
A Design space

Figure 6: An illustration of NAS-Bench-201 cell-based architecture search space, adapted from Dong
and Yang [6].

B Performance dataset

Documentation and code For documentation on accessing and using the perfor-
mance dataset see https://automl.github.io/jahs_bench_201/performance_
dataset/ and for the corresponding code see https://github.com/automl/
jahs_bench_201. Our hosting plan for the relevant assets can be found at
https://automl.github.io/jahs_bench_201/performance_dataset/.

License: We release the code used to build our benchmark and perform our experiments under
the MIT License (https://mit-license.org/), whereas we release data we created, including
the performance metrics collected by us, the splits used to train, validate and test our surrogate
models, and our surrogate models, under the CC BY 4.0 License (https://creativecommons.
org/licenses/by/4.0/).

Deep learning pipeline We largely follow the same pre-processing procedure as was used by Dong
and Yang [6] for training every sampled configuration in our performance dataset. For CIFAR-10, we
use the exact same training/validation/testing splits as Dong and Yang [6] in order to establish fair
comparison, but opted for different splits for Colorectal-Histology and Fashion-MNIST in order to
introduce variety in our tasks. The data augmentation procedures are the same for all three datasets
and mirror those used by Dong and Yang [6]. When Trivial Augment is enabled in a configuration,
it is applied before applying the other augmentation operations. Following Dong and Yang [6], we
used stochastic gradient descent with Nesterov momentum [56] using a fixed momentum of 0.9 and
a fixed minibatch size of 256 for all of our configurations. We used Cosine Annealing[57] without
restarts with a maximum epochs parameter value of 200 for all configurations. The sampled learning
rate was used as the initial learning rate for the scheduler.

Compute resources We trained the configurations on a large SLURM-based cluster with ap-
proximately 300,000 CPU-cores available in parallel. Each configuration was trained on a single
CPU-core of an Intel Skylake Xeon Platinum 8174 processor. Our total compute consumption was
approximately 7× 106 core-hours.

Sampling In order to maintain statistical independence of our samples across multiple parallel
workers and repeatability of our experiments, a Philox counter-based pseudo-random number genera-
tor [58] was used to sample the configurations as well as a unique random seed per configuration to
be used for initializing the neural network. We note, however, that due to the complex interactions of
programming environments and hardware, it is not possible to guarantee that the initial states of the
models can always be reproduced, even when these seeds are available.
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C Surrogate creation

Metrics Since a subset of the metrics present in the performance dataset can be subsumed by others,
we chose to restrict the metrics that the surrogate can predict to the top-1 accuracy of the training,
validation and test splits, the size of the model in memory, the average latency of the model computed
across the validation and test splits, the number of floating point operations per second (FLOPS)
performed by a forward pass of the model, and the total runtime, for a total of 7 metrics. We trained a
separate model for each objective.

Data splits We split our performance dataset into a training, validation and test split in an approxi-
mately 70-15-15 ratio. We attempted to maintain the sampling distribution in terms of the number
of configurations per fidelity group between the three data splits. This was achieved by a two-step
approach towards split generation. In step 1, we treated every single configuration’s data points across
multiple epochs as time-series data, where each epoch is a single time step, thereby grouping together
all the data from every epoch that a given configuration was evaluated for, treating them as a single
data point for the purpose of split-generation. In the second step, we enforced the resultant sampling
distribution of grouped data points across fidelity groups (recall, we sampled 10,000 configurations
per fidelity group) when generating the training, validation and testing splits. This ensures that all
three data splits retain all or most of the statistical properties, including any biases, of the original
performance dataset.

Adding bounds Since XGBoost is an unbounded regression model i.e. its codomain is R, it was
necessary to impose relevant domain bounds on the predicted metrics. For this purpose, during
training we first fit and applied a parameterised linear scaling transformation fs : RY → [δ, 1− δ] to
the observed metric values Y and obtained scaled values Ys = fs(Y ), where δ → 0 is a very small
value used for numerical stability and RY is the range of values observed in the training set. Following
this, we applied an inverse sigmoid transformation σ−1 : (0, 1) → R to obtain the final training labels
Yσ = σ−1(Ys) = (σ−1 ◦ fs)(Y ). At the time of prediction using the surrogate, we applied the
inverse of these transformations in the opposite sequence so as to obtain the required predicted
performance metric values, i.e. the model prediction Ŷ = (f−1

s ◦ σ)(Ỹ ), where Ỹ are the raw
predictions generated by XGBoost, σ : R → (0, 1) is the sigmoid function and f−1

s : [δ, 1− δ] → RY

is the inverse of the scaling function fs.

Hyperparameter optimization We optimize over the same hyperparameter space as Mehta et al.
[24]. Whereas fitting XGBoost used mean-squared-error as a regression metric, quality of fit
for hyperparameters was judged using Kendall’s tau rank correlation values. We use Bayesian
optimization (BO) [26] with user priors [27] with the NePS package [28]. For each surrogate model,
20 configurations were evaluated using 4 workers in parallel.

Compute resources We trained our surrogates using a SLURM-based cluster of NVidia GeForce
RTX2080 GPUs, consuming approximately 200 GPU-hours of compute in the process, including the
training of all configurations queried by the HPO process.

Documentation and code For documentation on creating surrogates see https://automl.
github.io/jahs_bench_201/surrogate/. For using our benchmark this is not required, but
we provide this to improve reproducibility. For the corresponding code see https://github.com/
automl/jahs_bench_201.

D Experiment details

To facilitate a uniform comparison of different optimizers using JAHS-Bench-201, we propose to
study incumbent trajectories of validation loss against the runtime equivalent to 100 evaluations in
the maximum fidelity setting. This allows for a comprehensive analysis of optimizer’s performance
in a practical setting of bounded compute resources. Furthermore, we propose to scale the runtime
by an average configuration evaluation runtime (see Table 8) to simplify the comparison across all
tasks and help interpretability. We provide both experimental and analysis scripts in our repository
(https://github.com/automl/jahs_bench_201_experiments). We estimate the cumulative
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Table 8: The average predicted runtime of the surrogate models of a full function evaluation across
104 random configurations for each of the datasets.

Dataset Average predicted runtime [CPU-d]

CIFAR-10 2.0
Colorectal-Histology 0.2
Fashion-MNIST 2.2

Table 9: We report speedups of model-free JAHS for reaching the same final performance as its
competitors.

Task Speedup over HPO-only Speedup over NAS-only

CIFAR-10 54.7× 33.7×
Colorectal-Histology 75.2× 20.1×
Fashion-MNIST 8.5× 34.6×
Geometric mean 32.7× 28.6×

resource consumption for our experiments performed on Intel(R) Xeon(R) Gold 6242 CPU @
2.80GHz to be 1.75 CPU-core-hours.

E Broader Impact And CO2 Emissions

Carbon Footprint. Even though creating our neural network performance dataset required a
substantial amount of compute, approximately 7× 106 core-hours, the computations remain carbon
neutral since the compute cluster used by us uses 100% clean energy. This does not take into account
carbon emissions for optimizing and training the surrogate benchmarks based on the data and indirect
emissions such as creating the compute hardware and maintenance of the compute cluster. Further, as
using our surrogate benchmarks is much less compute intensive than the corresponding trainings, our
work contributes to a reduction in carbon emissions for JAHS research.

Democratization of JAHS With the help of JAHS-Bench-201, researchers no longer need access
to expensive, high performance compute clusters and can instead perform JAHS research using
commercial laptops. This democratization of JAHS could lead to rapid advancements and increase
the utility and pervasiveness of Deep learning in general. As advancements in JAHS research are of a
foundational nature, therefore they can lead to both good and bad societal impacts.

No human subjects and personal data Our work did not involve any aspects of human experi-
mentation or handling of personal data, thereby making any direct or indirect negative consequences
pertaining to issues of privacy, personal health, safety, discrimination and other related aspects arising
from our work very unlikely.

F Colorectal-Histology Data Distribution Shift

We noted that our surrogate models’ performance on the Colorectal-Histology task was much worse
than on CIFAR-10 and Fashion-MNIST. In order to investigate the cause behind this, we performed
two additional experiments.

In the first experiment, 20 configurations were randomly chosen from the set of configurations
belonging to the highest fidelity group (N=5, W=16, R=1.0) that had already been evaluated on
CIFAR-10 and Colorectal-Histology for our performance dataset and re-evaluated for 200 epochs
using 2 different, randomly sampled sets of seeds for initialization. Then, we calculated the rank
correlation of the configurations for each of the metrics our surrogates were trained to predict across
different initial conditions for the same configuration at the same epoch of evaluation. This enabled
us to coarsely estimate the amount of noise in the underlying metric data distribution to be expected
based on the initial conditions. We present the results of this analysis in Table 11.
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Table 10: We report speedups of model-based JAHS for reaching the same final performance as its
competitors.

Task Speedup over HPO-only Speedup over NAS-only

CIFAR-10 48.6× 33.7×
Colorectal-Histology 64.1× 15.7×
Fashion-MNIST 2.5× 20.2×
Geometric mean 19.8× 22.0×

The task-agnostic metrics FLOPS and size exhibited perfect rank-correlation whereas the total
runtime and latency metrics exhibited similar levels of noise in the underlying data distribution, as
expected. However, the task-dependent accuracy metrics exhibit clear differences between the two
tasks, wherein we observe far lower rank correlation between different initializations for models
evaluated on Colorectal-Histology than on CIFAR-10. This leads us to believe that the underlying
data-distribution for these metrics is much noisier in the case of evaluations on Colorectal-Histology.
This presents a strong case for the reason behind the difference in performance of some of our
surrogate models, but it is insufficient to explain why this is also the case for the other half of the
surrogates.

Table 11: Kendall’s τ correlation values for the metric values recorded between two different
initializations of the same model configurations that were then evaluated on the tasks CIFAR-10 and
Colorectal-Histology.

CIFAR-10 Colorectal-Histology

FLOPS 1.000 1.000
Latency 0.523 0.547
Runtime 0.843 0.847
Size 1.000 1.000
Train Acc 0.966 0.886
Valid Acc 0.866 0.718
Test Acc 0.865 0.720

In the second experiment, we re-ran all the configurations evaluated on Colorectal-Histology for
exactly 1 epoch under different initial conditions and re-recorded the value of the FLOPS metric for
these configurations. We observed an overall Kendall’s-τ value of merely 0.695729, indicating an
issue with the recorded metric values. After repeated tests of our training pipeline, we attribute this
shift in the data distribution to a change in the underlying hardware or firmware environment of our
compute cluster that we were unaware of over the course of the Colorectal-Histology performance
data collection, which is the only task for which data was collected across two batches with a
separation of several months instead of one. We present a further breakdown of how this affects our
data in Table 12. We note that we have no cause to suspect any such issues in the CIFAR-10 and
Fashion-MNIST performance datasets. We also note that this shift is only expected to affect those
metrics which are hardware-dependent, i.e. the FLOPS along with the "Runtime" and "Duration"
metrics.
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Table 12: Kendall’s τ correlation values between the FLOPS metric values recorded in the existing
performance dataset for models evaluated on the Colorectal-Histology task and the newly generated
FLOPS values, within each fidelity group.

Resolution 0.25 0.50 1.00
N W

1 4 0.488 0.744 0.647
8 0.624 0.992 0.991
16 0.928 0.983 0.970

3 4 0.993 0.989 0.988
8 0.792 0.724 0.733
16 0.983 0.900 0.993

5 4 0.897 0.987 0.902
8 0.900 0.980 0.657
16 0.422 0.961 0.996
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