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A Appendix

A.1 More details about the overall detector

The overall architecture of CFDT is shown in Figure 1. We elaborate on the details in terms of
backbone and neck.

Backbone. The base backbone is consistent with the network illustrated in the section of 3.1 Local-
Global Cross Fusion. The other details that we need to pay attention are the connection between det
tokens and image patches. As shown by the red dotted lines in Figure 1, we use 100 det tokens as
the additional input to perform self attention in the backbone. In this process, all det tokens share
the same weights (WQ,WK ,WV ) with coarse-grained patches, as YOLOS or ViDT. Therefore, the
embedding dimension of det tokens is equal to that of the outer coarse patches. Due to the feature
channels of patches are increased by patches aggregation operation (C1 → C2 → C3 → C4) at the
end of each stage, we duplicate the channels of each det token to keep them consistent with coarse
patches. In addition, we make cross attention between det tokens and coarse patches in the last stage,
as ViDT does. For the last stage multi-head attention mechanism, the query contents are from det
tokens, and the key and value contents are from the concatenation of det tokens and coarse patches.
Therefore, in the last stage, det tokens directly interact with the image patches.

Coarse-Fine Aware Neck. Due to the different channel dimension of different stage outputs, we use
projection layers to set the embedding dimension of coarse-grained patches and fine-grained patches
to 256 and 16 respectively. The det tokens dimension is also set as 256. The Coarse-Fine Aware
Neck is a decoder-only modules, and there are 6 decoder layers in this neck. For each decoder layer,
there are two Multi-Scale Deformable Cross-Attention interacting with Fine-grained patches and
Coarse-grained patches respectively.

A.2 More comparison results with other detectors

Besides the comparison with other transformer-based detectors, we also compare our CFDT with
RetinaNet 1× and RetinaNet 3× using recently proposed transformer as backbone. The detailed
results are shown in Table 1. From the table, our method achieves the best 48.1 AP, while the FLOPs
is only 173G. In the future object detection frameworks, transformer-based detectors maybe have
the potential to become the mainstream models. In the meanwhile, some small modules consisted of
CNN can be used to further make up for the disadvantages of transformer.
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Figure 1: Illustration of the overall architecture in CFDT. PTNT Blocks is the abbreviation of
PyramidTNT Blocks. The red dotted line represents the forward propagation of det tokens.

A.3 Coarse-Fine Crossing Representations in ViDT

To show the extensibility of our proposed methods in other Transformer-based detector, we migrate
the LGCF and CFAN to ViDT with the backbone of Swin-Transformer. We insert the inner patches
into Swin-Transformer, and introduce the LGCF to perform cross fusion between coarse-grained
and fine-grained features. We also utilize CFAN to let det tokens interact with both types of
representations.

In Swin-Transformer, the image patches are generated by the "PatchEmbed" operation. We regard
the obtained image patches as outer patches and generate inner patches from the input image. We
keep outer patches as before to extract features through Swin-Transformer blocks. For inner patches,
we extract local fine-grained features through a new independent basic Transformer block (including
Multi-Head Attention and MLP, etc. ) in each stage. At the end of each stage, we perform the
mutual cross fusion between global coarse-grained features and local fine-grained features through
LGCF. Compared with the original model, we add a basic transformer block and a LGCF module
in each stage. Besides, we also use CFAN to let det tokens make cross-attention with both types of
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Table 1: Comparison with RetinaNet 1× and RetinaNet 3× using transformer as backbone. All
backbones are pretrained on ImageNet-1K. We omit models pretrained on larger-datasets (e.g.,
ImageNet-21K). The FLOPs (G) range is 150∼300.

Detection Framework Backbone AP AP50 AP75 APS APM APL FLOPs (G)

RetinaNet 1× [1]

PVT-T[2] 39.4 59.8 42.0 25.5 42.0 52.1 221
PVT-S[2] 42.2 62.7 45.0 26.2 45.2 57.2 226
PVT-M[2] 41.9 63.1 44.3 25.0 44.9 57.6 283

PVTv2-B0[3] 37.2 57.2 39.5 23.1 40.4 49.7 177
PVTv2-B1[3] 41.2 61.9 43.9 25.4 44.5 54.3 225
PVTv2-B2[3] 44.6 65.6 47.6 27.4 48.8 58.6 290
MPViT-T[4] 41.8 62.7 44.6 27.2 45.1 54.2 196

MPViT-XS[4] 43.8 65.0 47.1 28.1 47.6 56.5 211
MPViT-S[4] 45.7 57.3 48.8 28.7 49.7 59.2 248
Swin-T[5] 42.0 63.0 44.7 26.6 45.8 55.7 245
Focal-T[6] 43.7 65.2 46.7 28.6 47.4 56.9 265

Twins-SVT-S[7] 42.3 63.4 45.2 26.0 45.5 56.5 209
Twins-PCPVT-S[7] 43.0 64.1 46.0 27.5 46.3 57.3 226

Shunted-S[8] 45.4 65.9 49.2 28.7 49.3 60.0 -
CMT-S[9] 44.3 65.5 47.5 27.1 48.3 59.1 231

RetinaNet 3× [1]

PVT-T[2] 39.4 59.8 42.0 25.5 42.0 52.1 221
PVT-S[2] 42.2 62.7 45.0 26.2 45.2 57.2 226
PVT-M[2] 43.2 63.8 46.1 27.3 46.3 59.9 283

MPViT-T[4] 44.4 65.5 47.4 29.9 48.3 56.1 196
MPViT-XS[4] 46.1 67.4 49.3 31.4 50.2 58.4 211
MPViT-S[4] 47.6 68.7 51.3 32.1 51.9 61.2 248
Swin-T[5] 45.0 65.9 48.4 29.7 48.9 58.1 245
Focal-T[6] 45.5 66.3 48.8 31.2 49.2 58.7 265

Twins-SVT-S[7] 45.6 67.1 48.6 29.8 49.3 60.0 209
Twins-PCPVT-S[7] 45.2 66.5 48.6 30.0 48.8 58.9 226

Shunted-S[8] 46.4 66.7 50.4 31.0 51.0 60.8 -
CMT-S[9] 46.9 67.1 50.5 30.4 49.8 61.0 231

CFDT P-Medium 48.1 67.8 51.8 28.1 50.9 66.4 173

representations. We utilize Swin-Nano as the base backbone, and the experimental results are as
follows.

Table 2: Analysis of Coarse-Fine Crossing Representations in ViDT.

Backbone LGCF CFAN AP ∆AP FLOPs (G)

Swin-Nano

40.4 - 37
X 42.3 ↑1.9 43
X X 42.7 ↑2.3 45

From Table 2, it is obvious that the combination of LGCF and CFAN greatly improves 2.3 AP for
ViDT. The trend of AP changes is consistent with CFDT.

A.4 Limitations and societal impacts

The main limitation of CFDT is that it still divides the whole framework into several sub modules,
including backbone and neck. Actually, backbone is mainly used to extract features, while neck is
mainly used to make cross attention between det tokens and features. Because CFDT is a transformer-
based detector, it is more promising to combine the two parts into one module. In other words, a
single model can perform image features extraction and interacting between det tokens and image
patches. We hope to propose such a detector in the near future.
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As for the societal impacts, because CFDT possesses the characteristics of high accuracy and low
computation, it may be deployed to monitoring and other scenarios. If these are obtained by criminals,
there might be social risks of information security disclosure.
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