∈ K̃
and its corresponding expression tree T :

1. ωbase specifies which base kernels are present in T , thus, which base assumptions in function
space are included such as periodicity, linearity, local smoothness.

2. ωpaths specifies how the base kernels in T are used, e.g. whether a periodic component is
applied additively or multiplicatively.

3. ωsubtrees specifies the interaction between the base kernels in T , for example if T contains
an addition of a linear and a periodic component or not.

Our pseudo-metric between kernels k1 and k2 (and its associated trees T1 and T2) uses all three
modeling aspects via the optimal transport distances between the respective discrete probability
distributions ωbase, ωpaths and ωsubtrees.

In general the OT distance with ground metric d̃ between two discrete probability distribution
ω1 =

∑
E∈Ω ω1,EδE and ω2 =

∑
E∈Ω ω2,EδE over Ω is defined as

Wd̃(ω1, ω2) = infπ∈R(ω1,ω2)

∫
Ω×Ω

d̃(E , E ′)π(dE , dE ′), (1)

where π ∈ R(ω1, ω2) is a combined probability distribution over Ω× Ω with marginal distribution
π(A× Ω) = ω1(A) and π(Ω×B) = ω2(B) for Borel sets A,B. While for general ground metric
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d̃ : Ω× Ω→ R the optimization problem in (1) can not be solved in closed-form we use as ground
metric d̃(E , E ′) = 1E6=E′ which has as closed-form solution the total variation distance between ω1

and ω2 (see [19], p. 22), i.e.

Wd̃(ω1, ω2) =
1

2

∑
E∈Ω

|ω1,E − ω2,E |.

Utilizing this distance over the modeling assumptions ωbase, ωpaths and ωsubtrees allows for fast
computation of the final pseudo-metric and for a proper positive semi definite (p.s.d) kernel-kernel in
the end [see Appendix C]. This is not guarantueed for general OT distances (see [11]). We define the
final distance between two kernels k1 and k2 (and its associated trees T1 and T2) as a sum over the
OT distances of their respective modeling components

d(T1, T2) :=α1Wd̃(ω1,base, ω2,base)

+α2Wd̃(ω1,paths, ω2,paths)

+α3Wd̃(ω1,subtrees, ω2,subtrees),

(2)

where αi ≥ 0 and
∑
i αi = 1 are weighting parameters that will later be learned automatically via

marginal likelihood maximization for GPs.

In case the kernel grammar contains base kernels that act on single dimensions such as SEi, we define
for each dimension i = 1, . . . , D an individual distribution over base kernels

ω
(i)
base :=

∑
E∈Base(T ,i)

ωEδE ,

where Base(T , i) is the multiset of all base kernels in T defined on dimension i. We also include
the empty-expression ENULL for which ωENULL

= 1 whenever no base kernel of dimension i is
contained in T . ω(i)

base thus summarizes which base kernels are present that act on dimension i or if
the dimension is ignored. The distance in this case is defined as

d(T1, T2) :=α1

D∑
i=1

Wd̃(ω
(i)
1,base, ω

(i)
2,base)

+α2Wd̃(ω1,paths, ω2,paths)

+α3Wd̃(ω1,subtrees, ω2,subtrees).

(3)

The reason for this distinction is that two kernels k1 and k2, which have different active dimensions,
are considered to be farther apart with this distance, making it easier to allow variable selection,
which is an important aspect of model selection.

Our defined function d(T1, T2) induces indeed a pseudo-metric in the kernel-grammar generated
kernel space, as shown in the following proposition. In particular, it fulfills the triangle inequality.

Proposition 1 Let K̃ be the kernel space generated by a kernel grammar. Let f : K̃ 7→ T (K̃) be a
mapping that maps a kernel k ∈ K̃ to one of its expression trees T . Then d̂(k1, k2) := d(f(k1), f(k2))

is a pseudo-metric on K̃ where d is given by (2) or (3) depending on the base kernels in K̃.

Given the pseudo-metric, we are now able to define a kernel-kernel with

KSOT (k1, k2) := σ2exp

(
−d̂(k1, k2)

l2

)
, (4)

which we call Symbolical-Optimal-Transport (SOT) kernel-kernel. Here, l denotes the lengthscale and
σ2 the variance of the kernel-kernel. Both parameters are learned in combination with the distance
weights via marginal likelihood maximization (see Appendix A).

3.1 Bayesian Optimization for Model Selection

We utilize the proposed kernel-kernel to do model selection for GP’s via Bayesian optimization,
which is a similar task to [9]. Compared to [9], we use our proposed kernel-kernel, which is a
fundamentally different and computationally more efficient way of measuring similarity in GP space.
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Table 1: RMSE on test kernel-log-evidence pairs (α = 0.05)

Dataset Hellinger kNN Mean SOT (ours)

Airfoil 0.1773 (0.004) 0.2231 (0.013) 0.3769 (0.002) 0.0936 (0.003)
Airline 0.3569 (0.007) 0.3813 (0.011) 0.4013 (0.005) 0.3464 (0.011)
LGBB 0.3772 (0.021) 0.6795 (0.025) 0.8519 (0.016) 0.2783 (0.008)
Powerplant 0.1912 (0.012) 0.2236 (0.011) 0.2925 (0.009) 0.0137 (0.005)
Concrete 0.2489 (0.006) 0.1806 (0.010) 0.2912 (0.005) 0.0451 (0.002)

Given a model selection criteria gD : K̃ → R for a given dataset D, we want to solve k∗ =
arg maxk∈K̃ g(k|D) via Bayesian optimization. We thus define a surrogate GP model for g(k|D) via

f ∼ GP(µc(·),KSOT (·, ·)),

where µc(k) = c is the constant mean function. As BO acquisition function a(k|D̃t) we use
Expected-Improvement (EI). Here, D̃t denotes the set of already queried kernel-selection-criteria
pairs (k, g(k|D)) for which the meta-GP posterior f |D̃t is calculated. Starting with an initial set of
pairs D̃0 we follow the standard BO iterations where in each iteration the acquisition function is
maximized kt = arg maxk∈K̃ a(k|D̃t) given the current set of already evaluated kernel-selection-
criteria pairs D̃t. Then the selection criteria is queried at the chosen kernel g(kt|D). A complete
description of the method can be found in Algorithm 1 in Appendix A.

A crucial part in the BO cycle is the optimization of the acquisition function maxk∈K̃ a(k|D̃t). While
for Euclidean spaces gradient-based methods or grid-based methods could be used to solve that task,
this is not an option for a structured space like the considered grammar-generated kernel space. We
propose using an evolutionary algorithm to optimize the acquisition function, which can be seen in
Algorithm 2 in Appendix A. While an evolutionary algorithm seems to be a computationally intense
procedure that takes place in each BO iteration, we emphasize that the evaluation of the acquisition
function is very efficient for our proposed method. The reason for the efficiency is that the evaluations
of our kernel-kernel KSOT (k1, k2) at two kernels k1, k2 ∈ K̃ is very cheap, compared for example
to the method in [9] (see Appendix E for computational time comparision).

3.2 Comparision to Hellinger Kernel-Kernel

The work of [9] also uses BO for kernel selection but with a different principle of measuring the
distance in GP space. In particular, they propose measuring the distance of two GP’sM andM′ via
the induced prior distributions p(f |X,M) in function space evaluated on the design matrix X of the
dataset. Conditioned on the parameters of the GP θ, the distributions p(f |X,M, θ) are Gaussian and
they use the Hellinger distance over Gaussians as base distance between GP models d(Mθ,M′θ′ |θ, θ′)
given the hyperparameters. They finally take the expectation over the hyperparameter priors to
construct their final distance. Thus, for each kernel-kernel evaluation K(M,M′) the integral

d(M,M′) =

∫ ∫
d(Mθ,M′θ′ |θ, θ′)p(θ)p(θ′)dθdθ′

needs to be computed, where the integrand scales cubically in |X|. Each kernel-kernel evaluation
is therefore a computationally hard problem by itself. They side-pass this issue partly by selecting
a subset of X as input locations and by using sample-based estimation of the integral. While this
could make the method useful for oracles with very long run times, such as model selection for very
large data sets, we see conceptual problems in the case of medium oracle run times. For our method,
kernel-kernel evaluations K(k1, k2) are very efficient as they scale only in the size of the expression
tree and no integrals need to be computed.

4 Experiments

In the following section, we show experimental results for our novel meta-GP model and kernel
search method. We evaluate our meta-model on a meta-regression task where we predict test kernel-
log-evidence pairs based on training pairs. Secondly, we consider kernel search and compare it
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Figure 1: Plots for the model selection task over number of evaluated models (top) and CPU-time
(bottom) showing the normalized log-evidence of the best model found up to this iteration/time point.

against the greedy method in [3], the evolutionary algorithm in [4] and against the BO method of [9].
The implementation of our method is available at https://github.com/boschresearch/bosot.

Selection Criteria and Datasets: In all our experiments, we consider the normalized log-model
evidence g(k|D) = log p(y|X, k)/|D| as model selection criteria, as also done in [9]. We always
use the Laplace approximation to calculate the log-model evidence, where we use 10 repeats to do
MAP estimation of the kernel parameters. Furthermore, we consider the following publicly available
datasets: Airline,LGBB,Airfoil,Powerplant,Concrete. Airline is a one dimensional time-series
dataset, LGBB is a two-dimensional dataset with low observation noise. Powerplant,Airfoil and
Concrete are four, five, and eight dimensional, whereas Powerplant exhibits higher observation
noise. We use medium-sized training sets - 100 and 150 datapoints for Airline and LGBB and 500
datapoints for the other three datasets. All training sets are uniformly drawn from the full datasets.
The outputs are normalized and the inputs are scaled to be in the unit interval. Further details can be
found in Appendix D.

Search Spaces: We consider two search spaces. The first consists of the base kernels
SEi,LINi,PERi,RQi and the operators + and ×. This is the space considered in [3] for time
series and low-dimensional datasets. The second search space uses as base kernels SEi and RQi
and also + and × as operators and was considered in [3] for higher dimensional base datasets. We
consider the first space for Airline and LGBB and the second for Powerplant,Airfoil, and Concrete.
The hyperparameter priors for the base kernels can be found in the Appendix A.

Prediction of Selection Criteria: We evaluate our meta-GP model on a meta-regression task by
predicting test kernel-log-evidence pairs based on training pairs. The quality of predictions in kernel
space might also be an indicator for good performance in BO for kernel search. Given the base dataset
D we create a training set D̃train = {(ki, g(ki|D))|ki ∈ K̃train ⊂ K̃, i = 1, . . . , ntrain} and a test set
D̃test = {(ki, g(ki|D))|ki ∈ K̃test ⊂ K̃, i = 1, . . . , ntest} - each containing 500 kernel-log-evidence
pairs. We generate the train and tests sets exactly as in [9], where we create one set K̃complete by
first initializing it with all base kernels and iteratively pick one kernel of the current set, apply one
random operation of the kernel grammar and add the resulting kernel to the current set and repeat
this process until we have ntrain + ntest kernels in K̃complete. We then divide the set uniformly into
K̃train and K̃test. We compare our model to the mean-predictor as baseline, which just predicts the
mean of the train set at each test point and a kNN predictor based on the kernel-grammar operations
[see Appendix D or [9]]. Furthermore, we compare against the meta-GP model of [9]. We report root
mean squared error (RMSE) scores on the test sets in Table 1. It can be observed that our method
leads to more precise predictions on all four meta prediction tasks, indicating that the symbolical
representations already contain sufficient information to predict log-evidence values.
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Table 2: Predictive negative log-likelihood values on test set at final time stamp. Values are marked
bold if they are not significantly different from the best value according to a two-sample t-test
(α = 0.05).

Dataset Greedy Hellinger Tree-GEP SOT (ours)

Airline -0.4042 (0.615) 0.3368 (0.207) -0.5594 (0.580) -0.7015 (0.471)
LGBB -0.7528 (0.661) -0.8787 (0.854) -1.0701 (0.532) -0.9325 (0.492)
Powerplant -0.0053 (0.054) 0.0580 (0.037) -0.0241 (0.057) -0.0661 (0.032)
Airfoil 0.0837 (0.026) 0.9080 (0.205) 0.1826 (0.118) 0.1006 (0.090)
Concrete 0.3254 (0.019) 0.6633 (0.207) 0.2812 (0.074) 0.2872 (0.044)

Model Selection - Setup: Concerning kernel search, we compare against the BO method that
employs the Hellinger kernel-kernel [9], against greedy search [3] and against the evolutionary
algorithm presented in [4], referred to as TreeGEP. Both BO methods run for 50 iterations and the
kernel-kernel hyperparameters are updated in each iteration via marginal likelihood maximization.
Our method applied the evolutionary Algorithm 2 (see Appendix A) to optimize its acquisition
function, using a population size of 100. As it is computationally unfeasible to apply the same
kind of acquisition function optimization for the Hellinger kernel-kernel we use their method of
optimizing the acquisition function where an active set of kernels is updated in each iteration. Both
BO methods and TreeGEP start with the same set of initial kernels, for which we apply two random
grammar operations for each base kernel. Greedy search by design needs to start from the empty
kernel. We give it a head start by the number of initial datapoints (see Appendix D). For each dataset,
we display results from 30 independent runs with different seeds, namely medians and quartiles of
the log-evidence score over iterations and CPU-time in Figure 1. The implementation of both BO
methods is based on GPflow [10]. Further experimental details and parameter settings for all methods
can be found in Appendix D.

Model Selection - Results: As shown in Figure 1, we outperform all methods in terms of perfor-
mance over number of model evaluations. This is not surprising against the two heuristics, as they
are not optimized towards keeping the number of model evaluations low. However, it is notable
that we are more sample-efficient compared to [9], who solve a much harder problem for comput-
ing their kernel-kernel. In terms of performance over CPU-time, we outperform all methods on
Airfoil,Powerplant,LGBB and Concrete significantly. On Airline, the advantage over the heuris-
tics is smaller - the reason is the lower oracle time - which benefits the heuristics that do not need to
optimize the acquisition function. The reason for the poor performance of the Hellinger kernel-kernel
in terms of CPU-time is the high ratio of acquisition function optimization to oracle time, which was
as high as 50 : 1 in our experiments (see detailed numbers in Appendix D).

Test Performance: When optimizing a model selection criteria, one expects that this also material-
izes in a better test performance. In Table 2 we therefore show the predictive negative log-likelihood
(NLL) scores on a held out test-set of the selected models at the final time stamp. We observe that the
advantage in the model selection value gets transferred to the test performance.

Further Experiments: In Appendix E we include further investigations on the behavior of our
method on simulated data coming from a ground-truth kernel. Furthermore, we include a comparison
of the selected kernel to the standard RBF kernel and against Functional Kernel Learning (FKL) [2].

5 Limitations

In case the dataset size is very small, greedy search or evolutionary algorithms might have an
advantage in terms of computational time as the optimization of the acquisition function outweighs
the computation of the model selection criteria. Thus, in these instances our method might not show
a strong benefit. Furthermore, the kernel grammar is often used for downstream applications that
use the selected hypothesis for interpretation, such as [7] who build an automatic natural language
description of the selected hypothesis. Depending on the dataset and how many steps are employed
in the acquisition function optimization, relatively large hypotheses might be found as optimal. This
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might render the interpretation difficult. However, we show in Appendix E example configurations of
our algorithm that can be used to get smaller, well interpretable hypothesis.

6 Conclusion

We presented a novel way of doing BO for model selection of GP’s by measuring the distance
between two GP’s via the symbolical description of the underlying statistical hypothesis. The main
contribution is the deduced pseudo-metric over kernels and the resulting SOT kernel-kernel. We show
that our approach leads to a more efficient way of searching through a discrete kernel space compared
to other BO methods and search heuristics.
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per’s contributions and scope? [Yes] We clarify our main contributions in the end of
the introduction and provide the mentioned method in Section 3 and the mentioned
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(b) Did you describe the limitations of your work? [Yes] In Section 5
(c) Did you discuss any potential negative societal impacts of your work? [No] No obvious

direct negative societal impacts.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Given in
Definition 1, Proposition 1 and in Section C

(b) Did you include complete proofs of all theoretical results? [Yes] In Section C

3. If you ran experiments...
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(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [N/A] We will
provide code as soon as clearance of code is completed.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Either in Section 4 or Appendix D

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report either standard deviations or quartiles.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We analyze the search performance
over CPU-time.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Yes we cite the

GPflow related work, which is the main python framework we are using.
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Code is available at https://github.com/boschresearch/bosot.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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