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1 Proof of Lemma (3.1, Manuscript)

Lemma 1.1. The unique solution Y∗(W,H) minimizing (9, Manuscript) satisfies

vec(Y∗(W,H)) = (I+ λ(Q−P+D))−1vec(f̃(X̃;W)), (1)

where vec(B) = [b⊤
1 , ...,b

⊤
n ]

⊤ for matrix B, H ≜ {Ht}t∈T denotes the set of all compatibility
matrices, and we have defined the matrices P, Q, and D as

P =

 P11 ... P1|S|
... ... ...

P|S|1 ... P|S||S|

 ;Pss′ =
∑

t∈Tss′

((H⊤
t +Htinv)⊗At)

Q =
⊕
s∈S

Qs;Qs =
∑
s′∈S

∑
t∈Tss′

(HtH
⊤
t ⊗Dst),D =

⊕
s∈S

I⊗Ds.

Here ⊗ denotes the Kronecker product,
⊕n

i=1 Ai = diag(A1, ...,An) denotes a direct sum of n
square matrices A1, ...,An, and Ds ≜

∑
s′∈S

∑
t∈Tss′

Ds′t represent a sum of degree matrices
over all node types s′ ∈ S and all edge types t ∈ Tss′ .

Before proceeding the proof of Lemma 1.1, we first provide a basic mathematical result.

Lemma 1.2. (Roth’s Column Lemma [1]). For any three matrices X,Y and Z,

vec(XYZ) = (Z⊤ ⊗X)vec(Y) (2)

We now proceed with the proof of our result.

Proof. The gradient of (9, Manuscript) is as follows:

∇YsℓY(Y) = (I+ λDs)Ys − f(Xs;Ws) + λ
∑
s′∈S

∑
t∈Tss′

(
DstYs(HtH

⊤
t )−AtYs′(H

⊤
t +Htinv)

)
.

(3)

By applying a vec(·) operation to both sides of (3) we obtain:
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vec(∇Ys
ℓ(Y)) = vec(Ys)− vec(f(Xs;Ws))

+ λ(
∑
s′∈S

∑
t∈Tss′

(vec(DstYs(HtH
⊤
t ))− vec(AtYs′(H

⊤
t +Htinv))) + vec(DsYs))

(4)

Here, using Roth’s Column Lemma 1.2, we define the matrices P,Q,D as follows:

P =

 P11 ... P1|S|
... ... ...

P|S|1 ... P|S||S|

 ;Pss′ =
∑

t∈Tss′

((H⊤
t +Htinv)⊗At)

Q =
⊕
s∈S

Qs;Qs =
∑
s′∈S

∑
t∈Tss′

(HtH
⊤
t ⊗Dst),D =

⊕
s∈S

I⊗Ds.

Therefore, after rewriting (4) as

vec(∇Ys
ℓY(Y)) = vec(Ys)− vec(f(Xs;Ws))

+ λ
(
Qsvec(Ys)−

∑
s′∈S

Pss′vec(Ys′) +Dsvec(Ys)
)
, (5)

we can stack |S| such matrix equations together using P,Q,D to obtain:

vec(∇YℓY(Y)) = vec(Y)− vec(f̃(X̃;W)) + λ
(
Q−P+D

)
vec(Y). (6)

Since ℓY(Y) is a convex function, a point that achieves ∇YℓY(Y) = 0 is a optimal point. Therefore,
the closed-form solution for vec(Y∗(W,H)) is derived as:

vec(Y∗(W,H)) = (I+ λ(Q−P+D))−1vec(f̃(X̃;W)). (7)

2 Proof of Theorem (3.2, Manuscript)

Theorem 2.1. The iterations (10) are guaranteed to monotonically converge to the unique global
minimum of (9) provided that

α <
2 + 2λdmin

1 + λ(dmin + σmax)
, (8)

where dmin is the minimum diagonal element of D and σmax is a maximum eigenvalue of matrix
(Q−P).

Proof. The energy function and iteration k + 1 of gradient descent on Ys with preconditioning is as
follows:

ℓY(Y) ≜
∑
s∈S

1

2
||Ys − f(Xs;Ws)||2F +

λ

2

∑
s′∈S

∑
t∈Tss′

∑
(i,j)∈Et

||ysiHt − ys′j ||22

 (9)

Y(k+1)
s = Y(k)

s − αD̃−1
s ∇

Y
(k)
s

ℓY(Y). (10)
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By applying the vec(·) operation to both sides of 10, this can be transformed into:

vec(Y(k+1)
s ) = vec(Y(k)

s )− αvec(D̃−1
s ∇

Y
(k)
s

ℓY(Y)) (11)

= vec(Y(k)
s )− α(I⊗ D̃−1

s )vec(∇
Y

(k)
s

ℓY(Y)). (12)

Note that we apply Roth’s column lemma to (11) to derive (12). Stacking |S| such vectors together,
(12) can be written as:

vec(Y(k+1)) = vec(Y(k))− αD̃−1vec(∇Y(k)ℓY(Y)), (13)

where D̃−1 ≜
⊕

s∈S I⊗ D̃−1
s .

Because ℓY(Y) is convex, for any Y(k+1) and Y(k) the following inequality holds:

ℓY(Y(k+1)) ≤ ℓY(Y(k)) + vec(∇Y(k)ℓY(Y))⊤vec(Y(k+1) −Y(k))

+
1

2
vec(Y(k+1) −Y(k))⊤∇2

Y(k)ℓY(Y)vec(Y(k+1) −Y(k)), (14)

where ∇2
Y(k)ℓY(Y) is a Hessian matrix whose elements are ∇2

Y(k)ℓY(Y)ij =
∂ℓY(Y)

∂vec(Y)i∂vec(Y)j
|Y=Y(k) .

Plugging in the gradient descent update by letting vec(Y(k+1)−Y(k)) = −αD̃−1vec(∇Y(k)ℓY(Y)),
we get:

ℓY(Y(k+1)) ≤ ℓY(Y(k))− (D̃−1vec(∇Y(k)ℓY(Y)))⊤(αD̃)(D̃−1vec(∇Y(k)ℓY(Y)))

+ (D̃−1vec(∇Y(k)ℓY(Y)))⊤(
α2

2
∇2

Y(k)ℓY(Y))(D̃−1vec(∇Y(k)ℓY(Y))).

(15)

If αD̃− α2

2 ∇2
Y(k)ℓY(Y) ≻ 0 holds, then gradient descent will never increase the loss, and moreover,

since ℓY(Y) is strongly convex, it will monotonically decrease the loss until the unique global
minimum is obtained. To compute ∇2

Y(k)ℓY(Y), we differentiate (6) and arrive at:

∇2
Y(k)ℓY(Y) = I+ λ(Q−P+D). (16)

Returning to the above inequality, we can then proceed as follows:

αD̃− α2

2
(I+ λ(Q−P+D)) = α(I+ λD)− α2

2
(I+ λ(Q−P+D))

= (α− α2

2
)(I+ λD)− α2λ

2
(Q−P)

≻ (α− α2

2
)(1 + λdmin)I−

α2λ

2
(Q−P). (17)

If α satisfies (α − α2

2 )(1 + λdmin)I − α2λ
2 (Q − P) ≻ 0, then αD̃ − α2

2 ∇2
Y(k)ℓY(Y) ≻ 0 holds.

Therefore, a sufficient condition for convergence to the unique global optimum is:

(α− α2

2
)(1 + λdmin)−

α2λ

2
σmax > 0. (18)

Consequently, to guarantee the aforementioned convergence we arrive at the final inequality:

α <
2 + 2λdmin

1 + λ(dmin + σmin)
. (19)
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Figure 1: Accuracy and energy function value versus the number of propagation steps on AIFB.

3 Additional Experiment results

3.1 Results Varying Propagation Steps

Figure 1 shows the results of HALO with various number of propagation steps in AIFB dataset
experiment. Similar to the results on the ACM dataset in our main paper, the training and validation
accuracy increase when we increase the number of propagation steps, while the energy function value
is steadily decreasing.

3.2 Results on Different Base Models and Test Time Comparison

Table 1 shows the results of applying HALO with different base models, as well as test time
comparison between HALO and R-GCN[3]. For the former, we use a 2-layer MLP f(X;Ws) per
node type. In Table 1 (left), HALO with the MLP base model achieves comparable results to HALO
using a linear layer for the base model. Of course with larger or more complex datasets, an MLP
could potentially still be advantageous.

As we mentioned in the main paper, the time complexity of propagating the graph features in HALO
is on the same level as R-GCN. To corroborate this claim empirically, we carry out an experiment
comparing the test times of HALO and R-GCN. In this experiment, both R-GCN and HALO used 16
GNN layers with 16 hidden dimensions. In Table 1 (right), as expected, R-GCN and HALO take
almost same amount of time when the model sizes are same.

Table 1: Results using different base models (left) and test time comparisons (right).
Datasets MUTAG BGS DBLP
Metric Accuracy (%)
HALO 86.17 93.10 96.30

HALO w/ MLP f(X;Ws) 85.58 93.79 94.75

Datasets MUTAG AIFB
Metric Time (second)
R-GCN 0.8424 1.8403
HALO 0.7740 1.7065

3.3 Results with standard error

Table 2 reproduces the results from Table 1 in the main paper, but with the average accuracy and
corresponding standard deviations across 5 runs included.

4 Details on Experiment Settings

4.1 Hyperparameters for the experimental results from Table 1 (Manuscript)

In the all experiments, we used Adam optimizer [2] and dropout as regularization with dropout rate
0.5. For other hyperparameters, please refer to Table 3.
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Table 2: Results on HGB (left) and knowledge graphs (right). The results are averaged over 5 runs,
with standard deviations included.

Dataset DBLP IMDB ACM Freebase
Metric Accuracy (%)
R-GCN 92.07± 0.50 62.05± 0.15 91.41± 0.75 58.33± 1.57
HAN 92.05± 0.62 64.63± 0.58 90.79± 0.43 54.77± 1.40
HGT 93.49± 0.25 67.20± 0.57 91.00± 0.76 60.51± 1.16

Simple-HGN 94.46±0.22 67.36±0.57 93.35±0.45 66.29±0.45
HALO 96.30±0.46 76.20±0.77 94.33±1.00 62.06±0.74

Dataset AIFB MUTAG BGS AM
Metric Accuracy (%)
Feat 55.55±0.00 77.94±0.00 72.41±0.00 66.66±0.00
WL 80.55±0.00 80.88±0.00 86.20±0.00 87.37±0.00

RDF2Vec 88.88±0.00 67.20±1.24 87.24±0.89 88.33±0.61
R-GCN 95.83±0.62 73.23±0.48 83.10±0.80 89.29±0.35
HALO 96.11±2.22 86.17±1.18 93.10±2.18 90.20±1.20

Table 3: Model Hyperparameters for HALO

Datasets DBLP IMDB ACM Freebase AIFB MUTAG BGS AM
Hidden Layer

Size 256 64 32 32 16 16 16 16

Learning Rate 10−4 10−3 10−2 10−2 10−3 10−3 10−2 10−2

Weight Decay 10−5 10−5 10−4 10−3 10−5 10−4 10−5 10−4

K 8 32 32 4 16 16 8 4
λ 1 1 0.1 1 1 0.01 0.1 1
α 1 1 0.1 1 0.1 1 1 1

4.2 Categorization in DBLP and Academic datasets

To carry out experiments for ZooBP, we modified DBLP and Academic datasets as mentioned in the
main text. Here, we provide details on the categorization of venues in these datasets. Each venue is
the name of academic conference.

DBLP dataset has 20 venues: AAAI, CVPR, ECML, ICML, IJCAI, SIGMOD, VLDB, EDBT, ICDE,
PODS, ICDM, KDD, PAKDD, PKDD, SDM, CIKM, CIR, SIGIR, WSDM, WWW. We categorize
the above venues to 4 categories: ML (AAAI, CVPR, ECML, ICML, IJCAI), DB (SIGMOD, VLDB,
EDBT, ICDE, PODS), DM (ICDM, KDD, PAKDD, PKDD, SDM), and IR(CIKM, CIR, SIGIR,
WSDM, WWW).

Academic dataset has 18 venues: ICML, AAAI, IJCAI, CVPR, ICCV, ECCV, ACL, EMNLP,
NAACL, KDD, WSDM, ICDM, SIGMOD, VLDB, ICDE, WWW, SIGIR, CIKM. We categorize the
above venues to 4 categories: ML (ICML, AAAI, IJCAI), Vision (CVPR, ICCV, ECCV), NLP (ACL,
EMNLP, NAACL), and Data (KDD, WSDM, ICDM, SIGMOD, VLDB, ICDE, WWW, SIGIR,
CIKM).

Figure 2: Compatibility matrix used in Academic-reduced datsaet
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Figure 3: Compatibility matrix used in DBLP-reduced datsaet
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For choosing the compatibility matrix of ZooBP, based on the category of each venue, we give high
positive value on H(i, j) if j-th venue corresponds to i-th venue. For example, “AAAI” in DBLP
dataset belongs to “ML” category. Therefore, we give high positive value on H(“ML”, “AAAI”).
Otherwise, we give negative value to satisfy the residual condition of the compatibility matrix. The
results for the Academic and DBLP data are shown in Figures 2 and 3 respectively.

5 Limitations and Potential Negative Social Impact

One limitation is that we have thus far not integrated HALO with large-scale sampling, which would
allow us to apply it to huge graphs. And a potential negative societal impact is that as the node
classification accuracy with heterogeneous graphs significantly improves with models like HALO,
it could be maliciously used to improve the quality of the recommendation of socially damaging
products on the Internet (e.g., dangerous weapons or harmful videos on streaming websites).
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