
Appendix

A Forest Construction

A.1 Balanced Kmeans

For the sake of retrieval efficiency, the constructed tree is expected to be a complete K-ary tree.
However, the item number N does not necessarily meet this requirement. We grow the dataset by
inserting KH−N randomly sampled items from itself, such that it exactly contains KH items, where
H = ⌈logK N⌉ is the tree height. We use the Balanced Kmeans in Algorithm 1 for hierarchical
itemset partition. In particular, supposing a cluster contains K ×m items, the algorithm splits them
into K clusters such that each cluster exactly contains m items. At each iteration, we first assign
each centroid the m closest unassigned items in order and then update the centroids according to
item assignment. The clustering algorithm terminates until the assignments do not change any more.

Algorithm 1: Balanced-Kmeans
Data: Item set D, cluster number K
Result: {D1,D2, . . . ,DK}

1 m← |D|
K ;

2 Randomly initialize K centroids C = {c1, c2, . . . , cK} ;
3 repeat
4 U← D ;
5 for k = 1→ K do
6 Us ←Sort items in U ascendingly according to distance from ck;
7 Dk ← Us[0 : m− 1];
8 ck ← 1

m

∑
x∈Dk

x;
9 U← U \ Dk;

10 until Assignments do not change;

A.2 Tree Construction

As described in Section 2.3.2, each tree is constructed by combining Random partition and Balanced
Kmeans to guarantee both diversity and semantic closeness of similar items. Regarding the Random
strategy, for each cluster, the included items are randomly partitioned into K equally-sized subsets.
When it is combined with balanced Kmeans, for each cluster with n items, n mod K items are
first randomly picked, from which one item is sampled with replacement into each child cluster,
and the remaining items are partitioned based on the Balanced Kmeans. This method is shorten for
Random+Kmeans. By applying the Random+Kmeans strategy recursively until each cluster only
contains one item, the tree index can be constructed successfully. Repeating the tree construction can
generate diverse trees to form the forest. We summarize the procedure in Algorithm 2.

Algorithm 2: Tree construction
Data: Dataset D, branch number K, random ratio δ
Result: Constructed tree

1 Q← A queue with an element D;
2 while Q is not empty do
3 Dtop ← pop(Q);
4 n← |Dtop|;
5 D0← Randomly draw n mod K items from Dtop without replacement ;
6 Dtop ← Dtop \ D0;
7 {D1,D2, . . . ,DK} ←Balanced-Kmeans(Dtop,K);
8 for k = 1→ K do
9 i← Sample one item with replacement from D0;

10 push(Q, {i} ∪ Dk);

14

B Transformer encoder

The Transformer encoder, shown in Figure 5, is to capture user’s interests from the sequential interac-
tions xu = [it1 , it2 , . . . , itm]. From down to up, following the interaction embedding and positional
embedding, Multi-Head Attention [24] is utilized to model the interdependence of user’s each be-
havior. Taking the output of Multi-Head Attention, the FFN layer is to enhance the non-linearity of
user’s behavior representations. Finally, the encoder output, denoted as zu = [z1

u; z
2
u; . . . ; z

m
u], is

utilized to characterize user representation.

…

User’s sequential interactions

+

Multi-Head Attention

Add & Norm

Feed Forward

Add & Norm

…

𝑧𝑢
1

𝑖𝑡1 𝑖𝑡2 𝑖𝑡𝑚

𝑧𝑢
2 𝑧𝑢

𝑚

Figure 5: Transformer Encoder

C Pseudocode of training and inference

In our RecForest, all the trees share the encoder but each tree has a unique decoder. The training
framework is summarized in Algorithm 3. Note that we only give one training instance for clear
illustration and it can be done in batch-wise manner for practical implementation. In addition, the
inference framework is summarized in Algorithm 4. Once the generated candidates from each tree
are collected, we compute the generated probabilities of candidates on each tree for ranking purpose.

Algorithm 3: RecForest Training
Data: Forest={tree1, tree2, . . . , treeT }, training instance (xu, i), Encoder and Decodert

(1 ≤ t ≤ T) w.r.t. each tree
1 zu ← Encoder(xu);
2 foreach t ∈ {1, 2, . . . , T} do
3 target← get the path of item i on the treet;
4 decoder-input← [‘start’,target[0:H-1]]; // H is tree height
5 prediction← Decodert(zu,decoder-input);
6 L(u, i)← loss(prediction, target[1:H]) according to Eq (1);
7 back-propagation from L(u, i);
8 update Encoder and Decodert by gradient descent;

15

Algorithm 4: RecForest Inference
Data: Forest={tree1, tree2, . . . , treeT }, Encoder and Decodert (1 ≤ t ≤ T) w.r.t. each

tree, user feature xu, beam size B, n (i.e. number of returning items)
Result: The top-n items for user u

1 R←{};
2 zu ← Encoder(xu);
3 for t ∈ {1, 2, . . . , T} do
4 paths← Beam-Search(Decodert, zu, B) ;
5 foreach p ∈ paths do
6 item i← get-item(p, treet);
7 R← R ∪ {i};

8 foreach item i ∈ R do
9 score[i] = 0;

10 for t ∈ {1, 2, . . . , T} do
11 path← get-path(i, treet);
12 pt(i)← compute the path probability based on Decodert;
13 score[i] = score[i] + log pt(i);

14 select the top-n items from R based on score;

D Metrics

The ranking metric, Normalized Discounted Cumulative Gain(NDCG), is used to measure the
performance of recommendation engine. Discounted Cumulative Gain(DCG) can be calculated by

DCG@k =

k∑
i=1

2ri − 1

log2(i+ 1)

where ri means the relevance score and k is the number of returned items. As we focus on implicit
feedback, ri = 1 if the test user really interacts with the returned i-th item otherwise ri = 0. NDCG
can be calculated by

NDCG@k = DCG@k/iDCG@k

where iDCG means ideal DCG, i.e. ranking all the returned items according to relevance scores in
a descending order and calculating the DCG on the ordered items. Additionally, we also concern the
memory consumption of retrieval index and inference efficiency. Concretely, we record the model
size of retrieval system and the time consumption in inference.

E Experiment Details in sequential recommendation scenario

E.1 Baselines in sequential recommendation scenario

• TDM [29] and its variant JTM [28], proposed by Alibaba Group, are the tree-based recommender
frameworks which train the user-item preference model and the tree structure simultaneously. The
leaf nodes represent items and the internal nodes represent the clusters which the corresponding
leaf nodes belong to. Beam search is conducted on the tree to retrieve the items from coarse-grain
clusters to fine-grain clusters. The main difference between TDM and JTM is the updating of
bijective mapping relation between items and leaf nodes.

• Deep Interest Network (i.e. DIN) [26] utilizes the deep model to characterize the user’s preferences
over items from user’s sequential interactions. Concretely, DIN casts the training task as a binary-
class classification that reflects whether the user interacted with certain item. As DIN can’t be
used for efficient recommendation, we report the brute-force-based performance.

• YoutubeDNN [1], proposed by Google, is a deep neural network model which learns the user
representation and item representation from sequential user-item interaction history.Then the inner
product between user representation and item representation is used to capture user’s preference
over the corresponding item, which converts the recommendation task to maximum inner product

16

search(MIPS). In our experiments, we mainly show the performance of YoutubeDNN by burte-
force search for MIPS.

• To solve MIPS efficiently, Quantizaiton-based method SCANN [5] and graph-based method
IPNSW [16] meet the start-of-the-art performance in each technique route respectively. For fair
comparison with our model, we model user’s interactions by Transformer encoder and replace the
decoder by item embedding. The adapted model is trained in the same way as DIN to obtain the
user representation and item representation so that the learned representation can be used to build
the SCANN index and IPNSW index.

The open-source code of TDM*, JTM* and DIN* are based on Alibaba Group’s X-DeepLeraning
framework, we re-implement them by Pytorch. And the open-source code of YoutubeDNN* is also
available.

E.2 Detailed settings in sequential recommendation scenario

In each dataset, we randomly choose 10% users as validation users, 10% users as test users and all
the left users as training users. Following the settings in TDM [29] and JTM [28], we use a slide
window to cut user-item interaction histories into slices of length at most 70. Each window contains
at least 15 interactions and zero padding is applied if there is less than 70 interactions in the window.
At the training stage, the first 69 user-item interactions are regarded as context and the 70-th item is
regarded as ground truth in each window. For validation users and test users, we regard the second
half interactions as ground truth and the first half interactions as context. The hidden size is set to 96
for all methods.

The Deep Interest Network (DIN) [26], which contains the embedding layer followed by a MLP
with size [128,64,2] and outputs the like/dislike probability, is used as the the preference model for
TDM and JTM. YoutubeDNN [1] contains embedding layer followed by a MLP with size [128,64,96]
and the number of negative sampling is set to 1,000. For SCANN, we follow the default settings
of the open sources* but implement them with Python and Pytorch for fair efficiency comparison.
Concretely, the number of leaf is 2,000; the number of sub-space is 24 and the dimensionality of each
sub-space is 4; the number of codewords in each sub-space is set to 16; the value of threshold is set to
0.2. To construct the graph index of IPNSW, the maximum degree of each node is set to 16, and the
beam size is set to 100.

For our RecForest, YoutubeDNN, TDM, JTM and DIN, Adam [9] is used as the optimizer and
learning rate is set to 1.0e-3 with exponential decay. In inference, the beamsize of RecForest, TDM,
JTM and IPNSW is set to 100 unless specification. For RecForest, the branch number is set to 18 and
the tree number is set to be 2 on Movie and MIND, and 4 on the left datasets unless specification.
The items’ representations which are utilized to construct the forest for RecForest are obtained by
pre-train the DIN model on each dataset.

F Experiments in non-sequential scenarios

In non-sequential scenarios, we only apply user id to denote a user and the feature encoder to
model user representation. Specifically, the learnable embedding vector of the user id denotes user
representation.

F.1 Baselines

The classical deep model, Neural Collaborative Filtering (NCF) [6], characterizes user’s preference
over item given the user id and item id. Due to the compatibility with any advanced user-item (or
user-node) preference model, we utilize NCF for preference modeling in TDM [29] and JTM [28]
frameworks. For YoutubeDNN, we replace the user representation learning part used in sequential

*https://github.com/alibaba/x-deeplearning/tree/master/xdl-algorithm-solution/TDM
*https://proceedings.neurips.cc/paper/2019/hash/1c6a0198177bfcc9bd93f6aab94aad3c-Abstract.html
*https://github.com/alibaba/x-deeplearning/tree/master/xdl-algorithm-solution/DIN
*https://github.com/shenweichen/DeepMatch
*https://github.com/google-research/google-research/tree/master/scann

17

Table 6: Comparison with Baselines w.r.t NDCG@20 and NDCG@40, index memory space (MB),
and inference time (second). The bold fonts indicate the best performance.

NDCG@20 NDCG@40 Memory Time NDCG@20 NDCG@40 Memory Time

Method Movie Amazon
NCF 0.1679 0.2252 - 52.61 0.0433 0.0703 - 447.30

YoutubeDNN 0.2002 0.2532 - 39.98 0.1004 0.1284 - 129.57

JTM 0.2142 0.2535 10.80 1.62 0.0544 0.0799 75.99 2.57
TDM 0.2164 0.2536 10.80 1.62 0.0251 0.0322 75.99 2.43

SCANN 0.2227 0.2646 3.64 1.93 0.0936 0.1168 14.66 2.56
IPNSW 0.2014 0.2014 10.08 3.64 0.1022 0.1124 66.46 2.80

RecForest 0.2229 0.2640 3.21 1.50 0.1064 0.1338 7.32 2.20
Method Gowalla Tmall

NCF 0.1106 0.1545 - 304.79 0.0340 0.0490 - 3039.39
YoutubeDNN 0.3494 0.3613 - 52.97 0.0820 0.1005 - 1158.76

JTM 0.1404 0.1512 77.56 2.00 0.0722 0.0880 151.19 4.49
TDM 0.1462 0.1562 77.56 2.09 0.0596 0.0736 151.19 5.36

SCANN 0.2078 0.2179 15.48 1.96 0.0650 0.0754 28.10 5.45
IPNSW 0.3472 0.3589 70.39 1.98 0.0671 0.0707 132.72 5.20

RecForest 0.3500 0.3651 7.39 1.91 0.0743 0.0905 9.29 3.85
Method MIND Yelp

NCF 0.4070 0.4392 - 21.20 0.1078 0.1471 - 93.59
YoutubeDNN 0.4194 0.4428 - 19.31 0.1633 0.1944 - 55.82

JTM 0.3476 0.3664 6.62 3.34 0.1262 0.1636 39.47 3.36
TDM 0.3655 0.3799 6.62 3.25 0.0472 0.0583 39.47 3.42

SCANN 0.3799 0.3822 3.20 3.45 0.1250 0.1523 8.44 4.10
IPNSW 0.4178 0.4399 6.95 3.85 0.1641 0.1942 34.74 3.59

RecForest 0.4308 0.4587 3.18 3.19 0.1720 0.2016 6.81 3.24

recommendation scenarios with the embedding vector of user id. By this way, YoutubeDNN can
be compatible with non-sequential recommendation task. SCANN and IPNSW are built on the
learned representation of YoutubeDNN. Note that brute-force-based YoutubeDNN and NCF are
time-prohibitive in online services, but they can be considered as two strong baselines.

F.2 Experimental settings

In each dataset, we randomly choose 10% users as validation users, 10% users as test users and all
the left users as training users. For validation users and test users, we randomly select a quarter of the
interacted items as ground truth, and put the rest into the training set. The fusion NCF [6], which
contains the GMF and MLP where the neuron numbers are set to [512,256,128, 96] in each layer, is
included. Other necessary settings are as described in Section E.2.

F.3 Comparison with Baselines

Settings We compare RecForest with the baselines on all datasets. RecForest uses 2 trees on the
Movie and MIND, and 4 trees on other datasets. Other settings can be referred to in Section F.2.

Results All the results are shown in Table 6, where the index memory cost of RecForest indicates
the decoder’s memory consumption. From the table, we have the following findings.

• Recforest nearly outperforms all efficient recommenders with indexes on all dataset w.r.t.
NDCG@20 and NDCG@40 except that SCANN outperforms RecForest slightly on Movie
w.r.t NDCG@40. Its superiority over two-stage baselines is not so significant indicates that
inner product may be capable enough for representation learning to some extent in this simple

18

recommendation scenario. The higher accuracy than TDM and JTM also verify the benefit from
the use of routing trajectory, multiple trees and the powerful transformer decoder.

• RecForest performs better than brute-force-based NCF and YoutubeDNN on nearly all
datasets except the results on Tmall where YoutubeDNN outperforms RecForest slightly. This
phenomenon confirms the the superpower of transformer decoder.

• Being similar to the results of sequential recommendation scenarios, RecForest has the advan-
tage in index memory cost, which can be highlighted by comparisons with baselines. These
observations can be explained by referring to the same experiments in sequential scenarios. Note
that NCF and YoutubeDNN are based on exhaustive search so they don’t consume memory for
indexes.

F.4 Extensive Study between Efficiency and Accuracy

Settings Similar to settings in sequential recommendation scenarios, we also draw the efficiency-
accuracy curve. The study is mainly investigated on the Amazon, MIND, Gowalla, and Yelp dataset,
since the other two datasets show a similar trend. As described in the sequential scenario, we adjust
the beams size to vary the retrieval time cost for TDM, JTM, IPNSW and RecForest. For SCANN,
we adjust the number of probe cells to control the time cost.

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

IPNSW SCANN JTM TDM RecForest

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Time(s)

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

ND
CG

@
20

Amazon

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time(s)

0.34

0.36

0.38

0.40

0.42

MIND

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

Time(s)

0.15

0.20

0.25

0.30

0.35

Gowalla

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time(s)

0.06

0.08

0.10

0.12

0.14

0.16

Yelp

Figure 6: Tradeoff between Efficiency and Accuracy

Results The curves of different algorithms between NDCG@20 and query time are shown in
Figure 6. From the figure, we have the following findings.

• RecForest strikes the best balance between query time and retrieval accuracy on all the four
datasets, since the curve stands on top of the others. This confirms the superiority of RecForest
to these competing baselines. The advantage is the most significant on the MIND, evidenced by
the biggest gap between RecForest and IPNSW.

• With the increase of beam size, the accuracy of RecForest can improve more significantly
than baselines. This benefits from the powerful transformer decoder and the novel training
paradigm as well as the forest-based index, such that the representation model and tree indexes
are jointly learned better.

F.5 Ablation Study

F.5.1 Effect of Forest Construction

Settings We investigate three aforementioned ways of constructing a forest with at most 10 trees,
where the branch number of each tree is set to 4. The details about forest construction can be referred
to in Section 2.3.2.

Results The results on the Amazon, MIND, Gowalla and Yelp datasets are reported in Figure 7. The
results on Amazon, MIND and Yelp show the same trends as ones in sequential scenarios. Concretely,
Kmeans with randomness (i.e. Random+Kmeans) always performs best and improves with the
increasing number of trees while the Random nearly performs worst and does not improve as
much as Random+Kmeans when the tree number increases. These results verify the findings
again, i.e. the semantic information and the diversity among trees are important to improve the
recommendation accuracy.

19

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

Random Kmeans Random+Kmeans

1 2 3 4 5 6 7 8 9 10

The number of trees

0.065

0.070

0.075

0.080

0.085

0.090

0.095

ND
CG

@
20

Amazon

1 2 3 4 5 6 7 8 9 10

The number of trees

0.38

0.39

0.40

0.41

0.42

MIND

1 2 3 4 5 6 7 8 9 10

The number of trees

0.31

0.32

0.33

0.34

0.35

Gowalla

1 2 3 4 5 6 7 8 9 10

The number of trees

0.140

0.145

0.150

0.155

0.160

0.165

0.170

0.175
Yelp

Figure 7: Ablation study: Different construction ways for forests.

F.5.2 Effect of Branch Number K

Settings We conduct evaluations on a single Kmeans-constructed tree on the Amazon, MIND,
Gowalla and Yelp dataset, where the branch number varies in {2,4,8,10,16,18}.

Table 7: Effect of branch number

#Branch NDCG@20

Amazon MIND Gowalla Yelp

2 0.0724 0.4028 0.2916 0.1538
4 0.0869 0.4064 0.2837 0.1502
8 0.0886 0.3964 0.2947 0.1531
10 0.0913 0.4281 0.2949 0.1520
16 0.0961 0.4005 0.3052 0.1562
18 0.0971 0.4107 0.2978 0.1555

Results The results are shown in Table 7.
We can observe that the retrieval accuracy
of RecForest on Amazon improves with
the growing number of branches con-
stantly but does not show a clear trend
on other three datasets. These findings in-
dicate that the sensitivity of branch number
depends on the dataset in non-sequential
recommendation scenarios. Generally, the
increase of branch numbers and the de-
crease of path length don’t affect the per-
formance as much as that in the sequential
scenario.

F.5.3 Effect of Positional Embedding

Settings We also investigate the effect of four positional embedding methods like what we do in
the sequential recommendation scenario. Concretely, (1)None;(2)Abs;(3)RelK;(4)RelKQ and more
details are referred to in Section 3.6.3.

Table 8: Effect of positional embedding

Pos. Emb. NDCG@20

Amazon MIND Gowalla Yelp

None 0.0629 0.3656 0.2028 0.1140
Abs 0.0869 0.4064 0.2837 0.1502

RelK 0.0719 0.3975 0.2878 0.1509
RelKQ 0.0653 0.4049 0.2436 0.1443

Results The results based on a single
Kmeans-constructed tree on the Amazon,
MIND, Gowalla, and Yelp datasets are sum-
marized in Table 8. It is similarly observed
to Section 3.6.3 that positional embedding
takes a remarkable effect on improving
the retrieval capability while different
positional embedding methods do not
have a significant difference in retrieval
accuracy. The effect of Abs and RelK is
more significant on Gowalla.

G Additional Ablation Studies

To further verify the effect of Transformer Decoder and the joint training between the representation
model and the ANN index, we conduct additional ablation studies.

G.1 Effect of Transformer Decoder

Settings We conduct evaluations on a single Kmeans-constructed tree with 4 branches, and replace
the Transformer Decoder with the RNN and CNN model. The hidden size and embedding size of
RNN and CNN are set to be 96. Additionally, the kernel size of CNN is set to be 3.

20

Table 9: Effect of Transformer Decoder

Decoder NDCG@20

Amazon MIND Gowalla Yelp

Transformer 0.1912 0.6935 0.2795 0.2269
RNN 0.1208 0.6912 0.2286 0.1984
CNN 0.1218 0.6933 0.1758 0.1691

Results The results are summarized in
Table 9. We can see that the Transformer
Decoder always performs best and the per-
formance gaps between them are remark-
able. This verifies the superiority of the
Transformer Decoder for sequence gener-
ation tasks in our model compared to CNN
and RNN.

G.2 Effect of Joint Training

Settings To reveal the impact of joint representation learning, we include another experiment, where
the joint representation learning is disabled. To be specific, we initialize the index parameter, i.e.,
the embedding of each branch, as the average of all the item embeddings within the corresponding
branches. The parameters of the index are fixed during the training process, so that only the parameters
of Encoder and Decoder are learnable. Such a variant is short for "Fixed Index" in our experiment.

Table 10: Effect of Joint Training

Index NDCG@20

Amazon MIND Gowalla Yelp

Joint Training 0.1912 0.6935 0.2795 0.2269
Fixed Index 0.1429 0.6891 0.1604 0.1588

Results The results are summarized in
Table 10. The performance of fixed index
is worse than the original one, which in-
dicates the removal of joint representation
learning indeed degrades the capability of
our model. In other words, joint training is
indeed important and necessary.

21

