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1 Appendix

1.1 Hyperparameter Sensitivity Analysis

There are two hyperparameters that can potentially impact the online learning for the downstream
task: a) The target KL divergence δ, which is used to automatically tune the temperature parameters
in Eq. 4 and b) The sample size M which is used to estimate the critic value in Eq. 7. We investigate
the impact of the sample size M on both Point Maze and Ant Maze environment and the choice of
the target KL divergence δ.

We first investigate the impact of sample size M by setting M = 1, 10, 20. As shown in Fig. 1,
We find that the sample size has almost no impact on the learning. We hypothesize two reasons: a)
The large train batch size in our experiment helps to estimate the critic value Q(s, ω) more stable
and b) Given the input size of weight vector ω is small, it might be easy for the neural network to
approximate its value via small sample size.

We further investigate the impact of the target KL divergence δ. As shown in Fig. 2, we find that
target KL divergence significantly impacts the learning. Based on our experiments, we conclude that
a) More complex tasks require higher target KL divergence. Notice that the target KL divergence
imposes on Ant Maze is higher than the one on Point Maze. The optimal policy to solve complex
tasks might be significantly different from the composite skill prior. Therefore, the policy needs more
“space” to explore around the composite skill prior. b) Imposing too small target KL divergence
can lead to downgraded performance. From Fig. 2, the ASPiRe’s performance drops significantly
when we set δ = 6 in Point Maze and δ = 10 in Ant Maze. This is because the policy will be forced
to stay close to the composite skill prior and itself might not be able to solve such complex tasks.
c) Imposing too big target KL divergence can lead to downgraded performance. We observe that
the learning is not efficient when setting δ = 32 in Point Maze and δ = 50 in Ant maze. As target
KL divergence increases, the learned policy will receive less guidance from the prior. Though the
learning is sensitive to the choice of target KL divergence, we find that there might still be a range of
KL divergences values leading to the same optimal performance. Notice the ASPiRe achieves the
same good performance when setting δ = 12 or δ = 18 in the Point Maze. We can also observe the
same behavior on Ant Maze.

1.2 Composite Skill Prior as Policy

We investigate the importance of using composite skill prior as regularization by comparing the
ASPiRe with directly executing composite skill prior as a policy. This additional baseline is similar
to the MCP. Both of them try to directly sample the action from composite distribution, but the
difference is how they composite the distribution. One uses multiplicative gaussian (MCP) the other
uses weighted KL divergence(ours).
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Figure 1: Sensitivity towards sample size. Learning curves of our method with different sample
size M in Point Maze and Ant Maze. The algorithm is not sensitive to this parameter.
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Figure 2: Sensitivity towards target KL divergence. Learning curves of our method with different
target KL divergence δ in Point Maze and Ant Maze. More discussion in Sec 1.1.

From Fig. 3, we observe that using composite skill prior as a policy result in poor performance
(similar performance as MCP). This confirms the importance of using composite skill prior as prior
instead of policy.

1.3 Uniform Weights

We have tested the uniform weight in the Ant Maze domain. Specifically, we conduct the experiment
in two different settings: a) all skill priors primitives are relevant to the downstream tasks b) not all
skill priors are relevant to the downstream tasks.

In setting a) when all primitives are relevant, We observe that uniform weights also deliver good
performance. If we compare it with many other random weights assignment (green line in Fig 4),
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Figure 3: Composite Skill Prior as Policy. Learning curves of ASPiRe, MCP and Composite Skill
Prior as policy in Point Maze and Ant Maze. Composite skill prior achieves similar performance as
MCP which is much worse than ASPiRe.

Su
cc

es
s R

at
e

Environment Steps (1e7)

All primitive relevant Irrelevant primitive 
presented

Environment Steps (1e7)

Adaptive 
weights 

Adaptive 
weights 

Uniform 
weights

Average 
performance 
for random 

weights

Uniform 
weights

Figure 4: Adaptive Weights vs Uniform Weights. Learning curves of our method with Adaptive
Weights and Uniform Weights in the setting (a) and (b). Notice that the tasks are different for this
two settings. In the setting (a), The agent’s goal is to traverse the maze while pushing the box to the
goal position without hitting the obstacle. In the setting (b), the agent needs to reach the goal while
avoiding the obstacle along the way without pushing the box.

uniform weights achieve a near-optimal assignment. The random weight performance is average of 6
different weight assignments. Regardless, our algorithm can still achieve the best performance among
all weights assignments, showing that the system has enough flexibility to learn optimal policy.

In the setting b) not all skill priors are relevant to the downstream tasks. Our experiment shows that
the adaptive weights assignment significantly outperforms the uniform weights. This suggests that
our adaptive weight assignment is robust to the various downstream tasks.

1.4 Implementation Details

1.4.1 Offline phase

The skill encoder is a one-layer LSTM with 128 hidden units, which receives H = 10 steps
action sequence as input and outputs the parameters of the Gaussian posterior N (µz, σz) on a 10
dimensional skill embedding. The skill decoder is also a one-layer LSTM with 128 hidden units,
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which reconstructs the latent embedding back to the H steps action sequence, i.e., skill. Each primitive
skill prior is parameterized with a 6-layer MLP with 128 hidden units per layer. We use ReLU as our
activation layer and apply batch normalization. The network outputs parameters of the Gaussian skill
prior N (µa, σa).

The models are optimized with Adam with learning rate 1× 10−4and batch size 64. In the offline
learning phase, we first learn a shared low-dimensional skill embedding space Z from aggregated
datasets {Di}Ki=0. For each iteration, we select one of the primitive datasets Di and sample the
state-skill tuples from it to optimize the skill embedding and the corresponding primitive skill prior
pia(z|s). Once the ELBO loss in section 3.2 converges, we freeze the skill encoder/decoder parameters
and only update the parameters of primitive skill prior. This makes sure that primitive skill priors can
be learned on a stationary skill embedding space. We set the regularization parameter β = 1× 10−4

for all experiment domains.

1.4.2 Online phase

The learned policy πθ(s) is parameterized with a 6-layer MLP with 128 hidden units per layer. The
network outputs the parameters of a Gaussian distribution. We limit the action range of the policy
between [−2, ..., 2] by a tanh function. The weighting function ωσ(s) is also parameterized with a
6-layer MLP with k-way softmax as the output layer. We use ReLU as our activation layer and apply
batch normalization for both the learned policy and the weighting function. We model two critic
networks and take the minimum value as Q-value estimation, which stabilizes the training. Each
critic network is implemented as 4-layer MLP with 256 hidden units per layer. Skill prior generator
Gσ(z|s) is parameterized with a 3-layer MLP with 128 hidden units per layer. The network outputs
the parameters of a Gaussian distribution.

We optimized the models with Adam and set the learning rate as 1× 10−4. The replay buffer capacity
is 1e6, and the batch size is 256. We empirically find that setting the discount factor γ as 0.97 can
slightly stabilize the learning. The annealing coefficient β starts with 1 and gradually decreases to
1× 10−3. We set the target divergence δ = 12 for Point Maze, δ = 15 for Ant Push, and δ = 20 for
Ant Maze. The temperature parameter α can be tuned automatically by minimizing the following:

argmin
α>0

E
[
αδ − α

K∑
i=1

ωi(st)DKL(π(zt|st), pia(zt|st))
]

(1)

The prove can be found in Pertsch et al. [1]. We replace the single term KL divergence in the original
formulation with weighted KL divergence. All models are trained on a single NVIDIA GPU.

1.5 Environments and data collection

For downstream tasks learning (online phase), the state st can be partitioned into two components:

st = sp
t + gt

where sp
t is the proprioceptive observation and gt is the downstream task-related observation. The

states in each primitive dataset Di always include the proprioceptive observation sp
t , but part of the

downstream task-related observation might be absent. For example, during the learning of Point
Maze, the proprioceptive observation sp

t includes the agent’s local view and velocity, and the task-
related observation gt includes the positions of the obstacle, the goal, and the agent. However, in the
navigation dataset, the whole task-related observation is absent. Suppose we extract the navigation
primitive skill prior based on the proprioceptive observation only. In that case, the resulting prior
cannot be directly applied to the downstream task as the state dimensions are different. To remedy
this issue, we augment the states in offline data with random vectors that have the same length with
the absent task-related observation. This augmentation will not impact the prior learning as the
network will eventually ignore random vectors during the extracting process. Alternatively, instead
of augmentation, we can parse the states during downstream task learning and only feed the relevant
states to primitive skill priors. We have experienced both ways and find the choice does not impact
the performance. For the experiment result in this paper, we apply augmentation. This issue might be
solved by a method like Attention. However, this is out of the scope of this paper, and we will leave
it for future research.
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Figure 5: Pre-defined sub-tasks in Ant Maze

1.5.1 Point Maze

The navigation dataset is collected by running the planning algorithm (provided in D4RL benchmark)
in multiple random generated maze layouts. The avoid dataset is collected by a simple heuristic
algorithm, i.e., the agent heads in any direction that can prevent itself from colliding with the obstacle.
The heading direction θ can be calculated as: θ = − xagent

t −xobstacle
t

||xagent
t −xobstacle

t || ± γ, where γ is a random

number sampled from [−π
4 ,

π
4 ], x

agent
t is the position of the agent, and xobstacle

t is the position of the
obstacle. The proprioceptive observation sp

t in primitive datasets includes the agent’s local view and
vagentt , which is the velocity of the agent.

For the downstream task, the obstacles, goal, and agent positions are randomly reset at the beginning
of one episode. We set a minimum distance between the goal and the agent position as 5 to avoid
trivial tasks to constrain the reset process. The point agent will receive a sparse positive reward when
the agent reaches the goal and a sparse negative reward when the agent hits the obstacle. The episode
will be immediately reset once the agent receives either a positive or a negative reward. The additional
task-related state gt is represented as a 30-dimensional vector which includes the local observation
(i.e., goal/obstacle if in view) and the goal position. The action is a 2-dimensional continuous space
that controls the agent’s velocity in x and y-direction.

1.5.2 Ant Push

To collect the push and avoid dataset, we first train a reaching policy by SAC, which allows the
ant to head towards a specific target. The reaching policy takes a vector input (xgoal

t − xagent
t , sp

t),
where xgoal

t is the goal position, xagent
t is the agent position, and proprioceptive observation sp

t is a
29-dimensional vector that represents the ant’s joint state. The policy outputs an 8-dimensional vector
to control the ant’s joint. To collect the push dataset, we randomly place the ant at a distance of [2, 8]
from the box. We use the reaching policy to create push behavior by setting the goal as the center of
the box. The avoid dataset is generated by the same heuristic policy in the Point Maze environment.
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For the downstream task, the obstacle, goal, and agent positions are randomly reset at the beginning
of one episode. We randomly initialize the goal position xgoal

0 at a distance of [−4, 4] from the center
(0, 0) and the agent position xagent

0 at a distance of [−8, 8] from the center (0, 0). The obstacle is

initialized between the goal and the agent xobstacle
0 =

xgoal
0 +xagent

0

2 + ϵ, where ϵ is sampled from
Uniform(-1,1). Like Point Maze, we set a minimum initial distance between the goal and the agent
position as 2 to avoid trivial cases. The agent will receive a sparse positive reward when the agent
reaches the goal and a sparse negative reward when the agent hits the obstacle. The additional
task-related state gt is a 4-dimensional vector representing the position difference between the
agent and the goal xgoal

t − xagent
t , and the position difference between the agent and the obstacle

xobstacle
t − xagent

t . The action is an 8-dimensional continuous space.

1.5.3 Ant Maze

We reuse the push and avoid dataset in Ant Push to extract the push and avoid primitive. Naviga-
tion primitive is extracted from the dataset (antmaze-medium-diverse) in D4RL benchmark. The
proprioceptive observation sp

t is a 29-dimensional vector that represents the ant’s joint state.

For the downstream task learning, we modify the Ant Maze environment from D4RL benchmark
by adding an obstacle and a box in the maze. There are 6 pre-defined sub-tasks in the Ant Maze
environment, and each of the sub-tasks specifies distinct obstacle, box, and goal positions. The
agent will be given a task that is randomly selected from pre-defined sub-tasks at the beginning of
every episode. The reward setting is the same as the one in Ant Push. However, the additional maze
structure posts a hard exploration problem. The additional task-related state gt is a 6-dimensional
vector representing the position difference between the agent and the goal xgoal

t − xagent
t , and the

position difference between the agent and the obstacle xobstacle
t − xagent

t and the agent position
xagent
t . The action is an 8-dimensional continuous space.

1.5.4 Robotic Manipulation

The task is to control a Panda robot arm to grasp the box without colliding with the barrier placed in
the middle of the desk. The height of the barrier is set to be higher than the initial position of the robot
arm’s end effector. The location of the box and barrier are randomly generated at the beginning of the
episode. The agent will receive a sparse positive reward once it grasps the box and lift it up without
colliding with the barrier. ASPiRe will carry two primitive skill priors: grasp and avoid. The grasp
data is generated by a hand-coded heuristic policy, which first moves the end effector horizontally
to the top of the object and then moves the end effector down to grasp the object. The avoid data is
also generated by a hand-coded heuristic policy, which moves the end effector up vertically once the
barrier is observed. As the datasets are collected by heuristic policies, a part of trajectories might
fail to complete the primitive tasks, i.e., grasp the box. Therefore, we only keep the trajectories that
successfully complete the primitive tasks.
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