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In this supplementary material, we first present the following (additional) results of our calibration
techniques with: another calibration metric, a recent transformer-based object detector, and a recent
domain-adaptive detector. Next, we report the calibration performance of our proposed loss (TCD)
without the classification component dcls. We also present results on large scale datasets (e.g. MS-
COCO and PASCAL-VOC). Finally, we show some qualitative results of our proposed train-time
calibration loss and describe the implementation details for different detectors considered.

1 Results with Detection Expected Uncertainty Calibration Error (D-UCE)

For detectors that leverage uncertainty, in addition to (D-ECE), we also report detection expected
uncertainty calibration error (D-UCE) [3]:

D−UCE =

M∑
m=1

|I(m)|
|D|

|error(m)− uncertainty(m)| . (1)

Where error(m) denotes the average error in a bin and uncertainty(m) represents the average
uncertainty in a bin. I(m) is the set of samples in mth bin, and |D| is the total number of samples.
The error for a particular sample (detection) is computed as: 1[IoU(b̂m,b∗

m) < 0.5]1[ĉm ̸=
c∗m ∨ ĉm = c∗m].

Table 1 reports calibration performances of SSAL(UGPL), SSAL(UGPL)+ICT, SSAL(UGPL)+TCD,
SSAL(UGPL)+ICT+TCD in D-UCE and D-ECE metrics. We see that our calibration techniques,
when either used individually or as a combination, can not only decrease the D-ECE but are also
capable of reducing the D-UCE.

Method/Shift scenarios Sim10k → CS CS → CS-foggy
D-ECE D-UCE AP@0.5 D-ECE D-UCE mAP@0.5

SSAL(UGPL) [4] 13.6 15.9 49.5 22.1 26.2 35.0
SSAL(UGPL)+ICT 12.7 14.8 51.3 19.5 25.0 34.2
SSAL(UGPL)+TCD 8.5 10.0 51.4 19.1 24.3 35.2
SSAL(UGPL)+ICT+TCD 7.9 11.5 50.7 16.7 21.7 36.9

Table 1: Calibration performance in terms of detection expected uncertainty calibration error (D-UCE). We show
calibration performances of SSAL(UGPL), SSAL(UGPL)+ICT, SSAL(UGPL)+TCD, SSAL(UGPL)+ICT+TCD.

2 Experiments with Transformer-based Object Detector

In addition to one-stage and two-stage object detectors, we also reveal the effectiveness of our
train-time calibration loss (TCD) towards calibrating recent transformer-based object detectors.
Particularly, we chose the Deformable Detr object detector [10] and integrate our TCD loss. Table 2
shows that our TCD loss improves the calibration of Deformable Detr detector for both in-domain and
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out-of-domain detections. However, the calibration performance is more pronounced for in-domain
detections as compared to the out-of-domain detections.

Methods/Scenarios Sim10k to CS CS to Foggy
OOD InDomain OOD InDomain

D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5
Deformable-Detr 9.0 48.0 14.9 90.9 8.2 29.5 16.1 48.3

Deformable-Detr + post-hoc 10.9 48.0 7.8 90.9 13.4 29.5 17.5 48.3
Deformable-Detr + TCD 7.5 48.4 6.1 90.7 7.9 30.2 15.7 46.0

Table 2: Calibration results with Deformable Detr [10] trained with its task-specific loss, applying post-hoc
temperature scaling on a pre-trained Deformable Detr, and training Deformable Detr after adding our TCD loss.

3 Without dcls component in TCD

Table 3 reports the impact on calibration performance upon excluding the dcls component of TCD.
We observe a significant drop in calibration performance without dcls component. A similar drop
in calibration performance can be seen without ddet component. We empirically show that both
components are complementary and so are vital for the effectiveness of TCD loss.

Scenarios Sim10k to CS CS to CS-foggy KITTI to CS CS to BDD100K
OOD In-domain OOD In-domain OOD In-domain OOD In-domain

D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5
w/o d_det 10.3 44.9 15.2 82.3 8.1 23.8 13.3 44.8 11.4 38.7 13.0 94.3 16.5 19.8 13.3 44.8
w/o d_cls 10.2 38.0 15.5 79.9 13.3 23.6 14.6 44.6 9.1 38.6 11.2 95.0 18.5 21.1 14.6 44.6

TCD 9.6 42.4 14.9 83.4 5.5 22.4 9.4 48.3 8.9 40.3 12.6 94.7 12.4 22.0 9.4 48.3

Table 3: Impact on calibration performance without dcls component of TCD in four domain shift scenarios.

4 Performance of our loss with SSAL (UGPL+UGT)

Table 4 reports calibration performance with domain-adaptive detector SSAL(UGPL+UGT) [4] and
SSAL(UGPL+UGT) with TCD. We see that SSAL(UGPL+UGT) with TCD significantly improves
the calibration performance of SSAL(UGPL+UGT).

5 Results on COCO

We include our results on several datasets that are commonly used to study detection performance
under domain shift. Results on COCO would also be interesting to see the impact on calibration
performance. We, therefore, provide results with our TCD loss and related ablation analysis on
the COCO dataset below in Table 5, Table 6, and Table 7. For Pascal VOC, please also see Table
8. For in-domain COCO results, we evaluate our trained model(s) on COCO2017 minival (5K)
dataset (Table 5). For out-of-domain COCO results, we evaluate our trained model(s) on two different
out-of-domain scenarios. These are curated by systematically corrupting the COCO minival set
images. The corrupted versions are obtained by following the proposals in [1, 9]. The first OOD
scenario is produced by adding a fixed corruption (fog) and fixed severity. See Table 6 (top) for
results. Whereas the second is generated by first randomly choosing a corruption (out of 19 different
corruption modes) and then randomly sampling their severity level (from 1-5) (see Table 7). We
note that our proposed TCD loss is capable of improving the calibration of both in-domain and
out-of-domain detections. Further, both the detection (ddet) and the classification (dcls) components
of our TCD loss are integral towards boosting the calibration performance.

6 Implementation Details

Note that, for every individual method considered in our experiments, we use its default training and
testing specifics. All experiments are performed using a single GPU (Quadro RTX 6000).

One-stage detector: FCOS [8] is a one-stage anchor-less object detector. To integrate our TCD loss
with FCOS, we simple add our TCD loss with the task-specific loss of FCOS, which itself comprises
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Method/Scenarios Sim10k to CS
D-ECE AP (mean) AP@0.5

SSAL (UGPL + UGT) 14.1 28.9 51.8

SSAL (UGPL + UGT) with TCD 11.3 29.7 51.6

Table 4: Calibration results with SSAL(UGPL+UGT) [4] and SSAL(UGPL+UGT) with our TCD loss. We
report both calibration performance (D-ECE) and test accuracy (AP@0.5 and AP(mean)).

In Domain COCO
D-ECE mAP@0.5

Single Stage 24.0 50.5

Single Stage + TCD (w/o d_cls) 23.3 50.2

Single Stage + TCD (w/o d_det) 23.4 50.4

Single Stage + TCD 23.3 50.8

Table 5: Ablation studies on in-domain COCO dataset.

of focal loss and IoU loss, to get a joint loss which is minimized to achieve train-time calibration
with our TCD loss.

For EPM [2], we use source ground-truth labels for our TCD loss and add it to task-specific losses of
EPM to obtain a joint loss which is optimized during adaptation. However, for SSAL [4], we utilize
both source ground-truth and target pseudo-labels to create two instances of our TCD loss which are
then added to SSAL task-specific losses to obtain a joint loss.

We integrate our ICT component in the UGPL module of SSAL [4]. Specifically, the selected
pseudo-labels from UGPL module are converted to soft pseudo-targets, using Eq.(10-12), to be
used in task-specific loss. The values of κ1 and κ2 in Eq.(12) of main paper are set to 0.75 and 0.5,
respectively, in all experiments.

Two Stage Detector: For both Faster RCNN [5] and SWDA [7], we utilize the output of second stage
(i.e. Fast RCNN module) to implement our TCD loss and combine it with the respective task-specific
losses to obtain a joint loss formulation which is then optimized for training.

Deformable Detr: We add our TCD loss with the task-specific losses (focal loss and generalized IoU
loss [6]) of Deformable Detr [10] to acquire a joint loss which is then optimized during training.

7 Qualitative Results

Fig. 1 visualizes some calibration results for out-of-domain detections with one-stage detector and
one-stage detector with our TCD loss. We see that one-stage detector trained with our TCD loss
facilitates improved localization performance and increased confidence score per detected instance of
an object. Furthermore, it allows a decrease in confidence score for wrong detections.
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OUT Domain COCO (fix corrupted)
D-ECE mAP@0.5

Single Stage 22.2 37.6

Single Stage + TCD (w/o d_cls) 21.2 37.8

Single Stage + TCD (w/o d_cet) 21.4 38.2

Single Stage + TCD 20.9 38.1

Table 6: Ablation studies on two out-of-domain COCO scenarios. The out-of-domain images with a fixed
corruption (fog) and fixed severity.

OUT Domain COCO (random corrupted)
D-ECE mAP@0.5

Single Stage 23.3 27.9

Single Stage + TCD (w/o d_cls) 22.5 28.1

Single Stage + TCD (w/o d_det) 22.7 28.3

Single Stage + TCD 22.4 28.1

Table 7: Ablation studies on two out-of-domain COCO scenarios. Randomly choosing the corruption and then
randomly sampling its severity level.
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COCO to VOC Single Stage D-ECE AP (mean) mAP@0.5
Baseline 26.1 47.9 72.0

TCD 25.5 48.2 72.0

Table 8: Calibration and detection performance upon training a model on COCO and testing it on PASCAL
VOC 2012.

One Stage Detector One Stage Detector + TCD

†

Figure 1: Visual depiction of calibration results for out-of-domain detections with one-stage detector (left
column) and one-stage detector trained with our TCD loss (right column). Dotted bounding boxes are the ground
truth and solid bounding boxes are the detections. We use a distinct colored bounding box for each object
category. To avoid clutter, we only draw ground truth bounding boxes corresponding to detections. Best viewed
in color and zoom.
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