
A Proofs, Additional Theoretical Results & Discussion

A.1 (", �)-DP and Rényi DP for Propose-Test-Release

We consider two adjacent datasets S, S
0 where S

0 = S [{x}. We denote the threshold B =
log(1/(2�0))b. Note that we have Pr[Lap(0, b) > B] = �0. The output of Algorithm 1 on dataset
S is a sample from a joint distribution (b�,M)(S) where b�(S) = Lap(�(S), b) and M(S)|b� =

N (f1(S),�2
1)1[b�  B] +N (f2(S),�2

2)1[b� > B].

Theorem 4.2 (restated). Suppose GSf1 = GSf2 = 1 and �1 = �2/⌧ , then Algorithm 1 is ("(b)Lap +

"
(�1)
N

(�), �0 + �)-DP.

Proof. We consider two cases for LSf2(S) and LSf2(S0).

Case 1: both LSf2(S) and LSf2(S0) are greater than ⌧ . In this case, we have �(S) = �(S0) = 0
(recall that � refers to the minimum amount of data addition/removal to make the local sensitivity
> ⌧). Therefore, there are no privacy loss in b�. Besides, the probability that PTR releases f2(S) +
N (0,�2

2) is at most Pr[b� > B] = Pr[Lap(0, b) > B] = �0. Therefore, with probability at least
1� �0, the PTR is ("(�1)

N
(�), �)-DP, and overall it is ("(�1)

N
(�), � + �0)-DP.

Case 2: at least one of LSf2(S) and LSf2(S0) are smaller than ⌧ . In this case, we know that
Pr[M(S) 2 T]  e

"
(�1)
N (�) Pr[M(S0) 2 T] + � regardless of the value of b�. Thus, by basic

composition theorem, PTR in this case is
⇣
"
(b)
Lap + "

(�1)
N

(�), �
⌘

-DP.

Therefore, PTR is ("(b)Lap + "
(�1)
N

(�), �0 + �)-DP overall.

Comparison between (", �)-DP and RDP Analysis: A motivating example (expanded). Sup-
pose we have two mechanisms M1 and M2 who are ("1, �1)-DP and ("2, �2)-DP, respectively.
Consider a simple PTR-like mechanism M that randomly picks one of mechanisms M1 and M2 to
run, each with probability 1� �0 and �0

7. A straightforward (", �)-DP analysis for M can be given
as follows: for any possible event T ,

Pr[M(S) 2 T] = (1� �0) Pr[M1(S) 2 T] + �0 Pr[M2(S) 2 T] (3)
 (1� �0)[e

"1 Pr[M1(S
0) 2 T] + �1] + �0[e

"2 Pr[M2(S
0) 2 T] + �2] (4)

= e
"1(1� �0) Pr[M1(S

0) 2 T] + e
"2�0 Pr[M2(S

0) 2 T] + (1� �0)�1 + �0�2

(5)

 e
max("1,"2) Pr[M(S) 2 T] + (1� �0)�1 + �0�2 (6)

That is, M is (max("1, "2), (1� �0)�1 + �0�2)-DP. Without further information, this bound is the
best we can do since it is tight when there exists event T such that Pr[M1(S0) 2 T] = 0 while
Pr[M2(S0) 2 T] > 0. Alternatively, if we know "2 � "1 we can also move the probability �0 to the
� term and obtain ("1, �0 + �1) (which is the case for Theorem 4.2).

However, if we know the RDP guarantee of M1 and M2 as E↵(M1(S)kM1(S0))  f↵("1) and
E↵(M2(S)kM2(S0))  f↵("2)8, then E↵(M(S)kM(S0)) can be simply bounded as

EM(S)

✓
µM(S0)

µM(S)

◆↵�
= (1� �0)EM1(S)

✓
µM1(S0)

µM1(S)

◆↵�
+ �0EM2(S)

✓
µM2(S0)

µM2(S)

◆↵�
(7)

 (1� �0)f↵("1) + �0f↵("2) (8)

Compared with (", �)-DP analysis, there are no extra inequalities used in RDP analysis of M except
for the RDP guarantee of M1 and M2. Thus, RDP is more favorable in for PTR’s privacy analysis,
especially when �0 is close to the target �.

7For the actual PTR, the �0 is not fixed but depends on the input dataset.
8Recall that f↵(") = exp((↵� 1)") where if M is (↵, ")-RDP then E↵(M(S)kM(S0))  f↵(").

15

Theorem 4.3 (restated). Suppose GSf1 = GSf2 = 1 and �1 = �2/⌧ . Then for any ↵ > 1, Algorithm
1 is (↵, "PTR(↵))-RDP for

"PTR(↵)  max
⇣
f
�1
↵

⇣
(1� �0)f↵

⇣
"
(�1)
R�N

(↵)
⌘
+ �0f↵

⇣
"
(�2)
R�N

(↵)
⌘⌘

, "
(�1)
R�N

(↵) + "
(b)
R�Lap(↵)

⌘

Proof. We will denote the density of (b�,M)(S) as µ and that of (b�,M)(S0) as µ0. We will use
µ(s, t) to denote the joint density on the pair of outputs (s, t), where s ⇠ b�(S) and t ⇠M(S)|b�.
Furthermore, when we write µ(s) it refers to the marginal density of µ on s, and µ(t|s) refers to the
conditional density on t given s.

In order to bound RDP of PTR with order ↵, it suffices to bound the moments E(s,t)⇠µ

h⇣
µ0(s,t)
µ(s,t)

⌘↵i

and E(s,t)⇠µ0

h⇣
µ(s,t)
µ0(s,t)

⌘↵i
then take the bigger of the two bounds. For readability, we may ab-

breviate the two quantities as Eµ

h⇣
µ0

µ

⌘↵i
and Eµ0

h⇣
µ
µ0

⌘↵i
. We do the following to decompose

E(s,t)⇠µ

h⇣
µ0(s,t)
µ(s,t)

⌘↵i
:

E(s,t)⇠µ

✓
µ
0(s, t)

µ(s, t)

◆↵�
(9)

= E(s,t)⇠µ

✓
µ
0(s)µ0(t|s)

µ(s)µ(t|s)

◆↵�
(10)

= Es⇠µ

✓
µ
0(s)

µ(s)

◆↵

Et⇠µ|s

✓
µ
0(t|s)

µ(t|s)

◆↵��
(11)

= Es⇠µ

✓
µ
0(s)

µ(s)

◆↵✓
Et⇠µ|s

✓
µ
0(t|s)

µ(t|s)

◆↵�
1[s  B] + Et⇠µ|s

✓
µ
0(t|s)

µ(t|s)

◆↵�
1[s > B]

◆�

(12)
(13)

When s  B, we know that

Et⇠µ|s

✓
µ
0(t|s)

µ(t|s)

◆↵�
= Et⇠N (f1(S),�2

11d)

✓
N (t; f1(S0),�2

11d)

N (t; f1(S),�2
11d)

◆↵�
(14)

= Et⇠N (0,�2
11d)

✓
N (t; f1(S0)� f1(S),�2

11d)

N (t;0,�2
11d)

◆↵�
(15)

= Et⇠N (0,�2
1)

✓
N (t; kf1(S0)� f1(S)k ,�2

1)

N (t; 0,�2
1)

◆↵�
(16)

 Et⇠N (0,�2
1)

✓
N (t; 1,�2

1)

N (t; 0,�2
1)

◆↵�
(17)

= f↵

⇣
"
(�1)
R�N

(↵)
⌘

(18)

where (15) is due to the translation invariance of Rényi divergence, (16) is due to the rotation trick,
(17) is because of kf1(S0)� f1(S)k  1.

We now analyze the upper bound of Et⇠µ|s

h⇣
µ0(t|s)
µ(t|s)

⌘↵i
when s > B by considering two separate

cases: when both LSf2(S) > ⌧ and LSf2(S0) > ⌧ , and when there is at least one of LSf2(S) and
LSf2(S0) is greater than ⌧ .

Case 1: both LSf2(S) and LSf2(S0) are greater than ⌧ . In this case, the only known up-
per bound of kf2(S)� f2(S0)k is the global sensitivity GSf2 = 1. Therefore, we only have

16

Et⇠µ|s

h⇣
µ0(t|s)
µ(t|s)

⌘↵i
 f↵

⇣
"
(�2)
R�N

(↵)
⌘

when s > B. Therefore, in this case we have

Et⇠µ|s

✓
µ
0(t|s)

µ(t|s)

◆↵�
1[s  B] + Et⇠µ|s

✓
µ
0(t|s)

µ(t|s)

◆↵�
1[s > B] (19)

= f↵

⇣
"
(�1)
R�N

(↵)
⌘
1[s  B] + f↵

⇣
"
(�2)
R�N

(↵)
⌘
1[s > B] (20)

However, note that when both LSf2(S) and LSf2(S0) is greater than ⌧ , we have �(S) = �(S0) = 0,
which means that there is no privacy loss by releasing the result of b�(S) or b�(S0). Therefore, we
have µ(s) = µ

0(s) = Lap(s; 0, b), and thus

E(s,t)⇠µ

✓
µ
0(s, t)

µ(s, t)

◆↵�
(21)

= Es⇠µ

h
f↵

⇣
"
(�1)
R�N

(↵)
⌘
1[s  B] + f↵

⇣
"
(�2)
R�N

(↵)
⌘
1[s > B]

i
(22)

= f↵

⇣
"
(�1)
R�N

(↵)
⌘
Pr[Lap(0, b)  B] + f↵

⇣
"
(�2)
R�N

(↵)
⌘
Pr[Lap(0, b) > B] (23)

= (1� �0)f↵
⇣
"
(�1)
R�N

(↵)
⌘
+ �0f↵

⇣
"
(�2)
R�N

(↵)
⌘

(24)

Case 2: at least one of LSf2(S) and LSf2(S0) are smaller than ⌧ . In this case, we know that we
have kf2(S)� f2(S0)k  ⌧ . Thus, when s � B, we have

Et⇠µ|s

✓
µ
0(t|s)

µ(t|s)

◆↵�
= Et⇠N (0,�2

2)

✓
N (t; kf2(S0)� f2(S)k ,�2

2)

N (t; 0,�2
2)

◆↵�
(25)

 Et⇠N (0,�2
2)

✓
N (t; ⌧,�2

2)

N (t; 0,�2
2)

◆↵�
(26)

= f↵

⇣
"
(�2/⌧)
R�N

(↵)
⌘

(27)

Thus, we have

E(s,t)⇠µ

✓
µ
0(s, t)

µ(s, t)

◆↵�
(28)

 Es⇠µ

✓
µ
0(s)

µ(s)

◆↵ ⇣
f↵

⇣
"
(�1)
R�N

(↵)
⌘
1[s  B] + f↵

⇣
"
(�2/⌧)
R�N

(↵)
⌘
1[s > B]

⌘�
(29)

= Es⇠µ

✓
µ
0(s)

µ(s)

◆↵

f↵

⇣
"
(�1)
R�N

(↵)
⌘�

(30)

= f↵

⇣
"
(�1)
R�N

(↵)
⌘
Es⇠µ

✓
µ
0(s)

µ(s)

◆↵�
(31)

 f↵

⇣
"
(�1)
R�N

(↵)
⌘
f↵("

(b)
R�Lap(↵)) (32)

where (30) is because by our condition, �1 = �2/⌧ .

Therefore, we have

D↵(µ
0
kµ)


1

↵� 1
log
⇣
max((1� �0)f↵

⇣
"
(�1)
R�N

(↵)
⌘
+ �0f↵

⇣
"
(�2)
R�N

(↵)
⌘
, f↵

⇣
"
(�1)
R�N

(↵)
⌘
f↵("

(b)
R�Lap(↵)))

⌘

= max

✓
1

↵� 1
log
⇣
(1� �0)f↵

⇣
"
(�1)
R�N

(↵)
⌘
+ �0f↵

⇣
"
(�2)
R�N

(↵)
⌘⌘

, "
(�1)
R�N

(↵) + "
(b)
R�Lap(↵)

◆

Since we did not use any condition that depends on the fact that S0 = S [{x}, we know that
D↵(µkµ0) also has the exactly the same upper bound, which leads to the conclusion.

17

A.1.1 Discussion: can we improve privacy analysis by not releasing b�?

One may wonder if we can further improve the privacy analysis of PTR by not releasing b�. However,
releasing b� is essential for the applications of PTR. The rationale behind PTR is to exploit the fact
that, while a function’s global sensitivity may be large, its local sensitivity may be much smaller
for most of the “common inputs”. Thus, such a mechanism will only be preferred over a regular
output perturbation mechanism when the local sensitivity of data drawn from input data distribution
rarely exceeds the threshold. Without knowing about b�, the user cannot know whether they are
actually enjoying the benefits from PTR or simply wasting privacy budgets on private sensitivity tests.
Furthermore, the user cannot adjust the hyperparameters or switch algorithms accordingly. Notably,
in Section 5 (the application of PTR in privatizing robust SGD), we also use the information from b�
to dynamically adjust the number of gradients to be trimmed (note that this does not affect privacy
analysis since the adjustment is post-processing of b�).

Besides, we gave an attempt to directly analyze the variant of PTR that does not release �̂, and we
do not see an easy way to obtain a better privacy bound than we have in Theorem 4.3.

We follow the same notations as in the proof of Theorem 4.3: Given a pair of neighboring dataset
S, S

0, we denote the density of M(S) as µ and that of M(S0) as µ0. Given s ⇠ b�(S), we denote
µ(t|s  B) the density of N (f1(S),�2

1), and µ(t|s > B) the density of N (f2(S),�2
2). µ0(t|s  B)

and µ
0(t|s > B) are defined analogously.

Similar to the proof of Theorem 4.3, we consider two separate cases: when both LSf2(S) > ⌧ and
LSf2(S0) > ⌧ , and when there is at least one of LSf2(S) and LSf2(S0) is greater than ⌧ .

Case 1. For the case that both LSf2(S) and LSf2(S0) are greater than ⌧ , from the proof of Theorem
4.3 we know that b�(S) and b�(S0) has exactly the same distribution since �(S) = �(S0) = 0. Thus,
the exactly the same proof in Theorem 4.3 applies for the case of not releasing b�.

Case 2. For the case that at least one of LSf2(S) and LSf2(S0) is smaller than ⌧ , here’s our attempt:

E↵(M(S)kM(S0)) = Et⇠µ

✓
µ
0(t)

µ(t)

◆↵�
(33)

= Et⇠µ

"
µ
0(t|s  B) Pr[b�(S0)  B] + µ

0(t|s > B) Pr[b�(S0) > B]

µ(t|s  B) Pr[b�(S)  B] + µ(t|s > B) Pr[b�(S) > B]

!↵#

(34)

As we can see, while the distribution of M(S) is a Gaussian mixture, the probability for different com-
ponents is also depending on S, which introduce more challenge in bounding E↵(M(S)kM(S0)).
One relatively simple way to bound the above expression is by noticing that since b� = �+Lap(0, b),
by the privacy guarantee of Laplace mechanism we have Pr[b�(S0)  B]  e

1/b Pr[b�(S)  B] and
Pr[b�(S0) > B]  e

1/b Pr[b�(S) > B]. Thus, we have

(34)  exp
⇣
↵

b

⌘
Et⇠µ

"
µ
0(t|s  B) Pr[b�(S)  B] + µ

0(t|s > B) Pr[b�(S) > B]

µ(t|s  B) Pr[b�(S)  B] + µ(t|s > B) Pr[b�(S) > B]

!↵#
(35)

 exp
⇣
↵

b

⌘
Et⇠µ

✓
µ
0(t|s  B)

µ(t|s  B)

◆↵�
(36)

where the last inequality is due to the quasi-convexity of Renyi divergence [VEH14] (note that
Et⇠µ

h⇣
µ0(t|sB)
µ(t|sB)

⌘↵i
= Et⇠µ

h⇣
µ0(t|s>B)
µ(t|s>B)

⌘↵i
by construction for this case). Thus, we have

R↵(M(S)kM(S0))  "
(�1)
R�N

(↵) +
1

↵� 1

⇣
↵

b

⌘
(37)

for the case of at least one of LSf2(S) and LSf2(S0) are smaller than ⌧ .

Now we show that this bound is not as good as the corresponding bound in Theorem 4.3. The
corresponding bound in Theorem 4.3 for this case is "(�1)

R�N
(↵) + "

(b)
R�Lap(↵), so we only need to

18

show "
(b)
R�Lap(↵) <

1
↵�1

�
↵
b

�
.

"
(b)
R�Lap(↵) =

1

↵� 1
log

✓
↵

2↵� 1
exp

✓
↵� 1

b

◆
+

↵� 1

2↵� 1
exp

⇣
�
↵

b

⌘◆
(38)

<
1

↵� 1
log

✓
↵

2↵� 1
exp

⇣
↵

b

⌘
+

↵� 1

2↵� 1
exp

⇣
↵

b

⌘◆
(39)

=
1

↵� 1
log
⇣
exp

⇣
↵

b

⌘⌘
(40)

=
1

↵� 1

⇣
↵

b

⌘
(41)

where the first inequality is due to exp
�
↵�1
b

�
< exp

�
↵
b

�
and exp

�
�

↵
b

�
< exp

�
↵
b

�
.

Thus, we think at least there are no simple solution for improving the privacy bound for PTR by not
releasing b�. However, even if there are a better way to derive the privacy bound, this variant of PTR
may not be user-friendly as the counterpart who release b�.

A.2 Rényi DP for Subsampled Propose-Test-Release

We consider two adjacent datasets S, S
0 where S

0 = S [{x}. We denote the threshold B =
log(1/(2�0))b. Note that we have Pr[Lap(0, b) > B] = �0. The output of Algorithm 1 on dataset
S is a sample from a joint distribution (b�,M)(S) where b�(S) = Lap(�(S), b) and M(S)|b� =

N (f1(S),�2
1)1[b�  B] +N (f2(S),�2

2)1[b� > B].
Theorem 4.4 (full version). Let q be the subsampling probability. Suppose GSf1 = GSf2 = 1 and
�1 = �2/⌧ . If q  exp(�1/b)

4+exp(�1/b) and �1 � �2 � 4, and ↵ satisfy 1 < ↵ 
1
2�

2
2L � 2 ln�2,↵ 

1
2�

2
2L

2
�ln 5�2 ln�2

L+ln(q0↵)+1/(2�2
2)
, where L = ln

⇣
1 + 1

q0(↵�1)

⌘
and q

0 = q
q+(1�q) exp(�1/b) , we have

"PTR�PoissonSample(↵)  f
�1
↵ (max(B0,B1,B2))

where

B0 = 1 + 2q2↵(↵� 1)

✓
1� �0

�2
1

+
�0

�2
2

◆
(42)

B1 = R(↵)
q +

2↵(↵� 1)

�2
1

h
R(↵)

q � 2(1� q)R(↵�1)
q + (1� q)2R(↵�2)

q

i
(43)

B2 = eR(↵)
q +

2↵(↵� 1)

�2
1

h
eR(↵)
q � 2(1� q)eR(↵+1)

q + (1� q)2eR(↵+2)
q

i
(44)

with R(↵)
q = Es⇠µ0

h⇣
µ(s)
µ0(s)

⌘↵i
and eR(↵)

q = Es⇠µ

h⇣
µ0(s)
µ(s)

⌘↵i
for µ0 ⇠ Lap(0, b) and µ ⇠

(1� q)Lap(0, b) + qLap(1, b).

Proof. Let T denote a set-valued random variable defined by taking a random subset of S, where
each element of S is independently placed in T with probability q. Conditioned on T , the PTR
outputs (b�,M)(T). Thus,

⇣
b�,M

⌘
(S) =

X

T✓S

pT ·

⇣
b�,M

⌘
(T) (45)

⇣
b�,M

⌘
(S0) =

X

T✓S

pT ·

⇣
(1� q) · (b�,M)(T) + q · (b�,M)(T [{x})

⌘
(46)

where pT denotes the probabilty of sampling the subset T .

19

D↵

⇣⇣
b�,M

⌘
(S0)k

⇣
b�,M

⌘
(S)
⌘

= D↵

X

T

pT ·

⇣
(1� q) · (b�,M)(T) + q · (b�,M)(T [{x})

⌘
k

X

T

pT ·

⇣
b�,M

⌘
(T)

!

 sup
T

D↵

⇣
(1� q) · (b�,M)(T) + q · (b�,M)(T [{x})k

⇣
b�,M

⌘
(T)
⌘

where the last step is due to the quasi-convexity of Rényi divergence ([VEH14], Theorem 13).
Symmetrically, we also have

D↵

⇣⇣
b�,M

⌘
(S0)k

⇣
b�,M

⌘
(S)
⌘

(47)

 sup
T

D↵

⇣⇣
b�,M

⌘
(T)k(1� q) · (b�,M)(T) + q · (b�,M)(T [{x})

⌘
(48)

Fix a subset T and denote T
0 = T [{x}. We use µ0 to denote the density function of (b�,M)(T),

where µ0(s, t) refers to the density on (s, t). We use µ1 to denote the density function of (b�,M)(T 0),
where µ1(s, t) refers to the density on (s, t). Let µ = (1 � q)µ0 + qµ1. We want to bound
Eµ0

h⇣
µ
µ0

⌘↵i
and Eµ

h⇣
µ0

µ

⌘↵i
.

We first bound Eµ0

h⇣
µ
µ0

⌘↵i
, which is usually considered as an easier one.

By decomposition, we have

Es,t⇠µ0

✓
µ(s, t)

µ0(s, t)

◆↵�
= Es,t⇠µ0

✓
µ(s)µ(t|s)

µ0(s)µ0(t|s)

◆↵�
(49)

= Es⇠µ0

✓
µ(s)

µ0(s)

◆↵

Et⇠µ0(·|s)

✓
µ(t|s)

µ0(t|s)

◆↵��
(50)

For the density of conditional distribution µ(t|s), we have

µ(t|s) =
µ(s, t)

µ(s)
(51)

=
(1� q)µ0(s, t) + qµ1(s, t)

µ(s)
(52)

= I[s  B] ·
(1� q)µ0(s) · N (t; f1(T),�2

1) + qµ1(s) · N (t; f1(T 0),�2
1)

µ(s)
(53)

+ I[s > B] ·
(1� q)µ0(s) · N (t; f2(T),�2

2) + qµ1(s) · N (t; f2(T 0),�2
2)

µ(s)
(54)

Denote A(s) = qµ1(s)
µ(s) . Recall that µ(s) = (1� q)µ0(s) + qµ1(s), so we have (1�q)µ0(s)

µ(s) = 1�A.
Then we have

µ(t|s) = I[s  B]
�
(1�A) · N (t; f1(T),�

2
1) +A · N (t; f1(T

0),�2
1)
�

(55)

+ I[s > B]
�
(1�A) · N (t; f2(T),�

2
2) +A · N (t; f2(T

0),�2
2)
�

(56)

and we know that

µ0(t|s) = I[s  B]N (t; f1(T),�
2
1) + I[s > B]N (t; f2(T),�

2
2) (57)

20

Therefore we have

Et⇠µ0(·|s)

✓
µ(t|s)

µ0(t|s)

◆↵�
(58)

= Et⇠µ0(·|s)

✓
µ(t|s)

µ0(t|s)

◆↵

I[s  B] +

✓
µ(t|s)

µ0(t|s)

◆↵

I[s > B]

�
(59)

= Et⇠µ0(·|s)

✓
µ(t|s)

µ0(t|s)

◆↵�
I[s  B] + Et⇠µ0(·|s)

✓
µ(t|s)

µ0(t|s)

◆↵�
I[s > B] (60)

= I[s  B]Et⇠N (f1(T),�2
1)

✓
(1�A) +A ·

N (t; f1(T 0),�2
1)

N (t; f1(T),�2
1)

◆↵�
(61)

+ I[s > B]Et⇠N (f2(T),�2
2)

✓
(1�A) +A ·

N (t; f2(T 0),�2
2)

N (t; f2(T),�2
2)

◆↵�
(62)

Note that Et⇠N (f1(T),�2
1)

h⇣
(1�A) +A ·

N (t;f1(T
0),�2

1)
N (t;f1(T),�2

1)

⌘↵i
can be exactly bounded by the

Rényi DP of subsampled RDP with sampling probability A.

Lemma A.1 ([MTZ19], Theorem 11). If q 
1
5 ,� � 4, and ↵ satisfy 1 < ↵ 

1
2�

2
L � 2 ln�,

↵ 
1
2�

2L2
�ln 5�2 ln�

L+ln(q↵)+1/(2�2) where L = ln
⇣
1 + 1

q(↵�1)

⌘
, then for any function f with `2-sensitivity ⌧

satisfies

Et⇠N (f(T),�2)

✓
(1� q) + q ·

N (t; f(T 0),�2)

N (t; f2(T),�2)

◆↵�
 1 + 2q2⌧2↵(↵� 1)/�2 (63)

Similar to the proof of Theorem 4.3, we consider two cases:

Case 1: both LSf2(T) and LSf2(T 0) are greater than ⌧ . In this case, the only known up-
per bound of kf2(T)� f2(T 0)k is the global sensitivity GSf2 = 1. Therefore, we only have

Et⇠µ|s

h⇣
µ0(t|s)
µ(t|s)

⌘↵i
 1 + 2A2

↵(↵� 1)/�2
2 when s > B. Therefore, in this case we have

Et⇠µ|s

✓
µ
0(t|s)

µ(t|s)

◆↵�
1[s  B] + Et⇠µ|s

✓
µ
0(t|s)

µ(t|s)

◆↵�
1[s > B] (64)

= (1 + 2A2
↵(↵� 1)/(�1)

2)1[s  B] + (1 + 2A2
↵(↵� 1)/(�2)

2)1[s > B] (65)

= 1 + 2A2
↵(↵� 1)

✓
1[s  B]

�2
1

+
1[s > B]

�2
2

◆
(66)

However, note that when both LSf2(S) and LSf2(S0) is greater than ⌧ , we have �(S) = �(S0) = 0.
Therefore, we have µ(s) = µ

0(s) = Lap(s; 0, b), A = q, and thus

E(s,t)⇠µ

✓
µ
0(s, t)

µ(s, t)

◆↵�
(67)

= Es⇠µ


1 + 2q2↵(↵� 1)

✓
1[s  B]

�2
1

+
1[s > B]

�2
2

◆�
(68)

= 1 + 2q2↵(↵� 1)

✓
1� �0

�2
1

+
�0

�2
2

◆
(69)

Case 2: at least one of LSf2(T) and LSf2(T 0) are smaller than ⌧ . In this case, we know that
we have kf2(T)� f2(T 0)k  ⌧ . Since A = qµ1(s)

(1�q)µ0(s)+qµ1(s)


q
(1�q)+q exp(�1/b) which satisfy

the conditions in Lemma A.1 by our assumption, when s � B, we have Et⇠µ|s

h⇣
µ0(t|s)
µ(t|s)

⌘↵i


21

1 + 2A2
↵(↵� 1)/(�2/⌧)2. Thus we have

Es,t⇠µ0

✓
µ(s, t)

µ0(s, t)

◆↵�
(70)

= Es⇠µ0

✓
µ(s)

µ0(s)

◆↵

Et⇠µ0(·|s)

✓
µ(t|s)

µ0(t|s)

◆↵��
(71)

 Es⇠µ0

✓
µ(s)

µ0(s)

◆↵✓
1 + 2A2

↵(↵� 1)

✓
1[s  B]

�2
1

+
1[s > B]

(�2/⌧)2

◆◆�
(72)

= Es⇠µ0

✓
µ(s)

µ0(s)

◆↵�
+ 2↵(↵� 1)Es⇠µ0

✓
µ(s)

µ0(s)

◆↵

A
2

✓
I[s  B]

�2
1

+
I[s > B]

(�2/⌧)2

◆�
(73)

= Es⇠µ0

✓
µ(s)

µ0(s)

◆↵�
+

2↵(↵� 1)

�2
1

Es⇠µ0

✓
µ(s)

µ0(s)

◆↵

A
2

�
(74)

Denote R(↵)
q = Es⇠µ0

h⇣
µ(s)
µ0(s)

⌘↵i
, which is the RDP of subsampled Laplace mechanism with

sampling rate q (note that µ(s) = (1� q)µ0(s) + qµ1(s)).

Since

A =
qµ1(s)

µ(s)
= 1�

(1� q)µ0(s)

µ(s)
(75)

A
2 = 1�

2(1� q)µ0(s)

µ(s)
+

(1� q)2µ2
0(s)

µ2(s)
(76)

Plug this back to the second term, we have

Es⇠µ0

✓
µ(s)

µ0(s)

◆↵

A
2

�
(77)

= Es⇠µ0

✓
µ(s)

µ0(s)

◆↵✓
1�

2(1� q)µ0(s)

µ(s)
+

(1� q)2µ2
0(s)

µ2(s)

◆�
(78)

= Es⇠µ0

✓
µ(s)

µ0(s)

◆↵�
� 2(1� q)Es⇠µ0

"✓
µ(s)

µ0(s)

◆↵�1
#
+ (1� q)2Es⇠µ0

"✓
µ(s)

µ0(s)

◆↵�2
#

(79)

= R(↵)
q � 2(1� q)R(↵�1)

q + (1� q)2R(↵�2)
q (80)

Note that this bound is independent on T due to translation invariance, hence it is an upper bound for
arbitrary T (that satisfy case 2). Thus, the overall bound becomes

Es,t⇠µ0

✓
µ(s, t)

µ0(s, t)

◆↵�
 R(↵)

q +
2↵(↵� 1)

�2
1

h
R(↵)

q � 2(1� q)R(↵�1)
q + (1� q)2R(↵�2)

q

i
(81)

Denote eR(↵)
q = Es⇠µ

h⇣
µ0(s)
µ(s)

⌘↵i
. Since we know that

eR(↵)
q = Eµ

✓
µ0

µ

◆↵�
= Eµ0

"✓
µ0

µ

◆↵�1
#
= Eµ0

"✓
µ

µ0

◆1�↵
#
= R(1�↵)

q (82)

Thus, by setting ↵ 1� ↵, we have

Es,t⇠µ

✓
µ0(s, t)

µ(s, t)

◆↵�
(83)

= Es,t⇠µ0

"✓
µ(s, t)

µ0(s, t)

◆1�↵
#

(84)

= eR(1�↵)
q +

2↵(↵� 1)

�2
1

h
eR(1�↵)
q � 2(1� q)eR(�↵)

q + (1� q)2eR(�↵�1)
q

i
(85)

= eR(↵)
q +

2↵(↵� 1)

�2
1

h
eR(↵)
q � 2(1� q)eR(↵+1)

q + (1� q)2eR(↵+2)
q

i
(86)

22

So overall, the RDP of subsampled PTR is
1

↵� 1
ln

✓
max

✓
1 + 2q2↵(↵� 1)

✓
1� �0

�2
1

+
�0

�2
2

◆
, (87)

R(↵)
q +

2↵(↵� 1)

�2
1

h
R(↵)

q � 2(1� q)R(↵�1)
q + (1� q)2R(↵�2)

q

i
, (88)

eR(↵)
q +

2↵(↵� 1)

�2
1

h
eR(↵)
q � 2(1� q)eR(↵+1)

q + (1� q)2eR(↵+2)
q

i◆◆
(89)

A.3 Bound of the Local sensitivity after r adding/removal for Trimmed Sum

Recall that we denote a dataset S = {x1, . . . , xm}, and x(k) denote the kth smallest data point among
S in `2 norm, i.e., x(1)  x(2)  . . .  x(m). TSUMF (S) =

Pm�F
i=1 x(i) if m > F , or 0 if m  F .

Theorem 5.1 (Restate). LS(r)TSUMF
(S) =

��x(m�F+1+r)

�� if r  F � 1, or GSTSUMF if r > F � 1.

Proof. The GSTSUMF for r > F � 1 is trivial as the local sensitivity can never be larger than
global sensitivity. When r  F � 1, it is easy to see that the local sensitivity of TSUMF is just
x(m�F+1), as we can add the element with the maximum possible norm x1 in the data space to
S, so that TSUMF (S [{x1}) =

Pm+1�F
i=1 x(i), and kTSUMF (S [{x1})� TSUMF (S)k =��x(i)

��. If the added element has norm smaller than
��x(m+1�F)

��, we will always have
kTSUMF (S [{x1})� TSUMF (S)k <

��x(i)

��. We can easily see that single element removal
will also not change TSUMF (S) that much. Thus LS(0)TSUMF

(S) = x(m�F+1).

To maximize the local sensitivity of S with r elements addition/removal, it’s trivial to see that the
best strategy is simply adding element with the maximum possible norm x1 in the data space
to S, and the local sensitivity for the changed dataset S̃ = S [({x1} ⇥ r) has local sensitivity��x(m+r)�F+1

�� = kxm�F+1+rk as long as r  F � 1.

A.4 Convergence Guarantee of PTR-based Gradient Aggregation under Byzantine Failure

Settings of Robust Training. We denote the target loss function as L(w) = Ez⇠D [`(w, z)], where
w 2 Rd is the model parameters and z is a data point randomly drawn from some distribution D. We
assume ` is R-Lipschitz, �-smooth and ↵-strongly convex. We have n stochastic gradient oracles
g1, . . . , gn, where at each iteration t, for every non-corrupted gradient oracles i, it is an unbiased
estimator g(t)i for the gradient of the global expected loss function with respect to the current model
parameters wt, i.e., E[g(t)i] = rL(w(t)). We additionally assume that non-corrupted stochastic
gradients have bounded variance, i.e., for some � > 0 we have

E
g(t)
i

���g(t)i � E[g(t)i]
���
2
�
 �

2 (90)

at every step t.
Remark A.2. We do not consider the effect of subsampling here for clean presentation. The effect
from subsampling could be easily handled by deriving a high probability upper bound for the number
of corrupted gradient oracles that will be sampled.

SGD with PTR works as
b�, g̃

(t)
 PTR({g1, . . . , gn}) (91)

w
(t+1)

 w
(t)
�

⇣
⌘AI[b� < log(1/(2�0))] + ⌘BI[b� � log(1/(2�0))]

⌘
g̃
(t) (92)

Further, we call it Routine A if b� is small and PTR({g1, . . . , gn}) =
Pn

i=1 g
(t)
(i) +N (0,�11d), and

call it Routine B if b� is large and PTR({g1, . . . , gn}) =
Pn�F

i=1 g
(t)
(i) +N (0,�21d). It makes sense

to use a smaller learning rate ⌘A when the PTR goes to Routine A, and use a larger learning rate ⌘B

for Routine B, since the two routines use different amount of gradient information.

23

Theorem 5.2 (formal version). Let w⇤
2 argminw L(w). If there are at most F gradients being

corrupted at each iteration, and if we set ⌘A = n�F
n ⌘B and �

2
2 �

(n�F)(n+1)
n2

⇣
(n�F)�2+FR

d + �
2
1

⌘
,

then as t!1, we have

Eg,⇠

���w(t)
� w

⇤

���
2
�


MB

1� ⇢B
(93)

for

0 < ⌘B 
2↵(n� 2F)

n2 + (n� F + 1)(n� F)�2
(94)

where

⇢B = 1� 2⌘B↵(n� 2F) + ⌘
2
B(n

2 + (n� F + 1)(n� F)�2) (95)

MB = ⌘
2
B(n� F + 1)

�
(n� F)�2 + d�

2
2

�
+

✓
F

n

◆2

R
2 (96)

Proof. Let ⌘ = ⌘AI[b� < log(1/(2�0))]+⌘BI[b� � log(1/(2�0))]. By the update rule of parameters
in SGD, we have

���w(t+1)
� w

⇤

���
2
=
���w(t)

� w
⇤

���
2
� 2⌘

D
w

(t)
� w

⇤
, g̃

(t)
E
+ ⌘

2
���g̃(t)

���
2

(97)

where

g̃
(t) = PTR({g1, . . . , gn}) (98)

If PTR runs Routine B, then

g̃
(t) =

n�FX

i=1

g
(t)
(i) + ⇠, ⇠ ⇠ N (0,�2Id) (99)

If PTR runs Routine A, then

g̃
(t) =

nX

i=1

g
(t)
(i) + ⇠, ⇠ ⇠ N (0,�1Id) (100)

In the following proof, we consider the two routines separately. We denote a set of n � F non-
corrupted gradients at step t as H(t). We use g

(t)
(i) the ith smallest gradient among the set of gradients

at step t, i.e., g(t)(1)  . . .  g
(t)
(n).

Case of Running Routine B. In this case, E[k⇠k2] = d�
2
2 . We first upper bound

��g̃(t)
��:

���g̃(t)
��� =

�����

n�FX

i=1

g
(t)
(i) + ⇠

����� (101)



n�FX

i=1

���g(t)(i)

���+ k⇠k (102)



X

i2H(t)

���g(t)i

���+ k⇠k (103)

Therefore

���g̃(t)
���
2
 (n� F + 1)

0

@
X

i2H(t)

���g(t)i

���
2
+ k⇠k2

1

A (104)

due to AM-QM inequality.

24

Now we lower bound
⌦
w

t
� w

⇤
, g̃

(t)
↵
. We denote the non-corrupted gradients that are not being

trimmed in step t as H̃(t) = H
(t)
\ {g

(t)
(1), . . . , g

(t)
(n�F)}, and we denote the corrupted gradients that

are not being trimmed in step t as B
(t) = {g

(t)
(1), . . . , g

(t)
(n�F)} \ H̃

(t). Since there are at most F
corrupted gradients, we have |H̃

(t)
| � n� 2F and |B|  F . Since

g̃
(t) =

X

i2H̃(t)

g
(t)
i +

X

i2Bt

g
(t)
i + ⇠ (105)

we have
D
w

(t)
� w

⇤
, g̃

(t)
E
=
X

i2H̃(t)

D
w

(t)
� w

⇤
, g

(t)
i

E
+
X

i2Bt

D
w

(t)
� w

⇤
, g

(t)
i

E
+
D
w

(t)
� w

⇤
, ⇠

E
(106)

�

X

i2H̃(t)

D
w

(t)
� w

⇤
, g

(t)
i

E
� FR

���w(t)
� w

⇤

���+
D
w

(t)
� w

⇤
, ⇠

E
(107)

Denote this lower bound as

�t =
X

i2H̃(t)

D
w

(t)
� w

⇤
, g

(t)
i

E
� FR

���w(t)
� w

⇤

���+
D
w

(t)
� w

⇤
, ⇠

E
(108)

Then

���w(t+1)
� w

⇤

���
2


���w(t)
� w

⇤

���
2
� 2⌘�t + ⌘

2(n� F + 1)

0

@
X

i2H(t)

���g(t)i

���
2
+ k⇠k2

1

A (109)

Now this upper bound only include quantities that are independent from corrupted gradients. Take
expectation of both sides over g(t) and ⇠, we have

Eg,⇠

���w(t+1)
� w

⇤

���
2
�

(110)



���w(t)
� w

⇤

���
2
� 2⌘Eg,⇠[�t] + ⌘

2(n� F + 1)Eg,⇠

2

4
X

i2H(t)

���g(t)i

���
2
+ k⇠k2

3

5 (111)

For Eg,⇠[�t], we can obtain its lower bound

Eg,⇠[�t] =
X

i2H̃(t)

D
w

(t)
� w

⇤
,rL(w(t))

E
� FR

���w(t)
� w

⇤

��� (112)

� ↵(n� 2F)
���w(t)

� w
⇤

���
2
� FR

���w(t)
� w

⇤

��� (113)

since L is ↵-strongly convex.

For Eg,⇠

P
i2H(t)

���g(t)i

���
2
+ k⇠k2

�
, since Eg

���g(t)i

���
2
�
 �

2 + krL(wt)k
2 and E[k⇠k2] = d�

2
2 ,

we have

Eg,⇠

2

4
X

i2H(t)

���g(t)i

���
2
+ k⇠k2

3

5 (114)

 (n� F)

✓
�
2 +

���rL(w(t))
���
2
◆
+ d�

2
2 (115)

 (n� F)

✓
�
2 + �

2
���w(t)

� w
⇤

���
2
◆
+ d�

2
2 (116)

since
��rL(w(t))

�� =
��rL(w(t))�rL(w⇤)

��  �
��w(t)

� w
⇤
�� by �-smoothness of L.

25

Plugging in the lower and upper bounds, we have

Eg,⇠

���w(t+1)
� w

⇤

���
2
�

(117)


�
1� 2⌘↵(n� 2F) + ⌘

2
�
2(n� F + 1)(n� F)

� ���w(t)
� w

⇤

���
2

(118)

+ 2⌘FR

���w(t)
� w

⇤

��� (119)

+ ⌘
2(n� F + 1)

�
(n� F)�2 + d�

2
2

�
(120)


�
1� 2⌘↵(n� 2F) + ⌘

2(n2 + (n� F + 1)(n� F)�2)
� ���w(t)

� w
⇤

���
2

(121)

+ ⌘
2(n� F + 1)

�
(n� F)�2 + d�

2
2

�
+

✓
F

n

◆2

R
2 (122)

where the last step is due to

2⌘FR

���w(t)
� w

⇤

��� 
✓
F

n

◆2

R
2 + n

2
⌘
2
���w(t)

� w
⇤

���
2

(123)

Let
⇢B = 1� 2⌘↵(n� 2F) + ⌘

2(n2 + (n� F + 1)(n� F)�2) (124)

MB = ⌘
2(n� F + 1)

�
(n� F)�2 + d�

2
2

�
+

✓
F

n

◆2

R
2 (125)

Then we have

Eg,⇠

���w(t+1)
� w

⇤

���
2
�
 ⇢B

���w(t)
� w

⇤

���
2
+MB (126)

Therefore, as long as ⇢B < 1, w(t) will eventually

For ⇢B < 1, we need

0 < ⌘ 
2↵(n� 2F)

n2 + (n� F + 1)(n� F)�2
(127)

Case of Running Routine A. We follow a similar analysis as for the case of Routine A. In this case,
E[k⇠k2] = d�

2
1 .

We first upper bound
��g̃(t)

��:
���g̃(t)

��� =

�����

nX

i=1

g
(t)
(i) + ⇠

����� (128)



nX

i=1

���g(t)(i)

���+ k⇠k (129)

Therefore
���g̃(t)

���
2
 (n+ 1)

0

@
X

i2H(t)

���g(t)i

���
2
+ k⇠k2

1

A (130)

In this case, there are no gradients being corrupted, and thus we have |H̃(t)
| � n� F . Therefore, for

Eg,⇠[�t] we have

Eg,⇠[�t] =
X

i2H̃(t)

D
w

(t)
� w

⇤
,rL(w(t))

E
� FR

���w(t)
� w

⇤

��� (131)

� ↵(n� F)
���w(t)

� w
⇤

���
2
� FR

���w(t)
� w

⇤

��� (132)

26

For Eg,⇠

P
i2H(t)

���g(t)(i)

���
2
+
P

i2[n]\H(t)

���g(t)(i)

���
2
+ k⇠k2

�
, since Eg

���g(t)(i)

���
2
�
 �

2 +
��rL(w(t))

��2 and E[k⇠k2] = d�
2
1 , we have

Eg,⇠

2

4
X

i2H(t)

���g(t)(i)

���
2
+

X

i2[n]\H(t)

���g(t)(i)

���
2
+ k⇠k2

3

5 (133)

 (n� F)

✓
�
2 +

���rL(w(t))
���
2
◆
+ FR+ d�

2
1 (134)

 (n� F)

✓
�
2 + �

2
���w(t)

� w
⇤

���
2
◆
+ FR+ d�

2
1 (135)

Plugging in the lower and upper bounds, we have

Eg,⇠

���w(t+1)
� w

⇤

���
2
�

(136)


�
1� 2⌘↵(n� F) + ⌘

2(n+ 1)(n� F)�2
� ���w(t)

� w
⇤

���
2

(137)

+ 2⌘FR ·

���w(t)
� w

⇤

��� (138)

+ ⌘
2(n+ 1)

�
(n� F)�2 + FR+ d�

2
1

�
(139)


�
1� 2⌘↵(n� F) + ⌘

2(n2 + (n+ 1)(n� F)�2)
� ���w(t)

� w
⇤

���
2

(140)

+ ⌘
2(n+ 1)

�
(n� F)�2 + FR+ d�

2
1

�
+

✓
F

n

◆2

R
2 (141)

Follow similar analysis, but we will have

⇢A = 1� 2⌘↵(n� F) + ⌘
2(n2 + (n+ 1)(n� F)�2) (142)

MA = ⌘
2(n+ 1)

�
(n� F)�2 + FR+ d�

2
1

�
+

✓
F

n

◆2

R
2 (143)

So for every time we run Routine A (with full gradient sum), we have

Eg,⇠

���w(t)
� w

⇤

���
2
�
 ⇢A

���w(t�1)
� w

⇤

���
2
+MA (144)

And we have MB < MA, so more routine B can improve the utility.

Overall, we if there are at most F gradients being corrupted at each iteration, we have

E
���w(t)

� w
⇤

���
2
�
 ⇢A

���w(t�1)
� w

⇤

���
2
+MA (145)

for

⇢A = 1� 2⌘A↵(n� F) + ⌘
2
A(n

2 + (n+ 1)(n� F)�2) (146)

MA = ⌘
2
A(n+ 1)

�
(n� F)�2 + FR+ d�

2
1

�
+

✓
F

n

◆2

R
2 (147)

if PTR runs Routine A, and

Eg,⇠

���w(t+1)
� w

⇤

���
2
�
 ⇢B

���w(t)
� w

⇤

���
2
+MB (148)

for

⇢B = 1� 2⌘B↵(n� 2F) + ⌘
2
B(n

2 + (n� F + 1)(n� F)�2) (149)

MB = ⌘
2
B(n� F + 1)

�
(n� F)�2 + d�

2
2

�
+

✓
F

n

◆2

R
2 (150)

27

if PTR runs Routine B.

If we set ⌘A = n�F
n ⌘B , since

�
2
2 �

(n� F)(n+ 1)

n2

✓
(n� F)�2 + FR

d
+ �

2
1

◆
(151)

we have MA MB , and we can also easily verify that ⇢A  ⇢B . Thus, as t!1, we have

Eg,⇠

���w(t)
� w

⇤

���
2
�


MB

1� ⇢B
(152)

for

0 < ⌘B 
2↵(n� 2F)

n2 + (n� F + 1)(n� F)�2
(153)

A.5 Pseudo-code of TSGD+PTR

The pseudo-code of TSGD+PTR is shown in Algorithm 2, which uses Algorithm 3 (PTR-TMEAN) as
a subroutine.

Algorithm 2: Private Trimmed-mean SGD with Propose-Test-Release
input :Dataset {z1, . . . , zN}, loss function L(✓) = 1

N

P
i L(✓, zi), learning rate ⌘, batch size

B, sensitivity bound ⌧ , Clipping threshold R, noise multiplier �.
1 Initialize ✓0 randomly.
2 for t 2 [T] do
3 Random Subsampling.
4 Take a random batch Bt with sampling probability q in Poisson subsampling.
5 Obtain Gradients.
6 For each i 2 Bt, get (potentially faulty) g(t)i .
7 Gradient Clipping.
8 g

(t)
i C · g

(t)
i for C = min

⇣
1, R/

���g(t)i

���
2

⌘
.

9 Noisy Gradient Aggregation with PTR.
10 g̃

(t)
 PTR-TMEAN

⇣
{g

(t)
i }

⌘
.

11 Descent.
12 ✓t+1,! ✓t � ⌘g̃

(t).
13 Adjust F .
14 if ! is ‘+’ then
15 Increase F .
16 else
17 Decrease F .

Algorithm 3: PTR-TMEAN

input : S – Set of (clipped) gradient vectors at step t: {g(t)i } ✓ Rd,
1 � minS̃2{S̃:LSf2 (S̃)>⌧} d

⇣
S, S̃

⌘
.

2 b� �+ Lap(0, b).
3 if b�  log(1/(2�0))b then
4 return SUM(S) + �R · N (0,1d), ‘+’

5 else
6 return TSUMF (S) + �⌧ · N (0,1d), ‘�’

28

A.5.1 Why not directly apply PTR to regular SGD?

As we discussed in the main text, PTR typically works with robust statistics such as trimmed mean.
Regular SGD use mean as gradient aggregation function. Mean, however, does not have a low local
sensitivity on most of the inputs. Therefore, we focus on the application of PTR in privatizing robust
statistics.

29

B Experiment Settings & Additional Results

B.1 Experiment Settings for Table 1

B.1.1 Corruption Simulation.

Following the literature in Byzantine robustness [YCKB18, XKG19, AHJ+21, GLV21], we consider
three possible sources of Byzantine failures: corruption in features, labels and communicated
gradients. All experiments are repeated for 0% (i.e., clean), 10%, and 20% corruption ratio (CR).

Feature Corruption. Corruption in Features can arise from the process of data collection. Following
[AHJ+21], we adopt the additive corruption introduced in [HD18]. Specifically, we add Gaussian
noise from N (0, 100) directly to the corrupted images.

Gradient Corruption. Gradient can be corrupted in distributed SGD, e.g., due to hardware malfunc-
tion or malicious users. We consider the gradient corruption following [XKG19, AHJ+21], where
we add Gaussian noise from N (0, 100) to the true gradients.

Label Corruption. Noisy labels are pervasive in the dataset. We randomly flip of label of certain
amount of data points.

B.1.2 Datasets & Models.

MNIST [LeC98] is one of the most commonly used benchmark datasets in deep learning containing
70000 handwritten digit images. CIFAR-10 [Kri09] is another classic benchmark for image classi-
fication. It consists of 60000 images from 10 different classes with 6000 images each. EMNIST
[CATVS17] is similar to MNIST but has a much larger size (145,600 character images and 26
balanced classes).

In Table 1, all models are trained entirely from scratch. For all datasets, we use a small CNN whose
architecture is inherited from the official tutorial of tensorflow/privacy9.

B.1.3 Hyperparameters.

For TSGD+PTR, we set �0 = 10�8
, b = 1. For MNIST and EMNIST, we set gradient clipping bound

R = 1, ⌧ = 0.5, noise multiplier � = 1.1 for TSGD+PTR, and � = 0.7 for TSGD+Gaussian. The
noise multiplier for TSGD+PTR and TSGD+Gaussian are picked differently in order to align their
privacy loss in each iteration. For CIFAR10, we set gradient clipping bound R = 3, ⌧ = 2, noise
multiplier � = 1.1 for TSGD+PTR, and � = 0.9 for TSGD+Gaussian.

For MNIST and EMNIST dataset, we set the learning rate as 0.15, batch size as 256; for CIFAR10
dataset, we set the learning rate as 0.1, batch size as 1024.

We set F to be 25% of the batch size for TSGD+Gaussian. For TSGD+PTR, F is dynamically adjusted
based on the value of b�. If sensitivity test is passed, we increase F by 0.02 ⇥ batchsize, and if
sensitivity test is failed, we decrease F by the same amount.

All of our experiments are performed on Tesla P100-PCIE-16GB GPU.

B.2 Additional Results on More Architectures

We experiment with more architectures on CIFAR10 dataset. Specifically, we use two famous,
moderately large architecture ResNet18 [HZRS16] and VGG11 [SZ14]. We follow the common
procedure in prior works [ACG+16]: we use ResNet18 and VGG11 that are pretrained by ImageNet
dataset. The pre-training weight is publicly available from PyTorch. We only finetune the last layer
of the model.

We set gradient clipping bound R = 5, batch size as 2048, learning rate 0.01. For TSGD+PTR, we
set �0 = 10�8

, b = 1, and ⌧ = 3. We set noise multiplier � = 2.2 for TSGD+PTR, and � = 1.8
for TSGD+Gaussian. We set F to be 25% of the batch size for TSGD+Gaussian. F is dynamically
adjusted in the same way as the experiments in the main text.

9https://github.com/tensorflow/privacy

30

Archi. Corruption
Type CR " = 3.0 " = 5.0

TSGD+Gaussian TSGD+PTR TSGD+Gaussian TSGD+PTR
0 50.05% 52.09% (+2.04%) 51.75% 52.85% (+1.1%)

VGG11

Label 0.1 44.03% 48.73% (+4.7%) 48.78% 50.24% (+1.46%)
0.2 35.04% 43.63% (+8.59%) 43.17% 46.35% (+3.18%)

Feature 0.1 45.59% 49.57% (+3.98%) 49.60% 50.74% (+1.14%)
0.2 43.82% 47.95% (+4.13%) 48.08% 48.88% (+0.8%)

Gradient 0.1 45.61% 50.15% (+4.54%) 50.10% 51.15% (+1.05%)
0.2 45.40% 50.15% (+4.75%) 50.46% 50.82% (+0.36%)

" = 3.0 " = 5.0
TSGD+Gaussian TSGD+PTR TSGD+Gaussian TSGD+PTR

0 38.97% 43.15% (+3.18%) 46.27% 47.15% (+0.88%)

ResNet18

Label 0.1 35.84% 42.55% (+6.71%) 42.05% 44.77% (+2.72%)
0.2 26.15% 36.48% (+10.33%) 33.97% 39.71% (+5.74%)

Feature 0.1 37.91% 43.15% (+5.24%) 42.54% 44.93% (+2.39%)
0.2 36.30% 41.85% (+5.55%) 41.21% 43.84% (+2.63%)

Gradient 0.1 38.42% 44.27% (+5.85%) 43.83% 46.4% (+2.57%)
0.2 37.79% 44.34% (+6.55%) 43.22% 46.14% (+2.92%)

Table 2: Model Accuracy under different privacy budgets and corruption settings. Every statistic
is averaged over 5 runs with different random seed. The improvement of TSGD + PTR over
TSGD+Gaussian is highlighted in the red text.

Corruption CR " = 2.0 " = 2.5
Type TSGD+Gaussian TSGD+PTR TSGD+Gaussian TSGD+PTR

0 72.94% 76.44% (+3.5%) 79.15% 81.02% (+1.87%)

Targeted Label Flip 0.1 72.06% 75.11% (+3.05%) 76.25% 78.97% (+2.72%)
0.2 70.72% 73.85% (+3.13%) 73.69% 76.67% (+2.98%)

Gradient Bit Flip 0.1 69.58% 75.67% (+6.09%) 75.39% 78.82% (+3.43%)
0.2 65.13% 75.67% (+10.54%) 71.85% 78.85% (+7.0%)

Table 3: Model Accuracy on EMNIST dataset under different privacy budgets on two more severe
types of failures.

The results are shown in Table 2. As we can see, TSGD+PTR consistently outperforms
TSGD+Gaussian across different architectures.

B.3 Additional Results on More Corruption Types

Besides the three corruption types we considered in the maintext, we evaluate on two additional
possible errors which are considered more severe kinds of failure.

1. Gradient Bit-flipping failure where the bits that control the sign of the floating numbers
are flipped, e.g., due to some hardware failure. A faulty worker pushes the negative gradient
instead of the true gradient to the servers.

2. Targeted label flipping failure where the labels are flipped in a “targeted” way, i.e., for
any label 2 {0, . . . , 25}, is replaced by 25�label. Such failures/attacks can be caused by
data poisoning or software failures.

We experiment on EMNIST dataset and the results are shown in Table 3. The experiment settings
are exactly the same as the settings for Table 1. As we can see, TSGD+PTR once again outperform
TSGD+Gaussian significantly.

B.4 Comparison between regular DPSGD and trimmed-mean based robust SGD

We additionally show the comparison between trimmed mean robust SGD with/without PTR and
regular DPSGD in Table 4 on EMNIST dataset with the same experiment settings described before.
As we can see, the robust SGD performs worse than non-robust counterpart on clean training data.
This is because when the training data are clean, the outliers filtered out by robust SGD in the gradient
batch are usually corresponding to the data points that are misclassified, which are important for

31

Corruption CR " = 2.0 " = 2.5
Type TSGD+Gaussian DPSGD TSGD+PTR TSGD+Gaussian DPSGD TSGD+PTR

0 72.94% 77.29% 76.44% (�0.85%) 79.15% 83.06% 81.02% (�2.04%)

Label 0.1 72.60% 74.80% 75.66% (+0.86%) 79.38% 79.30% 80.63% (+1.33%)
0.2 70.03% 71.42% 72.62% (+1.2%) 77.48% 77.43% 79.19% (+1.76%)

Feature 0.1 69.60% 74.58% 74.01% (�0.57%) 77.80% 80.95% 81.04% (+0.09%)
0.2 70.04% 73.79% 74.76% (+0.97%) 78.99% 79.43% 80.74% (+1.31%)

Gradient 0.1 71.75% 72.97% 76.19% (+3.22%) 77.32% 76.59% 77.73% (+1.14%)
0.2 70.76% 71.22% 74.65% (+3.43%) 76.68% 75.69% 77.17% (+1.48%)

Table 4: Model accuracy comparison with regular DPSGD on EMNIST dataset. The improvement
of TSGD+ PTR over regular DPSGD is highlighted in the red text.

Figure 4: The " parameter of the (", �)-DP guarantee of PTR when � = 10�5 for different noise
scales. We convert the RDP bound in Theorem 4.3 to (", �)-DP by the RDP-DP conversion formula
from [BBG+20], and compare it with the " obtained from the direct analysis in Theorem 4.2. For the
bound converted from RDP, we search for the optimal ↵ 2 [1, 200]. The bound is constant across
different �0 since when �0 is small, the RDP for PTR will take the second term in (3).

improving model performance. However, TSGD+PTR achieves better performance on most of the
corruption settings.

B.5 Additional Results on Privacy Analysis Comparison

In this section, we show more numerical results on privacy analysis comparison by varying ⌧ = �2/�1.
In Figure 4, we numerically compute the privacy bound from direct analysis and the one converted
from RDP, with ⌧ 2 [2/3, 1/3, 0.1]. In Figure 5, we show the subsampled privacy bound composed
with moment account, also with ⌧ 2 [2/3, 1/3, 0.1]. As we can see, our Theorem 4.3 and Theorem
4.4 once again provide tighter bounds compared with the baseline.

32

Figure 5: Illustration of the use of our Theorem 4.4 in moments accountant. We plot the the privacy
loss " for � = 10�5 after different rounds of composition. We set �0 = 10�8 here to allow more
iterations for Strong Composition of (", �)-DP.

33

