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A Complexity analysis

The runtime of DPF as presented in Algorithm 1 depends on many factors and specifically on the
number of feasible solutions and the amount of solutions that can be pruned early in the search. We
here provide a worst case bound that assumes that all trees are feasible and no solution can be pruned.
An upper bound of the number of unique complete trees of depth d is given by nt = O(|F|2d−122

d

):
i.e., the product of the number of possible branching decision assignments and leaf node label
assignments. In the worst case scenario, no tree would be pruned and the nondom operation would
compare every tree with every other tree: n2

t comparisons. A second term in the runtime complexity
is from the recursive tree search calls. For d > 0, DPF has 2|F| recursive calls, resulting in a total of
2d|F|d calls to DPF. Each of these calls traverses the dataset once. Therefore a worst case runtime
complexity for DPF is: O(n2

t + 2d|F|d|D|). In practice, however, the runtime is much smaller
because of pruning.

B Non-complete trees

For the sake of brevity, the main text of this paper only shows how to search for complete trees, that
is, trees of depth d with 2d − 1 branch nodes and 2d leaf nodes. Our method also allows to search for
smaller trees, as was done similarly in [3].

The DP formulation in Eq. 16 can be extended as follows to also allow for incomplete/sparse trees.
Here n signifies the number of nodes in the tree.

nondom
(
prune

(
∪f∈F,i∈[0,n−1] merge (

TF (Df̄ , d− 1, n− i− 1, U(Df , [
¯
IR, ĪR], d− 1, i)),

TF (Df , d− 1, i, U(Df̄ , [¯
IR, ĪR], d− 1, n− i− 1))

))) (1)

With this change in place, the solver can search for incomplete trees. This also allows to add a
parameter α to prevent overfitting. The misclassification score now becomes M +αn. The parameter
α describes how much the misclassification score should at least decrease in order to justify adding
another node to the tree. The addition of this parameter to the algorithm is trivial.

C Dataset details

Table 1 shows detailed information about every dataset considered in this study. The references for
the original datasets can be found here [1, 2, 4, 5, 8, 10, 11].
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Table 1: Datasets used for evaluation. Preprocessed as described in [9]. Training accuracy (%) and
discrimination results (%) are shown for the best tree of depth three that does not consider fairness
when training with the full dataset. The sign of the discrimination score tells which of the two groups
is discriminated against.

protected y=1 y=0 Acc. Disc.

Name |D| |F| feature a = 1 a = 0 a = 1 a = 0 d=3 d=3

Adult 45222 17 Gender 9539 1669 20988 13026 83.4 -17.8
Bank 45211 46 Married 2755 2534 24459 15463 90.0 1.2
Com.&Cr. 1994 97 Race 1017 855 7 115 95.4 -4.5
COMP. r. 6172 9 Race 1281 2082 822 1987 66.7 -16.4
COMP. v.r. 4020 9 Race 1285 2083 174 478 84.1 -1.6
Dutch 60420 58 Gender 18860 9903 11287 20370 81.4 -14.1
German 1000 69 Gender 499 201 191 109 75.3 -5.5
KDD 284556 117 Race 15926 1475 223155 44000 94.4 -1.1
OULAD 21562 45 Gender 7727 6928 3841 3066 69.1 -3.0
Ricci 118 4 Race 41 15 27 35 100 -30.3
Stud. Math 395 55 Gender 132 133 55 75 93.4 -6.3
Stud. Port. 649 55 Gender 216 333 50 50 93.7 3.4

D Test Evaluation

Experiment setup. The evaluation in the main text is focused on analyzing the runtime of our DPF
method. This section further analyzes the out-of-sample performance of DPF and compares it with
two heuristics. The pre-processing (massaging) approach presented in [6], and a post-processing
approaches proposed in [7]. We will call the pre-relabelling method KamPre and the post-relabelling
method KamPost, after their first author (Kamiran).

KamPre pre-processes the training data by relabeling a number of instances in the training data such
that the training data no longer is biased. Like them, we use a Naive Bayes classifier to decide which
labels to change. Unlike them, we use the newly labeled data to train a standard decision tree with
CART.

KamPost differs from CART by using a different splitting criterion and by its post-relabelling of
the leaf nodes. KamPost uses a splitting criterion that is a mix of information gain in the class label
and information gain in the sensitive attribute (IGC+IGS). After generating the tree, it heuristically
changes the label of some leaves in such a way that discrimination is minimized with the least loss of
accuracy.

We do not compare to the optimal MIP method FairOCT because its optimal solutions would either
be the same as those generated by DPF, or -if multiple optimal solutions exists- any difference could
only be attributed to a random selection of one out of several optimal models.

We first evaluate the out-of-sample performance by running DPF for d = 2, 3, 4 and KamPost for
d = 3, 4 for different maximum allowed bias δ = 1%, 5%, 100% on three datasets that are commonly
evaluated in the literature. Note that KamPost with δ = 100% is the same as plain CART. We run
each case 10 times on random stratified train-test splits of 75% vs 25%. We here do not compare to
KamPre because it does not take a maximum allowed bias as an input factor. Figure 1 shows the
resulting distribution of test accuracy and test discrimination. The sign of the discrimination score
tells which of the two groups is discriminated against.

Evaluation. From the results in Figure 1 it can be observed that the optimal decision trees generated
by DPF in general have better out-of-sample accuracy than KamPost for the same or smaller depth.
In several cases DPF d = 2 even outperforms KamPost, even though it uses four times less nodes.
However, in general the variance in test accuracy is high.

The variance in test discrimination is also high, and both methods often exceed the imposed dis-
crimination limit in the test evaluation. This problem is less visible with the Adult dataset, probably
because of its larger number of data instances.
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Figure 1: Out-of-sample accuracy and discrimination for three datasets, for maximum bias δ =
1%, 5%, 100%. The figure shows the distribution of 10 runs.

For both the COMPAS-recid. and German credit dataset almost maximum accuracy can already be
obtained with a decision tree of depth two, so the addition of extra nodes does not help much. For the
Adult dataset, however, deeper trees can provide better accuracy.

Table 2: Out-of-sample average accuracy and discrimination ± the standard deviation (%) for
solutions with a maximum training bias of δ = 5% and a maximum depth of d = 3. Whenever the
5% discrimination threshold is exceeded on average, the result is marked in red. Best performing
accuracy score per dataset is marked bold, if significantly better than other methods that also stay
within the 5% discrimination limit (p-value < 5%).

DPF KamPre KamPost

Dataset Accuracy Disc. Accuracy Disc. Accuracy Disc.

Adult 80.4 ± 0.3 -5.1 ± 0.4 75.2 ± 0.0 0.0 ± 0.0 78.0 ± 1.5 -1.9 ± 1.1
Bank 89.7 ± 0.1 1.7 ± 0.6 89.1 ± 0.3 0.9 ± 0.6 89.0 ± 0.4 0.5 ± 0.3
Com.&Cr. 94.6 ± 0.3 -3.2 ± 1.0 93.0 ± 1.1 -3.3 ± 2.6 93.9 ± 0.3 -1.3 ± 2.3
COMP. r. 59.1 ± 2.4 -4.6 ± 3.1 61.4 ± 1.8 -9.8 ± 2.8 55.6 ± 1.9 -1.1 ± 2.1
COMP. v.r. 83.7 ± 0.2 -0.3 ± 0.5 82.2 ± 1.1 -4.0 ± 2.1 83.8 ± 0.1 -0.3 ± 0.8
Dutch 77.4 ± 0.3 -5.0 ± 1.0 76.0 ± 0.2 -9.9 ± 0.4 68.2 ± 10.9 -0.6 ± 0.6
German 70.3 ± 1.7 -2.1 ± 3.0 69.8 ± 1.3 -0.7 ± 3.9 70.3 ± 1.0 -0.9 ± 3.4
KDD 94.3 ± 0.0 -1.0 ± 0.1 93.9 ± 0.0 0.0 ± 0.0 93.9 ± 0.0 0.0 ± 0.1
OULAD 68.7 ± 0.3 -2.1 ± 1.0 68.2 ± 0.6 -1.8 ± 1.1 68.0 ± 0.1 0.1 ± 0.2
Ricci 66.0 ± 4.4 -13.4 ± 12.3 100.0 ± 0.0 -28.1 ± 0.0 53.3 ± 0.0 0.0 ± 0.0
Stud. Math 85.5 ± 6.6 -2.8 ± 8.3 89.7 ± 2.8 -5.5 ± 3.2 73.9 ± 11.8 -2.5 ± 4.2
Stud. Port. 90.5 ± 2.8 0.8 ± 5.0 91.2 ± 4.2 6.1 ± 4.9 89.4 ± 4.2 2.3 ± 3.1
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Tuned for number of nodes. In our next analysis, we prevent overfitting during training for all
three methods by using 10 random validation splits of 25% of the training data to find what number
of branching nodes is best. The tree size with the best average accuracy in the validation set, while on
average respecting the discrimination constraint is selected as best. The full training dataset is then
used to generate a tree of that size. Table 2 shows the results when all three algorithms are used to
find trees of a maximum bias of 5%.

Discussion. DPF searches for optimal decision trees, which means it will always find the tree with
maximum accuracy for the training dataset, and thus always outperform heuristics on performance
in the training dataset. The results in Table 2 show that when DPF is tuned for selecting the right
number of nodes, this on average also generalizes to better performance than KamPre and KamPost
in the test set.

We compare the results of the methods that achieve (on average) a test discrimination lower than 5%,
and among those select the method with highest test accuracy. There are seven datasets for which
DPF is significantly better than KamPre and KamPost (p < 5%), with differences in accuracy even as
large as 11.6% (Student-Mathemtacis) or 9.2% (Dutch census). KamPost only scores best for Ricci
and Adult. Ricci is the smallest of all datasets with only 118 instances and 4 features, but KamPost’s
result is only slightly better than random. KamPost also performs best for Adult, with DPF exceeding
the limit by 0.1%. For three datasets, no method is significantly better than the others.

The results also confirm the findings from Figure 1 that the variance in the discrimination value is
often high, specifically for the small datasets. This means that for those instances it is difficult to
generalize and overfitting in terms of discrimination is still happening. It is an open question how
this can be reduced.
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