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Abstract

Convolutional layers within graph neural networks operate by aggregating infor-
mation about local neighbourhood structures; one common way to encode such
substructures is through random walks. The distribution of these random walks
evolves according to a diffusion equation defined using the graph Laplacian. We
extend this approach by leveraging classic mathematical results about hypo-elliptic
diffusions. This results in a novel tensor-valued graph operator, which we call
the hypo-elliptic graph Laplacian. We provide theoretical guarantees and efficient
low-rank approximation algorithms. In particular, this gives a structured approach
to capture long-range dependencies on graphs that is robust to pooling. Besides the
attractive theoretical properties, our experiments show that this method competes
with graph transformers on datasets requiring long-range reasoning but scales only
linearly in the number of edges as opposed to quadratically in nodes.

1 Introduction

Obtaining a latent description of the non-Euclidean structure of a graph is central to many applications.
One common approach is to construct a set of features for each node that represents the local
neighborhood of this node; pooling these node features then provides a latent description of the whole
graph. A classic way to arrive at such node features is by random walks: at the given node one starts
a random walk, and extracts a summary of the local neighbourhood from its sample trajectories. We
revisit this random walk construction and are inspired by two classical mathematical results:

Hypo-elliptic Laplacian. In the Euclidean case of Brownian motion B = (Bt)t�0 evolving in Rn,
the quantity u(t, x) = E[f(Bt)|B0 = x] solves the heat equation @tu = �u on [0,1)⇥Rn,
u(0, x) = f(x). Seminal work of Gaveau [23] in the 1970s shows that if one replaces f(Bt)
in the expectation by a functional of the whole trajectory, F (Bs : s 2 [0, t]), then a path-
dependent heat equation can be derived where the classical Laplacian � is replaced by the
hypo-elliptic Laplacian.

Free Algebras. A simple way to capture a sequence – for us, a sequence of nodes visited by a random
walk on a graph – is to associate with each sequence element an element in an algebra1

and multiply these algebra elements together. If the algebra multiplication is commutative,
*Equal contribution; order determined by random coin flip.
1An algebra is a vector space where one can multiply elements; e.g. the set of n⇥ n matrices with matrix

multiplication. This multiplication can be non-commutative; e.g. A ·B 6= B ·A for general matrices A,B.
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the sequential structure is lost but if it is non-commutative, this captures the order in the
sequence. In fact, by using the free associative algebra, this can be done faithfully and linear
functionals of this algebra correspond to functionals on the space of sequences.

We leverage these ideas from the Euclidean case of Rd to the non-Euclidean case of graphs. In
particular, we construct features for a given node by sampling from a random walk started at this
node, but instead of averaging over the end points, we average over path-dependent functions. Put
informally, instead of asking a random walker that started at a node, "What do you see now?" after k
steps, we ask "What have you seen along your way?". The above notions from mathematics about the
hypo-elliptic Laplacian and the free algebra allow us to formalize this in the form of a generalized
graph diffusion equation and we develop algorithms that make this a scalable method.

Related Work. From the ML literature, [49, 27] popularized the combination of deep learning
architectures to capture random walk histories. Such ideas have been incorporated, sometimes implic-
itly, into graph neural networks (GNN) [53, 9, 54, 18, 29, 5, 33] that in turn build on convolutional
approaches [37, 38, 27], as well as their combination with attention or message passing [45, 65, 24],
and more recent improvements [72, 46, 43, 15] that provide and improve on theoretical guarantees.
Another classic approach are graph kernels, see [7] for a recent survey; in particular, the seminal
paper [36] explored the connection between diffusion equations and random walkers in a kernel
learning context. More recently, [14] proposed sequence kernels to capture the random walk history.
Furthermore, [17] uses the signature kernel maximum mean discrepancy (MMD) [16] as a metric
for trees which implicitly relies on the algebra of tensors that we use, and [48] aggregates random
walk histories to derive a kernel for graphs. Moreover, the concept of network motifs [44, 55] relates
to similar ideas that describe a graph by node sequences. Further, the Bethe Hessian [52] has been
successfully used in spectral clustering and shares the same goal of capturing pathdependence via
a "deformed Laplacians", although the mathematical approach is very different to ours. Directly
related to our approach is the topic of learning diffusion models [35, 13, 60, 20, 11] on graphs. While
similar ideas on random walks and diffusion for graph learning have been developed by different
communities, our proposed method leverages these perspectives by capturing random walk histories
through a novel diffusion operation.

Our main mathematical influence is the seminal work of Gaveau [23] from the 1970s that shows
how Brownian motion can be lifted into a Markov process evolving in a free algebra to capture
path-dependence. This leads to a heat equation governed by the hypo-elliptic Laplacian. These
insights had a large influence in PDE theory, see [51, 31], but it seems that their discrete counterpart
on graphs has received no attention despite the well-developed literature on random walks on graphs
and general non-Euclidean objects, [68, 19, 26, 63]. A key challenge to go from theory to application
is handling the computational complexity. To do so, we build on ideas from [62] to design effective
algorithms for the hypo-elliptic graph diffusion.

Contribution and Outline. We introduce the hypo-elliptic graph Laplacian which allows to effec-
tively capture random walk histories through a generalized diffusion model.

• In Section 3, we introduce the hypo-elliptic variants of standard graph matrices such as
the adjacency matrix and (normalized) graph Laplacians. These hypo-elliptic variants are
formulated in terms of tensor-valued matrices rather than scalar-valued matrices, and can be
manipulated using linear algebra in the same manner as the classical setting.

• The hypo-elliptic Laplacian leads to a corresponding diffusion model, and in Theorem 1, we
show that the solution to this generalized diffusion equation summarizes the microscopic
picture of the entire history of random walks and not just their location after k steps.

• This solution provides a rich description of the local neighbourhood about a node, which
can either be used directly as node features or be pooled over the graph to obtain a latent
description of the graph. Theorem 2 shows that these node features characterize random
walks on the graph, and we provide an analogous statement for graph features in Appendix E.

• One can solve the hypo-elliptic graph diffusion equation directly with linear algebra, but this
is computationally prohibitive and Theorem 3 provides an efficient low-rank approximation.

• Finally, Section 5 provides experiments and benchmarks. A particular focus is to test the
ability of our model to capture long-range interactions between nodes and the robustness of
pooling operations which makes it less susceptible to the "over-squashing" phenomenon [2].
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2 Sequence Features by Non-Commutative Multiplication.

We define the space of sequences in Rd by

Seq(Rd) :=
1[

k=0

(Rd)k+1,

where elements are sequences denoted by x = (x0, x1, . . . , xk) 2 (Rd)k+1. Assume we are given an
injective map, which we call the algebra lifting,

' : Rd ! H.

from Rd into an algebra H . We can use this to define a sequence feature map
2

e' : Seq(Rd) ! H, e'(x) = '(�0x) · · ·'(�kx), (1)

where �0x = x0 and �ix := xi � xi�1 for i � 1 are used to denote the increments of a sequence
x = (x0, . . . , xk). This map associates to any sequence x 2 Seq(Rd) an element of the algebra H . If
the multiplication in H is commutative, then the map e' would have no information about the order of
increments, i.e. '(�0x) · · ·'(�kx) = '(�⇡(0)x) · · ·'(�⇡(k)x) for any permutation ⇡ of {0, . . . , k}.
However, if the multiplication in H is "non-commutative enough" we expect e' to be injective.

A Free Construction. Many choices for H are possible, but intuitively it makes sense to use the
"most general object" for H . The mathematically rigorous approach is to use the free algebra over

Rd and we give a summary in Appendix B. Despite this abstract motivation, the algebra H has a
concrete form: it is realized as a sequence of tensors in Rd of increasing degree, and is defined by

H := {v = (v0,v1,v2, . . .) : vm 2 (Rd)⌦m, m 2 N, kvk < 1},

where by convention (Rd)⌦0 = R, and we describe the norm kvk in the paragraph below. For
example, if v = (vm)m�0 2 H , then v0 is a scalar, v1 is a vector, v2 2 (Rd)⌦2 is a d⇥ d matrix,
and so on. The vector space structure of H is given by addition and scalar multiplication according to

v +w := (vm +wm)m�0 2 H and �v := (�vm)m�0 2 H

for � 2 R, and the algebra structure is given by

v ·w :=

 
mX

i=0

vi ⌦wm�i

!

m�0

2 H. (2)

An Inner Product. If e1, . . . , ed is a basis of Rd, then every tensor vm 2 (Rd)⌦m can be written as

vm =
X

1i1,...,imd

ci1,...,imei1 ⌦ · · ·⌦ eim .

This allows us to define an inner product h·, ·im on (Rd)⌦m by extending

hei1 ⌦ · · ·⌦ eim , ej1 ⌦ · · ·⌦ ejmim =

⇢
1 : i1 = j1, . . . , im = jm,
0 : otherwise. (3)

to (Rd)⌦m by linearity. This gives us an inner product on H ,

hv,wi :=
X

m�0

hvm,wmim

such that H is a Hilbert space; in particular we get a norm kvk :=
p
hv,vi. To sum up, the space

H has a rich structure: it has a vector space structure, it has an algebra structure (a noncommutative
product), and it is a Hilbert space (an inner product between elements of H gives a scalar).

2There are variants of this sequence feature map, which are discussed in Appendix G.
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Characterizing Random Walks. From Equation (1), we have constructed a map e' that maps a
sequence x 2 Seq(Rd) of arbitrary length into the space H (see Appendix C for further details). Our
aim is to apply this to the sequence of node attributes corresponding to random walks on a graph.
Therefore, the expectation of e' should be able to characterize the distribution of the random walk.
Formally the map e' is characteristic if the map µ 7! Ex⇠µ[e'(x)] from the space of probability
measures on Seq(Rd) into H is injective. Indeed, if the chosen lifting ' satisfies some mild conditions
this holds for e'; see Appendix C and [16, 62].

Linear Functionals. The quantity Ex⇠µ[e'(x)] characterizes the probability measure µ but is
valued in the infinite-dimensional Hilbert space H . Using the inner product, we can instead consider

h`,Ex⇠µ[e'(x)]i for ` = (`0, `1, `2, . . . , `M , 0, . . .) 2 H and M � 1 (4)

which is equivalent to knowing Ex⇠µ[e'(x)]; i.e. the set (4) characterizes µ. This is analogous to how
one can use either the moment generating function of a real-valued random variable or its sequence
of moments to characterize its distribution; the former is one infinite-dimensional object (a function),
the latter is a infinite sequence of scalars. We extend a key insight from [62] in Section 4: a linear
functional h`,Ex⇠µ[e'(x)]i can be efficiently approximated without directly computing Ex⇠µ[e'(x)]
or storing large tensors.

The Tensor Exponential. While we will continue to keep ' arbitrary for our main results (see [62]
and Appendix G for other choices), we will use the tensor exponential exp⌦ : Rd ! H , defined by

exp⌦(x) =

✓
x⌦m

m!

◆

m�0

, (5)

as the primary example throughout this paper and in the experiments in Section 5. With this choice,
the induced sequence feature map is the discretized version of a classical object in analysis, called
the path signature, see Appendix C.

3 Hypo-Elliptic Diffusions

Throughout this section, we fix a labelled graph G = (V, E , f), that is V is a set of n nodes
V = {1, . . . , n}, E denotes edges and f : V ! Rd is the set of continuous node attributes3 which
map each node to an element in the vector space Rd. Two nodes i, j 2 V are adjacent if (i, j) 2 E is
an edge, and we denote this by i ⇠ j. The adjacency matrix A of a graph is defined by Ai,j = 1,
whenever i ⇠ j, and 0 otherwise. We denote by deg(i) the number nodes that are adjacent to node i.

Random Walks on Graphs. Let (Bk)k�0 be the simple random walk on the nodes V of G, where
the initial node is chosen uniformly at random. The transition matrix of this time-homogeneous
Markov chain is

Pi,j := P(Bk = j|Bk�1 = i) =

⇢
1

deg(i) : i ⇠ j
0 : otherwise.

Denote by (Lk)k�0 the random walk lifted to the node attributes in Rd, that is

Lk := f(Bk). (6)

Recall that the normalized graph Laplacian for random walks is defined as L = I �D�1A, where
D is diagonal degree matrix; in particular, the entry-wise definition is

Li,j :=

8
<

:

� 1
deg(i) : i ⇠ j
1 : i = j
0 : otherwise.

The discrete graph diffusion equation for Uk 2 Rn⇥d is given by

Uk � Uk�1 = �LUk�1, U (i)
0 = f(i) (7)

3The labels given by the labelled graph are called attributes, while the computed updates are called features.
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where the initial condition U0 2 Rn⇥d is specified by the node attributes.4 The probabilistic
interpretation of the solution to this diffusion equation is classical and given as

Uk = (E[Lk |B0 = i])n
i=1 = P kU0. (8)

This allows us to compute the solution uk using the transition matrix P = I � L.

Random Walks on Algebras. We now incorporate the history of a random walker by considering
the quantity

E[e'(Lk) |B0 = i] = E['(�0L) · · ·'(�kL) |B0 = i] (9)
where Lk = (L0, . . . , Lk). Since e' captures the whole history of the random walk Lk over node
attributes, we expect this expectation to provide a much richer summary of the neighborhood of node
i than E[Lk|B0 = i]. The price is however, the computational complexity, since (9) is H-valued. We
first show, that analogous to (7), the quantity (9) satisfies a diffusion equation that can be computed
with linear algebra. To do so, we develop a graph analogue of the hypo-elliptic Laplacian and replace
the scalar entries of the matrices with entries from the algebra H .

Matrix Rings over Algebras. We first revisit the adjacency matrix A 2 Rn⇥n and replace it by
the tensor adjacency matrix eA = ( eA)i,j 2 Hn⇥n, that is eA is a matrix but instead of scalar entries its
entries are elements in the algebra H . The matrix A has an entry at i, j if nodes i and j are connected;
eA replaces the i, j entry with an element of H that tells us how the node attributes of i and j differ,

eAi,j :=

⇢
'(f(j)� f(i)) : i ⇠ j

0 : otherwise. (10)

Matrix multiplication works for elements of Hn⇥n by replacing scalar multiplication by multiplication
in H , that is ( eB · eC)i,j =

P
n

k=1
eBi,k · eCk,j for eB, eC 2 Hn⇥n and eBi,k · eCk,j denotes multiplication

in H as in Equation (2). For the classical adjacency matrix A, the k-th power counts the number of
length k walks in the graph, so that (Ak)i,j is the number of walks of length k from node i to node j.
We can take powers of eA in the same way as in the classical case, where

( eAk)i,j =
X

x

'(�1x) · · ·'(�kx)

where the sum is taken over all length k walks x = (f(i), . . . f(j)) from node i to node j (full details
are provided in Appendix D). Since e'(x) characterizes each walk x, the entry eAk

i,j
can be interpreted

as a summary of all walks which connect nodes i and j.

Hypo-elliptic Graph Diffusion. Similar to the tensor adjacency matrix, we define the hypo-elliptic

graph Laplacian as the n⇥ n matrix
eL = I �D�1 eA 2 Hn⇥n,

where D is the degree matrix embedded into Hn⇥n at tensor degree 0. The entry-wise definition is

eLi,j :=

8
<

:

�'(f(j)�f(i))
deg(i) : i ⇠ j
1 : i = j
0 : otherwise.

(11)

We can now formulate the hypo-elliptic graph diffusion equation for vk 2 Hn as

vk � vk�1 = �eLvk�1, v(i)
0 = '(f(i)). (12)

Analogous to the classic graph diffusion (8), the hypo-elliptic graph diffusion (12) has a probabilistic
interpretation in terms of L as shown in Theorem 1 (the proof is given in Appendix D).
Theorem 1. Let k 2 N, Lk = (L0, . . . , Lk) be the lifted random walk from (6), and eP = I � eL be

the tensor adjacency matrix. The solution to the hypo-elliptic graph diffusion equation (12) is

vk = (E['(�1Lk) · · ·'(�kLk)|B0 = i])n
i=1 = eP k1H .

Furthermore, if F 2 Hn⇥n
is the diagonal matrix with Fi,i = '(f(i)), then

Fvk = (E[e'(Lk)|B0 = i])n
i=1 .

4The attributes over all nodes are given by an n⇥ d matrix; in particular U (i)
k is the i

th row of the matrix.
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In the classical diffusion equation, Uk captures the concentration of the random walkers after k time
steps over the nodes. In the hypo-elliptic diffusion equation, vk captures summaries of random
walk histories after k time steps over the nodes since e'(Lk) summarizes the whole trajectory
Lk = (L0, . . . , Lk) and not only the endpoint Lk.

Node Features and Graph Features. Theorem 1 can then be used to compute features �(i) 2 H
for individual nodes as well as a feature  (G) for the entire graph. The former is given by i-th
component v(i)

k
of the solution vk = (v(i)

k
)i=1,...,n 2 Hn of Equation (12),

�(i) := v(i)
k

= E[e'(Lk) |B0 = i] = (F eP kv0)
(i) 2 H,

since the random walk B chooses the starting node B0 = i uniformly at random. The latter can be
computed by mean pooling the node features, which also has a probabilistic interpretation as

 (G) := 1

n

nX

i=1

v(i)
k

= E[e'(Lk)] = n�1(1T

H
F eP kv0) 2 H, (13)

where 1T

H
:= (1H , . . . , 1H) 2 Hn is the all-ones vector in H and 1H denotes the unit in H .

Characterizing Graphs with Random Walks. The graph and node features obtained through the
hypo-elliptic diffusion equation are highly descriptive: they characterize the entire history of the
random walk process if one also includes the time parametrization, as described in Appendix C.
Theorem 2. Suppose  is the graph feature map from Equation (13) induced by the tensor ex-

ponential algebra lifting including time parametrization. Let G and G0
be two labelled graphs,

and Lk = (L0, . . . , Lk) and L0
k
= (L0

0, . . . , L
0
k
) be the k-step lifted random walk as defined in

Equation (6). Then,  (G) =  (G0) if and only if the distributions of Lk and L0
k

are equal.

It is instructive to contrast this result with the classical diffusion case; the latter only uses the
marginal distribution of Lk to capture the graph structure, which at least intuitively has much less
expressive power. Indeed, in Appendix E, we show that for elementary graphs, this already leads to
big differences in expressive power. Further, an analogous result holds for the node features, and we
prove both results in Appendix E. While we use the tensor exponential in this article, many other
choices of e' are possible and result in graph and node features with such properties: under mild
conditions, if the algebra lifting ' : Rd ! H characterizes measures on Rd, the resulting node feature
map � characterizes the random walk, see [62], which in turn implies the above results. Possible
variations are discussed in Appendix G.

General (Hypo-elliptic) Diffusions and Attention. One can consider more general diffusion
operators, such as the normalized Laplacian K of a weighted graph. We define its lifted operator
eK 2 Hn⇥n analogous to Equation (11), resulting in a generalization of Theorem 1 with eK replacing
eL. In the flavour of convolutional GNNs [8], we consider a weighted adjacency matrix A 2 Rn⇥n

Ai,j =

⇢
ci,j : i ⇠ j
0 : otherwise,

for ci,j > 0. The corresponding normalized Laplacian K is given by K = I �D�1A, where D is a
diagonal matrix with Di,i =

P
j2N (i) ci,j . A common way to learn the coefficients is by introducing

parameter sharing across graphs by modelling them as ci,j = exp(a(f(i), f(j))) using a local
attention mechanism, a : Rd ⇥ Rd ! R [65]. In our implementation, we use additive attention [4]
given by a(f(i), f(j)) = LeakyRelu0.2(Wsf(i) + Wtf(j)), where Ws,Wt 2 R1⇥d are linear
transformations for the source and target nodes, but different attention mechanisms can also be used;
e.g. scaled dot-product attention [64]. Then, the corresponding transition matrix P = D�1A is
defined as Pij = softmaxk2N (i)(a(f(i), f(k)))j . The lifted transition matrix is defined as

eP =

⇢
Pi,j'(f(j)� f(i)) : i ⇠ j

0 : otherwise.

The statements of Theorem 1 immediately generalize to this variation by replacing the expectation
with respect to a non-uniform random walk. Hence, in this case the use of attention can be interpreted
as learning the transition probabilities of a random walk on the graph.
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4 Efficient Algorithms for Deep Learning

The previous sections show that the node feature �(i) provides a structured description of the
neighborhood of node i and it is instructive to think of a linear functional h`,�(i)i as answering a
specific question about the node neighbourhood, see Appendix E for examples. The naive computation
of h`,�(i)i by first computing �(i) and taking the inner product is too expensive, especially when
` = (`0, . . . , `M , 0, . . .) 2 H for large M . To address this we revisit two observations from [62]:
first, for a rank-1 functional ` 2 H , the computation of h`,�(i)i is computationally cheap. Second,
restriction to small M limits the expressive power but can be counteracted by composition: any choice
of d different functionals `1, . . . , `d 2 H gives a label update f(i) 7! (h`j ,�(i)i)j=1,...,d 2 Rd for
the graph. Repeating such a label update a few times with low-degree M and rank-1 functionals turns
out to be as powerful as computing one update for general functionals with arbitrary high M . The
first observation should not be too surprising given the popularity of low rank approximations; the
second observation is reminiscent to constructing a high-degree polynomial by composing low-degree
polynomials5 or the width-vs-depth phenomenon in neural nets and we give more details below.

Computing Rank-1 Functionals. First, we focus on a rank-1 linear functional ` 2 H given as

` = (`m)m�0 with `m = uM�m+1 ⌦ · · ·⌦ uM and `m = 0 for m > M, (14)

where um 2 Rd for m = 1, . . . ,M for a fixed M � 1. Theorem 3 shows that for such `, the compu-
tation of h`, �̂(i)i, where �̂(i) is the node feature without the basepoint, can be done (a) efficiently
by factoring this low-rank structure into the recursive computation, and (b) simultaneously for all
nodes i 2 V in parallel. This can then be used to compute rank-R functionals for R > 1, and for
h`,�(i)i; see Appendix F, where we also provide a pseudocode implementation.
Theorem 3. Let ` be as in (14) and define fk,m 2 Rn

for m = 1, . . . ,M as

f1,m :=
1

m!
(P � CuM�m+1 � · · ·� CuM ) · 1,

where 1T := (1, . . . , 1) 2 Rn
is the all-ones vector; and for 2  k and 1  m  M recursively as

fk,m := P · fk�1,m +
mX

r=1

1

r!
(P � CuM�m+1 � · · ·� CuM�m+r ) · fk�1,m�r, (15)

where the matrix Cu = (Cu

i,j
) 2 Rn⇥n

is defined as

Cu

i,j
:=

⇢
hu, f(j)� f(i)i : i ⇠ j,

0 : otherwise.

Here � denotes element-wise
6

multiplication, while · denotes matrix multiplication. Then, it holds

for i 2 V , random walk length k 2 Z+, and tensor degree m = 1, . . . ,M , that

fk,m(i) = h`m, �̂k(i)i,

where �̂k(i) = E['(�1Lk) · · ·'(�kLk) |B0 = i].

Overall, Eq. (15) computes fk,m(i) for all i 2 V , k = 1, . . . ,K, m = 1, . . . ,M in O(K ·M2 ·NE +
M ·NE · d) operations, where NE 2 N denotes the number of edges; see App. F. In particular, one
does not need to compute �(i) 2 H directly or store large tensors.

Graph Labelling Layers. Fixing d rank 1-functionals `1, . . . , `d 2 H induces a label update
f(i) 7! (h`i,�(i)i)i=1,...,d 2 Rd. Theorem 3 allows us to compute this update in parallel for all
nodes in V . Such a label update is similar to hidden layer in a NN and we can stack such updates,
see Figure 3 in App. H.1. As in NN, the d functionals in each "graph labelling layer" are optimized
by gradient descent. Finally, note that a rank R functional is the sum of R rank-1 functionals so we
can immediately carry out the same construction with rank-R functionals by adding a mixing layer.

5For example, 1+x+x
2 composed with 1+2x2 yields the degree 4 polynomial 1+(1+2x2)+(1+2x2)2.

6For example

1 2
3 4

�
�


5 6
7 8

�
=


5 12
21 32

�
.
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To sum up, a graph labelling layer is determined by the random walk length k, the maximal tensor
degree M , maximal tensor rank R and the functionals are then found by optimization.

Using a single layer of low-rank functionals limits the expressiveness but stacking layers allows in
practice to approximate general, high-degree M functionals. Some theoretical results can be found in
[62]; however, here we simply appeal to the analogy with NN where stacking simple transformations
provides a flexible functional class with good inductive bias.

5 Experiments

We implemented the above approach and call the resulting model Graph2Tens Networks since it
represents the neighbourhood of a node as a sequence of tensors, which is further pushed through
a low-tensor-rank constrained linear mapping, similarly to how neural networks linearly transform
their inputs pre-activation. A conceptual difference is that in our case the non-linearity is applied
first and the projection secondly, albeit the computation is coupled between these steps. We provide
further experiments and ablation studies of our models in Appendix H.

Experimental Setup. The aim of our main experiment is to test the following key properties of
our model: (1) ability to capture long-range interactions between nodes in a graph, (2) robustness to
pooling operations, hence making it less susceptible to the “over-squashing” phenomenon [2]. We
do this by following the experiments in [70]. In particular, we show that our model is competitive
with previous approaches for retaining long-range context in graph-level learning tasks but without
computing all pairwise interactions between nodes, thus keeping the influence distribution localized
[73]. We further give a detailed ablation study to show the robustness of our model to various
architectural choices in Appendix H.2. As a second experiment, we follow the previous applications
of diffusion approaches to graphs that have mostly considered inductive learning tasks, e.g. on the
citation datasets [13, 60, 11]. Our experimentation on these datasets are available in Appendix H.3,
where the model performs on par with short-range GNN models, but does not seem to benefit from
added long-range information a-priori. However, when labels are dropped in a k-hop sanitized way
as in [50], the performance decrease is less pronounced.

Datasets. We use two biological graph classification datasets (NCI1 and NCI109), that contain
around ⇠4000 biochemical compounds represented as graphs with ⇠30 nodes on average [67, 1].
The task is to predict whether a compound contains anti-lung-cancer activity. The dataset is split in
a ratio of 80%� 10%� 10% for training, validation and testing. Previous work [2] has found that
GNNs that only summarize local structural information can be greatly outperformed by models that
are able to account for global contextual relationships through the use of fully-adjacent layers. This
was further improved on by [70], where a local neighbourhood encoder consisting of a GNN stack
was upgraded with a Transformer submodule [64] for learning global interactions.

Model Details. We build a GNN architecture primarily motivated by the GraphTrans (small) model
from [70], and only fine-tune the pre- and postprocessing layers(s), random walk length, functional
degree and optimization settings. In detail, a preprocessing MLP layer with 128 hidden units is
followed by a stack of 4 G2TN layers each with RW length-5, max rank-128, max tensor degree-2,
all equipped with JK-connections [73] and a max aggregator. Afterwards, the node features are
combined into a graph-level representation using gated attention pooling [41]. The pooled features are
transformed using a final MLP layer with 256 hidden units, and then fed into a softmax classification
layer. The pre- and postprocessing MLP layers employ skip-connections [30]. Both MLP and G2TN
layers are followed by layer normalization [3], where GTN layers normalize their rank-1 functionals
independently across different tensor degrees, which corresponds to a particular realization of group
normalization [69]. We randomly drop 10% of the features for all hidden layers during training [58].
The attentional variant, G2T(A)N also randomly drops 10% of its edges and uses 8 attention heads
[65]. Training is performed by minimizing the categorical cross-entropy loss with an `2 regularization
penalty of 10�4. For optimization, Adam [32] is used with a batch size of 128 and an inital learning
rate of 10�3 that is decayed via a cosine annealing schedule [42] over 200 epochs. Further intuition
about the model and architectural choices are available in Appendix H.1.

Baselines. We compare against (1) the baseline models reported in [70], (2) variations of Graph-
Trans, (3) other recently proposed hierarchical approaches for long-range graph tasks [50]. Groups
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Table 1: Comparison of classification accuracies on NCI biological datasets, where we report mean
and standard deviation over 10 random seeds for our models.

Model GNN Type GNN Count NCI1 (%) NCI109 (%)
Set2Set [40, 66] GCN 3 68.6± 1.9 69.8± 1.2
SortPool [40, 75] GCN 3 73.8± 1.0 74.0± 1.2
SAGPoolh [40] GCN 3 67.5± 1.1 67.9± 1.4
SAGPoolg [40] GCN 3 74.2± 1.2 74.1± 0.8

GIN [21, 72] GIN 8 80.0± 1.4 -
GCN + VN [74, 24] GCN 2 71.5 -
HGNet-EdgePool [74, 54] GCN+RGCN 3 + 2 77.1 -
HGNet-Louvain [74, 54] GCN+RGCN 3 + 2 75.1 -

GIN + FA [2, 72] GIN 8 81.5± 1.2 -
GraphTrans (small) [70, 64] GCN 3 81.3± 1.9 79.2± 2.2
GraphTrans (large) [70, 64] GCN 4 82.6± 1.2 82.3± 2.6

G2T(A)N (ours) G2T(A)N 4 81.9± 1.2 78.0± 2.3
G2TN (ours) G2TN 4 80.7± 2.5 78.9± 2.5

of models in Table 1 are separated by dashed lines if they were reported in separate papers, and the
first citation after the name is where the result first appeared. The number of GNN layers in HGNet
are not discussed by [50], and we report it as implied by their code. We organize the models into
three groups divided by solid lines: (a) baselines that only apply neighbourhood aggregations, and
hierarchical or global pooling schemes, (b) baselines that first employ a local neighbourhood encoder,
and afterwards fully densify the graph in one way or another so that all nodes interact with each other
directly, (c) our models that we emphasize thematically belong to (a).

Results. In Table 1, we report the mean and standard deviation of classification accuracy computed
over 10 different seeds. Overall, both our models improve over all baselines in group (a) on both
datasets, maximally by 1.9% on NCI1 and by 4.8% on NCI109. In group (b), G2T(A)N is solely
outperformed by GraphTrans (large) on NCI1 by only 0.7%. Interestingly, the attention-free variation,
G2TN , performs better on NCI109, where it performs very slightly worse than GraphTrans (small).

Discussion. The previous experiments demonstrate that our approach performs very favourably
on long-range reasoning tasks compared to GNN-based alternatives without global pairwise node
interactions. Several of the works we compare against have focused on extending GNNs to larger
neighbourhoods by specifically designed graph coarsening and pooling operations, and we emphasize
two important points: (1) our approach can efficiently capture large neighbourhoods without any need
for coarsening, (2) it already performs well with simple mean-pooling as justified by Theorem 2 and
experimentally supported by the ablation studies in Appendix H.2. Although the Transformer-based
GraphTrans slightly outperforms our model potentially due to its ability to learn global interactions,
it is not entirely clear how much of the global graph structure it is able to infer from interactions of
short-range neighbourhood summaries. Finally, Transformer models can be bottlenecked by their
quadratic complexity in nodes, while our approach only scales with edges, and hence, it can be more
favourable for large sparse graphs in terms of computations.

6 Conclusion

Inspired by classical results from analysis [23], we introduce the hypo-elliptic graph Laplacian. This
yields a diffusion equation and also generalizes its classical probabilistic interpretation via random
walks but now taking history into account. In addition to several attractive theoretical guarantees, we
provide scalable algorithms. Our experiments show that this can lead to largely improved baselines
for long-range reasoning tasks. A promising future research theme is to develop improvements for
the classical Laplacian in this hypo-elliptic context; including lazy random walks [71]; nonlinear
diffusions [12]; and source/sink terms [60]. Another theme could be to extend the geometric
study [61] of over-squashing to this hypo-elliptic point of view which is naturally tied to sub-
Riemannian geometry [59]. A limitation in our theoretical results is that for the iterations of low-rank
approximations only partial results exist and expanding this is an interesting (algebra-heavy) topic.
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