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A Self-Attention Maps Visualization

In this section, we present the self-attention maps for various codes obtained at the Eb/N0 = 5
noise level. Figure 1, presents the self-attention maps and the corresponding input for the Hamming
BCH(7,4) code with N = 6, d = 32, similarly to the results presented in Section 6.1.

For better visual analysis we present in Figure 2 the self-attention maps for two longer codes.
Interestingly, in the early stage of the decoding, ECCT seems to focus its processing of the syndrome.
At deeper layers towards the final prediction, the focus shifts to the information bits.

Figure 1: Illustration of the input h(y) (magnitude and syndrome concatenation) and of the self-
attention maps at different layers of the network, for the Hamming BCH(7,4) code with N = 6, d =
32. The self-attention heads are averaged and the white lines denote the separation between the
magnitude and syndrome elements.

B Impact of the Reliability Embedding

Similarly to Section 6.1, we present in Figure 3 the impact of the reliability embedding on the
self-attention map on a larger code. We chose the BCH(31, 16) code which is still short enough
for providing a clear visualization, and similarly to Section 6.1, the zero codeword is corrupted
with additive noise at the first bit (zero bit index), involving a non-zero syndrome at the first parity
check equation (i.e. the 32-th element of the embedding). As can be seen, the first bit embedding is
impact-less when it is corrupted and then detectable, while its impact on the syndrome embedding is
considerably increased. Once the network corrects the bit (last layers(s)), the values return to normal.
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Figure 2: Illustration of the input h(y) (magnitude and syndrome concatenation) and of the self-
attention maps at different layers of the network, for POLAR(62,32) code with N = 6, d = 32 (top)
and BCH(63,36) code with N = 4, d = 32 (bottom). The self-attention heads are averaged and the
white lines denote the separation between the magnitude and syndrome elements. One can observe in
the first layers that high attention values are assigned to the syndrome part.
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Figure 3: Analysis of the scaled embedding values of the first column of the masked self-attention
map with corrupted and uncorrupted codeword (CW) for the standardized BCH(31, 16) code, using
the (N, d) = (4, 32) architecture.

C Impact of the Multi-Head Self-Attention

We present in table 1 the impact of the number of heads in the self-attention mechanism on perfor-
mance. Using multiple heads is clearly beneficial for the model’s performance. This is consistent
with the notion that multi-heads enable richer interpretations of the sequence by separating sections
of the embedding and learning different aspects of the interplay between related tokens [9].

Table 1: A comparison of the negative natural logarithm of Bit Error Rate (BER) for three normalized
SNR values (4,5,6) of our method for different number of self-attention heads h. Higher is better. All
the models are N = 6, d = 32 ECCT.

Method h = 1 h = 4 h = 8

4 5 6 4 5 6 4 5 6

Polar(64,32) 5.33 7.01 9.06 5.65 7.49 9.89 5.71 7.63 9.94

LDPC(49,24) 5.44 7.62 10.70 5.69 7.96 11.21 5.74 8.13 11.30

BCH(63,36) 4.33 5.76 7.79 4.44 5.94 8.11 4.42 5.91 8.01

D Comparison with Successive Cancellation List (SCL) Polar Decoder

Table 2 compares the performance of our model to the SOTA SCL Polar decoder [8] for several
Polar Codes. The SCL decoder has a time and space complexity of O(LN logN) and O(LN),
respectively. We tested the SCL algorithm for L = {1, 4} and we sampled only 105 noisy codewords
because of the high complexity and non-parallel application of the SCL algorithm. The proposed
shallow ECCTs are able to compete and even surpass the SCL for some of the codes and SNRs.
Increasing the capacity of the network, especially with more layers, is expected to lead to better
results as demonstrated for LDPC codes. Similarly, SCL with bigger lists would obtain improved
accuracy.

E Non Gaussian Channel

In this Section, we test our framework on a non-gaussian Rayleigh fading channels, whcih are often
used for simulating the propagation environment of a signal, e.g., for wireless devices.

In this fading model, the transmission of the codeword x ∈ {0, 1}n is defined as y = hxs+z, where h
is an n-dimensional i.i.d. Rayleigh distributed vector with a scale parameter α, and z ∼ N (0, σ2In).

In our simulations, we assume a high scale α = 1 in order to easily compare and reproduce the
results, while the level of the Gaussian noise and of the testing procedure remains exactly the same as
described in the paper. The overall variance of the transmitted codeword y in the Rayleigh channel is
roughly twice the AWGN’s on the tested SNR range.
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Table 2: A comparison of the negative natural logarithm of Bit Error Rate (BER) for three normalized
SNR values (4,5,6) between the proposed method with N = 6, d = 128 and the SOTA SC-L
algorithm. Higher is better.

Method SC-L = 1 SC-L = 4 ECCT

4 5 6 4 5 6 4 5 6

Polar(64,32) 7.28 9.84 12.50 7.55 10.21 13.60 6.99 9.44 12.32

Polar(64,48) 6.16 8.22 11.30 6.17 8.22 11.30 6.36 8.46 11.09

Polar(128,64) 8.42 11.10 - 8.46 11.15 - 5.92 8.64 12.18

Polar(128,86) 7.36 9.76 12.40 7.37 9.76 12.45 6.31 9.01 12.45

Polar(128,96) 6.78 9.13 11.92 6.80 9.14 12.01 6.31 9.12 12.47

The results are presented in Figure 4. As can be observed, our method is still able to learn to decode
even under these very noisy fading channels.

(a) (b) (c)

Figure 4: BER comparison between BP and the proposed ECCT N = 6, d = 32 for the Rayleigh
fading channel for various values of SNR for (a) Polar(64,32), (b) BCH(63,36), and (c) LDPC(49,24)
codes.

F Robustness to the Modulation

In this Section, we test our framework on a modulation other than the Binary Phase-shift keying.
The 16 Quadrature amplitude modulation (16QAM) is common for wireless fading. We simulate the
Bit-Interleaved Coded Modulation (BICM) demapping [11, 2] as follows

y = Demap
(
Map(x) + z

)
, (1)

where Map and Demap represent the 4-bits per symbol constellation (16QAM) mapping and
demapping, respectively, and z denotes the n/4-dimensional complex AWGN noise, with noise
levels that are defined using the same protocol as in our main experiments. This protocol has been
implemented using NVIDIA’s Sionna library [3, 1].

The results are presented in Figure 5. Evidently, our model is able to learn accurate decoding under
different modulation even on low SNRs.

G Comparison with Augmented Neural BP

In this Section, we compare the complexity and the performance of ECCT with the complexity
of the Neural BP (NBP) [4], which does not suffer from the high computational cost of the later
hyper-network based models [5].

We recall that the time complexity of the (neural) BP is defined as O(L
(∑c

i d
2
i +

∑v
i d̃i

)
), where di

denotes the degree of the i-th parity check node, d̃i denotes the degree of the i-th variables nodes,
and L is the number of iterations.

4



(a) (b) (c)

Figure 5: BER comparison between BP and the proposed ECCT N = 6, d = 32 under 16QAM
modulation for various values of SNR for (a) Polar(64,32), (b) Polar(64,48), and (c) Polar(128,96)
codes.

We present in Table 3 the numerical time complexity values of different ECCTs and the neural BP
decoder. The (neural) BP is obtained at convergence with L = 50 as reported in [5]. These results are
the best results that the neural BP architecture can reach. The inability of the (neural) BP to further
improve, was the motivation for the development of more computationally expensive augmented BP
methods [5, 6]

The shallower ECCTs (i.e. N = 2, d = 32) are comparable to the complexity of BP for most of the
codes and is even much more efficient for several codes such as BCH codes (the level of sparsity of
each code is the major cause of the difference in complexity). For LDPC codes, for which BP is
specially fitted and reliable [7], BP’s complexity is much lower than ours. However, as described in
Section 6.3, many acceleration methods can greatly improve the complexity. For example, low-rank
approximations [10] can reduce the quadratic complexity in d to linear.

In the current setting, one can observe that, at similar complexity, N = 2 ECCTs are too shallow
and thus cannot always reach NBP’s accuracies. The most impactful architectural parameter on the
reliability of the ECCT is the number of layers N , while the embedding size d has the most influence
on the complexity (quadratic). Thus, one can compare, for example, the results for the BCH(63,45)
code, for which BP has a similar complexity to the N = 6, d = 16d = 16d = 16 ECCT. The negative logarithm of
the BER for Eb/N0 ∈ {4, 5, 6} is 4.98, 6.77, 9.26, respectively, for ECCT, while the neural-BP of
[4] reaches at convergence 4.49, 6.01, 8.20 [5], a 12% improvement on average. Similarly, on the
Polar(128,96) code, the accuracy of the N = 6, d = 12d = 12d = 12,h = 4h = 4h = 4 ECCT is 4.98, 6.85, 9.25 while NBP
reaches 4.63, 6.31, 8.54, an 8% improvement on average.
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Table 3: Numerical comparison of the complexity of the (Neural) BP of [4] and of the proposed
ECCT for different N and d = {32, 64, 128}.

Method NBP[4] ECCT N=2 ECCT N=6

50 32 64 128 32 64 128

POLAR(64,32) 231600 638336 1669888 4912640 1915008 5009664 14737920

POLAR(64,48) 244600 388864 1105408 3521536 1166592 3316224 10564608

POLAR(128,64) 1074400 2236672 5259776 13665280 6710016 15779328 40995840

POLAR(128,86) 1305200 1503104 3702528 10190336 4509312 11107584 30571008

POLAR(128,96) 1244800 1245184 3145728 8912896 3735552 9437184 26738688

LDPC(49,24) 78400 407680 1118464 3449344 1223040 3355392 10348032

LDPC(121,60) 435600 1965696 4676864 12335616 5897088 14030592 37006848

LDPC(121,70) 363000 1803776 4312064 11442176 5411328 12936192 34326528

LDPC(121,80) 290400 1654656 3972864 10599936 4963968 11918592 31799808

MACKAY(96,48) 100800 1483776 3557376 9474048 4451328 10672128 28422144

CCSDS(128,64) 230400 2445312 5677056 14499840 7335936 17031168 43499520

BCH(63,36) 533900 486144 1340928 4156416 1458432 4022784 12469248

BCH(63,45) 413600 362880 1057536 3442176 1088640 3172608 10326528

BCH(63,51) 501000 262144 831488 2891776 786432 2494464 8675328

H Performance on Larger Codes

We present in Figure6 the performance of the proposed ECCT on larger codes.

(a) (b)

Figure 6: ECCT N = 6, d = 32 performance for various values of normalized SNR for (a)
Polar(512,384), (b) LDPC (529,440) codes.
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