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In the following we provide additional results and details that did not fit into our main paper. In
Appendix A we provide precise definitions and a complete proof of our identifiability theorem.
We then discuss the assumptions underlying this result and their generalization in Appendix B.
Appendix C covers implicit latent causal models (ILCMs) and their training, while Appendix D
provides details for our experiments. In Appendix E we describe explicit latent causal models
(ELCMs) and our experiments with them. Finally, in Appendix F we discuss the potential societal
impact of our work.

A Identifiability result

A.1 Definitions

Here we define objects and relations that were not formally defined in the main body of the paper, but
are necessary to make Thm. 1 precise and to prove it.

We use the following notation:

• [n] = {1, ..., n}
• paCi ⊆ [n] the set of parent nodes of node i in graph G(C).
• descCi ⊆ [n] the set of descendant nodes of node i in graph G(C), excluding i itself.
• ancCi ⊆ [n] the set of ancestor nodes of node i in graph G(C), excluding i itself.
• nonancCi = [n] \ (ancCi ∪ {i}) the set of non-ancestor nodes of node i in graph G(C),

excluding i itself.
• Given measure p on space A and measurable function f : A→ B, f∗p is the push-forward

measure on B.

We describe causal structure with SCMs.
Definition 4 (Structural causal model (SCM)). An SCM is a tuple C = ⟨Z, E , F, pE⟩ consisting of
the following:

• domains Z = Z1 × · · · × Zn of causal (endogenous) variables z1, . . . , zn;
• domains E = E1 × · · · × En of noise (exogeneous) variables ϵ1, . . . , ϵn;
• a directed acyclic graph G(C), whose nodes are the causal variables and edges represent

causal relations between the variables;
• causal mechanisms F = {f1, . . . , fn} with fi : Ei ×

∏
j∈pai

Zj → Zi; and
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• a probability measure pE(ϵ) = pE1(ϵ1) pE2(ϵ2) . . . pEn(ϵn) with full support that admits a
continuous density.

Additionally, we assume that ∀i,∀zpai , fi(·, zpai) : Ei → Zi is a diffeomorphism.

We will need to reason about vectors being “equal up to permutation and elementwise reparameteri-
zations”. We formalize this in the following definition:

Definition 5 (ψ-diagonal). Let ψ : [n] → [n] be a bijection (that is, a permutation). Let φ :∏n
i=1Xi →

∏n
i=1 Yi be a function between product spaces. Then φ is ψ-diagonal if there exist

functions, called components, φi : Xi → Yψ(i) such that ∀i,∀x, φ(x1, ..., xi, ..., xn)ψ(i) = φi(xi).

This lets us define isomorphisms between SCMs:

Definition 6 (Isomorphism of SCMs). Let C = ⟨Z, E , F, pE⟩ and C′ = ⟨Z ′, E ′, F ′, p′E⟩ be SCMs. An
isomorphism φ : C → C′ consists of

1. a graph isomorphism ψ : G(C)→ G(C′) that tells us how to identify corresponding variables
in the two models and which preserves parents: paC

′

ψ(i) = ψ(paCi ) and
2. ψ-diagonal diffeomorphisms for noise and endogenous variables that tell us how to repa-

rameterize them φE : E → E ′ and φZ : Z → Z ′, where φE must be measure preserving
pE′ = φE∗pE . For notational simplicity, we will drop the subscript in φZ and use the symbol
φ to refer both to the SCM isomorphism and the noise isomorphism.

The elementwise diffeomorphisms are required to make the following diagrams commute ∀i, i′ = ψ(i):

Zpai × Ei Z ′
pa′

i′
× E ′i′

Zi Z ′
i′

fi f ′
i′

φi

(φpai
,φE,i)

(5)

Intuitively, this says that if we apply a causal mechanism fi and then reparameterize the causal
variable i using φi, we get the same thing as first reparameterizing the parents and noise variable of
variable i, and then applying the causal mechanism f ′i′ .

To reason about interventions, we equip SCMs with intervention distributions in the following
definition.

Definition 7 (Intervention structural causal model (ISCM)). An intervention structural causal model
(ISCM) is a tuple D = ⟨C, I, pI⟩ of

1. an acyclic SCM C = ⟨Z, E , F, pE⟩ that admits a faithful distribution, meaning that condi-
tional independence of causal variables z implies d-separation [1].

2. a set I of interventions on C, where each intervention (I, (f̃i)i∈I) ∈ I consist of
(a) a subset I ⊂ {1, ..., n} of the causal variables, called the intervention target set, and
(b) for each i ∈ I , a new causal mechanism f̃i : Ei → Zi which replaces the original

mechanism and which does not depend on the parents.
We define intervention set I to be atomic if the number of targeted variables is one or zero.

3. a probability measure pI over I.

We can extend the notion of isomorphism from SCMs to ISCMs.

Definition 8 (Isomorphism of ISCMs). Let D = ⟨C, I, pI⟩ and D′ = ⟨C′, I ′, p′I′⟩ be ISCMs. An
ISCM isomorphism is an SCM isomorphism φ : C → C′ with underlying graph isomorphism
ψ : G(C)→ G(C′) and a ψ-diagonal diffeomorphism φ̃E : E → E ′ such that

• the graph isomorphism ψ induces a bijection of intervention sets

ψI : I → I ′ : (I, (f̃i)i∈I) 7→ (ψ(I), (f̃ ′i′)i′∈ψ(I))
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• for each intervention (I, (f̃i)i∈I) ∈ I , and each intervened on variable i ∈ I , the following
diagram commutes:

Ei E ′ψ(i)

Zi Z ′
ψ(i)

f̃i f̃ ′
ψ(i)

φi

φ̃E,i

(6)

• φ̃E is measure preserving, i. e. pE′ = (φ̃E)∗pE .
• the bijection ψI : I → I ′ preserves the distribution over interventions: ψ∗pI = p′I′ .

Latent Causal Models (LCMs), defined in Def. 1, add a map to the data space to an ILCM. We can
lift ISCM isomorphisms to LCM isomorphisms by requiring that these decoders must respect the
ISCM isomorphism.
Definition 9 (Isomorphism of LCMs). LetM = ⟨C,X , g, I, pI⟩ andM′ = ⟨C′,X , g′, I ′, p′I′⟩ be
LCMs with identical observation space X = X ′. An LCM isomorphism is an ISCM isomorphism
φ : D → D′ such that the decoders respect the SCM isomorphism, so this diagram must commute:

Z Z ′

X

φ

g g′
(7)

Remark 1. By defining objects and isomorphisms, we have defined a groupoid of SCMs, a groupoid
of ISCMs and a groupoid of LCMs, as the isomorphisms are composed and inverted in an obvious
way.
Definition 10 (Equivalence). We call two SCMs, ISCMs, or LCMs equivalent if an isomorphism
exists between them.

Informally, two SCMs, ISCMs, or LCMs are equivalent if there is a ψ-diagonal map between their
causal variables (i. e. the causal variables are equal up to permutation and elementwise diffeomor-
phisms), there is a ψ-diagonal map between their noise encodings, and all other structure (decoders,
intervention sets, intervention distributions) is compatible with these reparameterizations.

Next, we define the solution function of an SCM or ISCM, which maps from noise variables to causal
variables by repeatedly applying the causal mechanisms.
Definition 11 (Solution). Given an ISCM D = ⟨C, I, pI⟩, the solution function s : E → Z is the
unique function such that for all i ∈ [n], the following diagram commutes [2]

E

Zpai × Ei Zi

si(spai
,idEi )

fi

In equations, we have that s(ϵ)i = f(ϵi; s(ϵpai)). Similarly, intervention (I, (f̃i)i∈I) ∈ I yields a
solution function s̃I : E → Z with the modified causal mechanisms.

For example, with two variables with z1 → z2, the solution is given by:

s : E → Z :

(
ϵ1
ϵ2

)
7→

(
z1
z2

)
=

(
f1(ϵ1)

f2(ϵ2, f1(ϵ1))

)
.

Since we require causal mechanisms to be pointwise diffeomorphic, the solution function is a
diffeomorphism as well.

Pushing the noise distribution of an SCM through the solution function finally gives us the (observ-
able) distribution entailed by an SCM or ISCM. In an ISCM or LCM we can define several other
(observational or interventional) distributions.
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ϵ, ϵ̃ ϵ′, ϵ̃′

z, z̃ z′, z̃′

x, x̃ x, x̃

φE ,φ̃E

s,s̃I s′,s̃′
I′

φZ ,φZ

g,g g′,g′

Figure 7: An illustration of the spaces and maps in our definitions and proof. When LCMsM,M′

are isomorphic, all squares in the diagram should commute. Additionally, all maps should preserve
the weakly supervised distributions on the variables and all horizontal maps should be ψ-diagonal.
Note that the latent variables (ϵ, z) can differ up to a diffeomorphism, but the x variables are actually
observed, so must be identically equal. From that equality, the other horizontal maps are uniquely
defined.

Definition 12 (Distributions). Given an LCMM = ⟨C,X , g, I, pI⟩, we have the following generative
process:

ϵ ∼ pE , z = s(ϵ) , x = g(z) , e = s−1(z)

I ∼ pI , ϵ̃ ∼ p̃Ẽ(ϵ̃ | ϵ, I) , z̃ = s̃I(ϵ̃) , x̃ = g(z̃) , ẽ = s−1(z̃) . (8)

where p(ϵ̃i | ϵi, i ∈ I) = pEi(ϵ̃i) and p(ϵ̃i | ϵi, i ̸∈ I) = δ(ϵ̃i | ϵi) is the Dirac measure.

Then we define the following weakly supervised distributions:

• The weakly supervised noise distribution with interventions: pE,IC (ϵ, ϵ̃, I).
• The weakly supervised causal distribution with interventions: pZ,IC (z, z̃, I).
• The weakly supervised observational distribution with interventions: pX ,IM (x, x̃, I).

These distributions are given by appropriate pushforwards of the noise distributions through the
transformations in Eq. (8).

By marginalizing over I , we get pEC , p
Z
C , p

e
C , p

X
M respectively.

The relationships between all the maps can be found in Fig. 7.

A.2 Identifiability proof

First, we prove two auxiliary lemmata.
Lemma 1. Let f : [0, 1]→ [0, 1] be differentiable and Lebesgue measure preserving. Then either
f(x) = x or f(x) = 1− x.

Proof. We follow the celebrated proof from Stack Exchange user zhw [3]. Let λ be the Lebesgue mea-
sure. Measure preservation means that for any measurable subset U ⊆ [0, 1], λ(U) = λ(f−1(U)).

First, note that f is surjective, because otherwise the image of f is a proper subinterval [a, b] ⊊ [0, 1]
and λ(f−1([a, b])) = λ([0, 1]) = 1 > λ([a, b]) = b− a, which contradicts measure-preservation.

Define the open ball B(x, r) = {y ∈ [0, 1] | |y − x| < r}. Suppose that f ′(0) = 0 for
some x ∈ [0, 1]. Then there exists an r > 0 such that f(B(x, r)) ⊆ B(f(x), r/4), and thus
B(x, r) ⊆ f−1(B(f(x), r/4)). Therefore, r ≤ λ(B(x, r)) ≤ λ(f−1(B(f(x), r/4))), while
λ(B(f(x), r/4)) ≤ 2 · r/4 = r/2, contradicting measure preservation. Hence f ′(x) ̸= 0 on
[0, 1].

By the Darboux theorem, f ′ is either strictly positive or strictly negative on the interval and thus f is
either strictly increasing or decreasing and thus a bijection. Assume that it is strictly increasing, then
∀x ∈ [0, 1], x = λ([0, x]) = λ(f−1(f([0, x]))) = λ(f([0, x])) = f(x)− f(0) = f(x). Similarly, if
it is strictly decreasing, we find f(x) = 1− x.

Lemma 2. LetA = C = R andB = Rn. Let f : A×B → C be differentiable. Define differentiable
measures pA on A and pC on C. Let ∀b ∈ B, f(·, b) : A → C be measure-preserving. Then f is
constant in B.
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Proof. Let PA : A → [0, 1], PC : C → [0, 1] be the diffeomorphic cumulative density functions.
Then P−1

A and P−1
C are measure-preserving maps from the uniform distribution on [0, 1]. Now write

g : [0, 1]× B → [0, 1] : (z, b) 7→ PC(f(P
−1
A (z), b)) such that this diagram of measure-preserving

differentiable maps commutes:

A C

[0, 1] [0, 1]

f(·,b)

PA P−1
C

g(·,b)

Then g is differentiable and ∀b ∈ B measure-preserving [0, 1] → [0, 1]. By the previous Lemma
1, the only differentiable measure-preserving functions [0, 1] → [0, 1] are id and 1 − id. As g is
continuous in B, it can not vary between id and 1− id and thus g, and consequently f are constant
in B.

We can interpret this lemma in terms of statistical independence. Starting from a product measure
on A×B, the requirements of the lemma correspond to a⊥⊥b and c⊥⊥b. The lemma thus defines a
sense in which for real-valued variables, statistical independence implies functional independence
(the converse is always true).

Now in the remainder of this subsection, we prove the main theorem.

Theorem 1 (Identifiability of R-valued LCMs from weak supervision). LetM = ⟨C,X , g, I, pI⟩
andM′ = ⟨C′,X , g′, I ′, p′I′⟩ be LCMs with the following properties:

• The SCMs C and C′ both consist of n real-valued endogeneous variables, i. e. Ei = Zi =
Z ′
i = E ′i = R.

• The intervention sets I and I ′ consist of the empty intervention and all atomic interventions,
I = {∅, {z0}, . . . , {zn}} and similar for I ′.

• The intervention distribution pI and p′I′ have full support.

Then the following two statements are equivalent:

1. The weakly supervised distributions entailed by the LCMs are equal, pM(x, x̃) =
pM′(x, x̃).

2. The LCMs are equivalent,M∼M′.

Proof. “(2)⇒ (1)”: If the LCMs are equivalent, then the fact that φE and φ̃E are measure preserving
and that diagrams (5) and (6) commute, implies that pZ

′

C′ = (φZ , φZ)∗p
Z
C . Then because diagram (7)

commutes, the weakly supervised distributions coincide, pXM′ = pXM.

“(1)⇒ (2)”: Conversely, if the weakly supervised distributions coincide, pXM′ = pXM, the images of
g : Z → X , g′ : Z ′ → X coincide,

φ = g′−1 ◦ g : Z → Z ′ (9)

is a diffeomorphism, and φ preserves the weakly supervised distribution over causal variables:
pZ

′

C′ = (φ,φ)∗p
Z
C .

LCM equivalence then follows from showing that φ : D → D′ is an ISCM isomorphism, where
D = ⟨C, I, pI⟩ and D′ = ⟨C′, I ′, p′I′⟩ be the ISCMs inherent toM andM′. We show this in the
following steps:

1. For each intervention I in D, there is a corresponding intervention I ′ in D′, given by a
permutation ψ : [n]→ [n], such that φ preserves the interventional distribution.

2. The diffeomorphism φ is ψ-diagonal.
3. The permutation ψ preserved the ancestry structure of graphs G(C) and G(C′).
4. The diffeomorphism φE : E → E of noise variables is ψ-diagonal.
5. The causal mechanisms are compatible with φ.

Step 1: Interventions preserved Remember that the diffeomorphism φ : Z → Z ′ is such
that pZ

′

C′ = (φ,φ)∗p
Z
C . For atomic interventions I ̸= J ∈ I, consider the intersection of the
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supports of the weakly supervised distribution for interventions on I and J : U = supp pZ,IC (z, z̃ |
I)∩supp pZ,IC (z, z̃ | J) ⊂ Z×Z . Note that U has zero measure in pZ,IC (U | I) = pZ,IC (U | J) = 0.
The distribution is thus a discrete mixture on (z, z̃) of non-overlapping distributions.

The diffeormorphism (φ,φ) must map between these mixtures. Thus there exists a bijection ψ : I →
I ′, also inducing a permutation ψ : [n]→ [n], such that

pZ
′,I′

C′ = (φ,φ, ψ)∗p
Z,I
C .

Step 2: φ is ψ-diagonal This measure preservation lets us define two equal distributions on
Z × Z̃ ′ ×I , namely (idZ , φ, idI)∗p

Z,I
C and (φ−1, idZ̃′ , ψ

−1)∗p
Z′,I′

C′ . In particular, these must then
have equal conditionals p(z̃′ | z, I). Thus, for any U ⊆ Z̃ ′, z ∈ Z, I ∈ I,

pZ
′,I′

C′ (z̃′ ∈ U | φ(z), ψ(I)) = pZ,IC (z̃ ∈ φ−1(U) | z, I)

The conditional probability pZ,IC (z̃ | z, I) can be interpreted as a stochastic map Z → Z̃ . The above
relation can then be written as a commuting diagram of stochastic maps, ∀I ∈ I, I ′ = ψ(I):

Z Z̃

Z ′ Z̃ ′

pZ,IC (z̃|z,I)

pZ
′,I′

C′ (z̃′|z′,I′)

φ φ (10)

where we treat φ : Z → Z ′ as a deterministic stochastic map.

For any variable i ∈ [n], write the other nodes as o = [n] \ {i}. Let I = {i}. Then pZ,IC (z̃ | z, I) can
be written as a string diagram of stochastic maps:

z̃i z̃o

f̂o

z

This string diagram represents a conditional probability distribution p(z̃i, z̃o | z) and is read from
the bottom to the top. String diagrams map formally to a generative process [4] and have been used
previously in the context of causal models [5]. In this case, the diagram maps to:

z̃i ∼ p(z̃i), z̃o = f̂o(z̃i, z)

where p(z̃i) is the interventional distribution and the deterministic map f̂o : Z̃i × Z → Z̃o can
be constructed from the inverse solution s−1 : Z → E and the causal mechanisms. Each box in
a string diagram of stochastic maps denotes a stochastic map and each line to a measurable space.
The triangle is the stochastic map ⋆→ Z̃i (the star denoting the one-point space; maps from which
correspond to probability distributions over the codomain). The • represents copying a variable.

The above commuting diagram (10) can then be written as the equality of the following two string
diagrams, where ψ(I) = I ′ = {i′}, o′ = [n] \ {i′}. We write φ : Z → Z ′ as the pair φi′ : Z →
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Z ′
i′ , φo′ : Z → Z ′

o′ obtained by projecting the output of φ to the partition Z ′ = Z ′
i′ ×Z ′

o′ :

z̃′i′ z̃′o′

f̂ ′o′

z′

φ

z

z̃i z̃o

f̂o

z

φo′φi′

z̃′i′ z̃′o′

=

(11)

This should be read as the equality of the two conditional probability distributions p(z̃′i′ , z̃
′
o′ | z)

generated in the following way:

Left: z̃i ∼ p(z̃i) , z̃o = f̂o(z̃i, z) , z̃′i′ = φ(z̃i, z̃o)i′ , z̃o′ = φ(z̃i, z̃o)o′ .

Right: z′ = φ(z) , z̃′i′ ∼ p′(z̃′i′) , z̃′o′ = f ′o′(z̃
′
i′ , z

′) .

The string diagram equality (11) implies equality when we disregard outputs Z ′
o′ :

z̃′i′

z

z̃i
f̂o

z

φi′

z̃′i′

=
z̃o

where the upwards pointing triangle represents discarding a variable.

Using Lemma 2, and the fact that Z̃i = Z̃ ′
i′ = R, the composed differentiable function Z̃i×Z → Z̃ ′

i′

is constant in Z . Thus we have a deterministic function Z̃i → Z̃ ′
i′ such that:

z̃′i′

zz̃i

f̂o

z

φi′

z̃′i′

=
z̃o

z̃i

The deterministic function Z̃i×Z → Z̃i× Z̃o is surjective and both the left- and right-hand side can
be seen as first applying this function (though the output is discarded on the right hand side), which
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implies there exists a function Z̃i → Z̃ ′
i′ such that

z̃′i′

z̃oz̃i

φi′

z̃′i′

=

z̃o z̃i

In words, the function φi′ : Zi × Zo → Z ′
i′ is constant in Zo. This holds for all i and thus φ is

ψ-diagonal.

Step 3: Ancestry preserved Let i ̸= j ∈ [n], i′ = ψ(i), j′ = ψ(j), and I = {i}. Writing φ as
ψ-diagonal, the commuting diagram (10) for the j′ component of z̃′, can be written as the following
string diagram:

z̃′j′

z̃′i′

f̂ ′j′

z′

φ

z

z̃j

z̃i

f̂j

z

φj′

z̃′j′

=

The left hand side is a deterministic map Z → Z̃ ′
j′ if and only if f̂j is constant in Z̃i which by

faithfulness is the case if and only if i ̸∈ ancj . The same holds on the right hand side, so ∀i ̸= j ∈ [n],
i ∈ ancCj ⇐⇒ ψ(i) ∈ ancC

′

ψ(j).

Step 4: Noise map diagonal Define φE = s′−1 ◦ φ ◦ s : E → E ′. Note that φE(ϵ)i′ only depends
on ϵi and ϵanci , because s(ϵ)anci,i and s′−1(z′)i′ only depend on ancestors, φ is ψ-diagonal and ψ
preserves ancestry.

The map φ is measure-preserving. Thus ∀i and writing A = anci, the conditional p(zi | zA) =
p(zi | zpai), interpreted as a stochastic map, is preserved by φ. We can express this as another
commuting diagram, in which the two paths from EA to E ′i′ must be equal:

EA ZA ZA,i

Z ′
A′ Z ′

A′,i′ E ′i′

p(zi|zpai
)

φA φA,i

p(z′
i′ |z

′
pa
i′
) f ′

i′
−1

sA

8



where f ′i′
−1

(z′) = f(z′pai′ , ·)
−1(z′i′). Then we have:

ϵi

fi

φA′ φi′

f ′i′
−1

zi

ϵ′i′

zA

z′A′ z′i′

ϵ′i′

f ′i′

φA′

f ′i′
−1

ϵ′i′

zA

z′A′ z′i′

ϵ′i′

ϵA

(2)
=

(3)
=

ϵA

sA

ϵA

sA

ϵi

φE,i′

ϵ′i′

ϵA

(1)
=

where the first equality follows from the definition of φE,i′ , the second equality from the commuting
diagram above and the third equality from the fact that f ′i′ and f ′i′

−1 cancel. Then, again using
Lemma 2, the map on the left hand side must be constant in ϵA. The noise encoding is thus also
ψ-diagonal.

Step 5: Equivalence Consider for a variable i and with i′ = ψ(i) the following commuting diagram
of deterministic maps. Note that we write the causal mechanism fi as a function of all ancestors, not
just the parents, so it is constant in the non-parents. Because of faithfulness, it is non-constant in the
parents. Since ψ preserves ancestors, f ′i′ is well-typed.

E E ′

Zanci × Ei Z ′
anci′

× E ′i′

Zi Z ′
i′

φE

φZ,i

(sanci
,idEi )

(s′anc
i′
,idE′

i′
)

fi f ′
i′

(φZ,anci
,φE,i)

The composition of the left vertical maps is equal to si, the composition of the right vertical maps
to s′i′ . Therefore and because of the definition of φE , the outer and the top square commute. Then,
because (sanci , idEi) is surjective, the bottom square also commutes [6, Lemma 1.6.21].

Then for zj ∈ anci, we have that

zj ∈ paCi ⇐⇒ fi not constant in zj ⇐⇒ f ′i′ not constant in z′j′ ⇐⇒ z′j′ ∈ paC
′

i′ .

And thus ψ not only preserves ancestry, but also parenthood and is thus a graph isomorphism
ψ : G(C) → G(C′). Diagram (5) commutes, and we have established an SCM isomorphism
φ : C → C′.
To have this also be an ISCM isomorphism, we need diagram (6) to commute and the distribution
over interventions to be preserved. For the first, use the fact that all maps in (6) are isomorphisms to
simply define φ̃E so that the diagram commutes. The second follows directly from the assumptions.
Hence φ : D → D′ is an ISCM isomorphism, D ∼ D′, and—together with the arguments in the
beginning of this proof—finallyM∼M′.

B Limitations & generalization

Our identifiability result relies on a few assumptions. Here we discuss some key requirements of
Thm. 1 and whether they can be relaxed.
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Diffeomorphic causal mechanisms In Def. 4, we require causal mechanisms to be pointwise
diffeomorphisms from noise variables to causal variables. Under some mild smoothness assumptions,
any SCM can be brought into this form by elementwise redefinitions of the variables, without
affecting the observational or interventional distributions. However, such a redefinition may change
counterfactual / weakly supervised distributions.

All interventions observed To guarantee identifiability, we require that the intervention distri-
bution has support for any atomic intervention: datasets need to contain data pairs generated from
interventions on any causal variable. However, in many systems not all variables can be intervened
upon, for instance because some variables are fundamentally immutable or for safety reasons. In that
case, the LCM may not be fully identifiable, but there may still be partial identifiability. Interventions
on child variables, for instance, can guarantee the identifiability of the parents [7]. We leave a precise
characterization of the equivalence classes under such partial weak supervision for future work.

Perfect interventions Our proof of Thm. 1 requires perfect interventions, i. e. that intervened-upon
mechanisms do not depend on any causal variables. This is arguably the biggest mismatch between
our assumptions and many real-world systems.

If we try to generalize this assumption and allow the intervention mechanisms to depend on the parent
variables, identifiability is lost. A simple counterexample is the following.

Example 1 (Non-identifiable ISMCs under imperfect interventions). Consider two inequivalent
ISCMs D,D′, each with two variables and graph z1 → z2. Let the mechanisms be equal, except that
f ′2(ϵ2; z1) = f2(ϵ2; z1) + z1 and f̃ ′2(ϵ̃2; z1) = f̃2(ϵ̃2; z1) + z1. Then it is easy to see that a ϕ that is
the identity on the first variable and on the second variable is ϕ2(z1, z2) = z1 + z2, preserves the
weakly supervised distribution, but is not an ISCM isomorphism.

Diffeomorphic decoder Definition 1 and Thm. 1 assume that the map from causal variables to
observed data is given by a deterministic, diffeomorphic decoder. However, our practical implementa-
tion in a VAE uses a stochastic decoder and allows for noisy data. Our experiments provide empirical
evidence for identifiability in this setting. We believe that it may be possible to extend Thm. 1 to
stochastic decoders, similarly to Khemakhem et al. [8]. We plan to study this extension in future
work.

Independent of whether the decoder is deterministic or stochastic, however, is the requirement that
the value of all causal variables need to be reflected in the observed low-level data. Our approach
(and as far as we are aware all other methods for causal representation learning) is not able to detect
causal variables that do not directly influence the low-level data. Latent confounders, present in many
real-world problems, provide an as-of-now unsolved hurdle to causal representation learning.

Real-valued causal variables Theorem 1 assumes real-valued causal and noise variables, Zi =
Ei = R. We can easily extend this to intervals (a, b) ∈ R, as these are isomorphic to R. However, the
extension to arbitrary continuous spaces or Rn is not straightforward. The main reason is that our
proof relies on Lemma 2, which does not generalize.

Let us provide a counterexample for identifiability with circle S1-valued causal variables.

Example 2 (S1-valued non-identifiable LCMs). Consider an LCMM = ⟨C,X , g, I, pI⟩ with the
following components:

• The SCM C consists of two circle-valued variables z1, z2 ∈ S1 with noise variables ϵ1, ϵ2 ∈
S1. We parameterize S1 as [0, 2π) with addition defined modulo 2π.

• The causal graph is z1 → z2.
• The causal mechanisms are f1(ϵ1) = ϵ1 and f2(ϵ2; z1) = ϵ2 + z1.
• The solution function is s(ϵ1, ϵ2) = (ϵ1, ϵ2 + ϵ1).
• The noise variables are distributed as ϵ1 ∼ U , uniformly, and ϵ2 ∼ q, which we require to

not be invariant under translations (so in particular not uniform). For example, one can
take the von Mises distribution log q(ϵ2) = cos(ϵ2) + const.

• The observation space is X and the decoder g : S1 × S1 → X is diffeomorphic.
• The intervention set I consists of the empty intervention, atomic interventions on z1 with
z̃1 ∼ U , and atomic interventions on z2 with z̃2 ∼ U . Each of these interventions has
probability 1

3 in pI .
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Note that the SCM is faithful, as z1⊥̸⊥z2 in the observational distribution, because q is not transla-
tionally invariant. The LCM entails the weakly supervised causal distribution

pZC (z, z̃) = U(z1) q(z2 − z1)
[
1

3
δ(z̃1 − z1) δ(z̃2 − z2)

+
1

3
U(z̃1) δ(z̃2 − z2 − z̃1 + z1) +

1

3
δ(z̃1 − z1) U(z̃2)

]
(12)

with Dirac delta δ. The weakly supervised data distribution is then given by pXM = (g∗, g∗)p
Z
C .

Now consider a second LCMM′ = ⟨C′,X , g′, I ′, p′I′⟩:
• The SCM C′ consists of two circle-valued variables z′1, z

′
2 ∈ S1 with noise variables

ϵ′1, ϵ
′
2 ∈ S1.

• The causal graph is trivial and the causal mechanisms are given by the identity, f ′i(ϵ
′
i) = ϵ′i.

• The noise variables are distributed as ϵ′1 ∼ U and ϵ′2 ∼ q.
• The observation space is X and the decoder g′ : S1 × S1 → X is given by the diffeomor-

phism g′(z′) = g ◦ s(z′), where s is the solution function of C.
• The intervention set I ′ consists of empty interventions, atomic interventions on z′1 with
z̃′1 ∼ U , and atomic interventions on z′2 with z̃′2 ∼ U . Each of these interventions has
probability 1

3 in pI′ .

We find a weakly supervised causal distribution

pZ
′

C′ (z′, z̃′) = U(z′1) q(z′2)
[
1

3
δ(z̃′1 − z′1) δ(z̃′2 − z′2)

+
1

3
U(z̃′1) δ(z̃′2 − z′2) +

1

3
δ(z̃′1 − z′1) U(z̃′2)

]
. (13)

Clearly, two LCMs are not equivalent, because their graphs are non-isomorphic. Yet, if we define

φ : Z → Z ′ : (z1, z2) 7→ (z1, z2 − z1)

then the weakly supervised distribution of the causal variables is preserved:

((φ,φ)∗p
Z
C )(z

′, z̃′) = pZC ((z
′
1, z

′
2 + z′1), (z̃

′
1, z̃

′
2 + z̃′1))

= U(z′1) q(z′2 + z′1 − z′1)
[
1

3
δ(z̃′1 − z′1) δ(z̃′2 + z̃′1 − (z′2 + z′1))

+
1

3
U(z̃′1) δ(z̃′2 + z̃′1 − (z′2 + z′1)− z̃′1 + z′1) +

1

3
δ(z̃′1 − z′1) U(z̃′2 + z̃′1)

]
= U(z′1) q(z′2)

[
1

3
δ(z̃′1 − z′1) δ(z̃′2 − z′2)

+
1

3
U(z̃′1) δ(z̃′2 − z′2) +

1

3
δ(z̃′1 − z′1) U(z̃′2)

]
= pZ

′

C′ (z′, z̃′)

where we use that the density U is constant. Also, because φ = s−1 and g′(z′) = g ◦ s(z′), we have
that pXM = pXM′ .

So these two models with their non-isomorphic graph structures have identical weakly-supervised
distributions on the observables x, x̃. They therefore provide a counter-example for a straightforward
generalization of Thm. 1 to causal variables with arbitrary continuous domains.

The key issue here is that the interventional distribution on z̃2 has many symmetries or automor-
phisms: diffeomorphic maps Z2 → Z2 that preserve p(z̃2) — in this case these are the cyclic
translations. In general, for any causal model D with two variables z1 → z2, we can construct a map
ϕ(z1, z2) = (z1,Γ(z1)(z2)) where for all z1, Γ(z1) : Z2 → Z2 is a differentiable map from Z1 to
a diffeomorphism on Z2 that preserves the interventional distribution p(z̃2). This map ϕ preserves
the weakly supervised distribution from D to a unique model D′, whose causal mechanisms are:
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f ′1(ϵ1) = f1(ϵ1) and f ′2(z1, ϵ1) = Γ(z1)(f2(z1, ϵ2)). However, ϕ is only an ISCM morphism if it is
also diagonal, and thus Γ must be constant in z1.

For the R-valued variables of the main paper, any smooth distribution on R has exactly two automor-
phisms, related to the automorphisms of the univariate Gaussian distribution x 7→ x and x 7→ −x. Γ
can not smoothly switch between these and thus must be constant, making ϕ diagonal and an ISCM
morphism. However, any multi-dimensional distribution has many automorphisms. One class of
these is related to the orthogonal transformations of a standard multivariate Gaussian. Another, much
larger, class is related to the flows generated by divergence-free vector fields on the unit ball. Γ can
smoothly choose different such automorphisms for different values of z1, making ϕ not diagonal
and thus not an ISCM morphism. In conclusion, this smooth space of automorphisms make the
multivariate case unidentifiable from weak supervision.

C Implicit latent causal models

C.1 Behaviour of noise encodings under interventions

We first prove a key property of ISCMs, which motivate the construction of ILCMs:
Lemma 3. Let D = ⟨C, I, pI⟩ be an ISCM with n real-valued causal variables. Sample from the
weakly-supervised distribution over noise encodings (e, ẽ) ∼ p(e, ẽ|I). Then ∀i ̸∈ I , almost surely
ei = ẽi.

Proof. First, note that z = s(ϵ) and e = s−1(z), so ϵ = e. If i ̸∈ I , then the unintervened noise
equals the intervened noise ϵ̃i = ϵi, so

ẽi = s−1(z̃)i

= fi(·, z̃pai)
−1(z̃i)

= fi(·, z̃pai)
−1(fi(ϵ̃i, z̃pai))

= ϵ̃i = ϵi = ei

C.2 Model specification

An implicit latent causal model for a system of n causal variables consists of the following compo-
nents:

• a Gaussian noise encoder q(e|x) with mean µe(x) and standard deviation σe(x) implemented
as neural networks;

• a Gaussian noise decoder p(x|e) with mean µx(e) implemented as neural network and fixed,
constant standard deviation;

• an intervention encoder q(I|x, x̃) defined as

log q(i ∈ I|x, x̃) = 1

Z

(
a+ b |µe(x)i − µe(x̃)i|+ c |µe(x)i − µe(x̃)i|2

)
,

where a < 0 and b, c > 0 are learnable parameters and where the normalization constant Z
is defined such that

∑
I q(i ∈ I|x, x̃) = 1;

• solution functions si(ei; e\i) for i = 1, . . . , n implemented as invertible affine transforma-
tions, where the offset and slope are functions of e\i implemented with neural networks;

• noise priors pi(ei), which we choose to be standard Gaussian;
• an post-intervention causal-variable prior π̃(z̃i), which we choose to be standard Gaussian;

and
• an intervention-target prior p(I), which we choose to be uniform.

Encoding a data pair (x, x̃) during training consists of the following steps:
I ∼ q(I|x, x̃)

epreliminary ∼ q(e|x) ẽpreliminary ∼ q(ẽpreliminary|x̃)
∀i , λi ∼ Uniform(0, 1) eaverage i = λiepreliminary i + (1− λi)ẽpreliminary i

ei =

{
epreliminary i i ∈ I
eaverage i i /∈ I ẽi =

{
ẽpreliminary i i ∈ I
eaverage i i /∈ I . (14)
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Algorithm 1 Schematic ILCM training.
Require: Training data pdata(x, x̃)
Require: ILCM with encoder q(e, ẽ, I|x, x̃), decoder p(x|e), solution functions si(ei; e\i).
Require: Optimizer
Require: Loss weights α, β, optimizer hyperparameters, ILCM initialization

1: Randomly initialize ILCM
2: while not converged do
3: Sample data batch x, x̃ ∼ pdata(x, x̃)
4: Encode e ∼ qphase 1(x), ẽ ∼ qphase 1(x̃)
5: Compute loss L← Lphase 1(x, x̃) (Eq. (17))
6: Train ILCM on L with optimizer
7: end while
8: while not converged do
9: Sample data batch x, x̃ ∼ pdata(x, x̃)

10: Encode e, ẽ, I ∼ q(e, ẽ, I|x, x̃) (Eq. (14))
11: Compute loss L← Lphase 2(x, x̃) (Eq. (18))
12: Train ILCM on L with optimizer
13: end while
14: Freeze convolutional layers in q(e, ẽ, I|x, x̃)
15: while not converged do
16: Sample data batch x, x̃ ∼ pdata(x, x̃)
17: Encode e, ẽ, I ∼ q(e, ẽ, I|x, x̃) (Eq. (14))
18: Compute loss L← L(x, x̃) (Eq. (16))
19: Train ILCM on L with optimizer
20: end while
21: Determine top. order o← TopoOrderHeuristic(ILCM, pdata(x, x̃)) (described in Sec. C.5)
22: Modify si to only depend on si(ei; eanci) according to o
23: while not converged do
24: Sample data batch x, x̃ ∼ pdata(x, x̃)
25: Encode e, ẽ, I ∼ qphase 4(e, ẽ, I|x, x̃) (Eq. (20)
26: Compute loss L← L(x, x̃) (Eq. (16))
27: Train ILCM on L with optimizer
28: end while

In the first line, we encode to an intervention target (either by sampling or by enumerating all
possibilities and summing up the corresponding loss terms). In the second line, the data is encoded
to the noise-encoding space. The third and fourth line project these noise encodings such that for
those components ei that are not intervened upon, i /∈ I , we have that the pre-intervention noise
encoding and post-intervention noise encoding are equal, ei = ẽi. This makes sure that the latents are
consistent with the weakly supervised structure, and punishes deviations from this structure through
the reconstruction error (likelihood). We use the symbol e, ẽ ∼ q(e, ẽ|x, x̃, I) to refer to the second
to last line together.

The prior is given by

p(e, ẽI , I) = p(I)
∏
i

pi(ei)
∏
i∈I

p(ẽi|e)

with, for i ∈ I ,

p(ẽi|e) = p̃
(
si(ẽi|e\i)

) ∣∣∣∣∂s̄i(ẽi; e\i)∂ẽi

∣∣∣∣ . (15)
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C.3 Training

Loss We train ILCMs by minimizing the β-VAE loss

LILCM = Ex,x̃EI∼q(I|x,x̃)Ee,ẽ∼q(e,ẽ|x,x̃,I)
[
log p(x|e) + log p(x̃|ẽ)

+ β
{
log p(e, ẽI , I)− log q(I|x, x̃)− log q(e, ẽI |x, x̃, I)

}]
,

where β is a hyperparameter.

Two additional loss terms are used as regularizers during training. The first is a plain reconstruction
error (or log likelihood term) that does not use the projections given in Eq. (14) to encourage
consistency between the noise encoder and noise decoder:

Lreco = Ex,x̃Ee∼q(e|x)Eẽ∼q(ẽ|x̃)
[
log p(x|e) + log p(x̃|ẽ)

]
.

Throughout training, we also add the negative entropy of the batch-aggregate intervention posterior
qbatch
I (I) = Ex,x̃∈batch[q(I|x, x̃)]:

Lentropy = Ebatches

[
−
∑
I

qbatch
I (I) log qbatch

I (I)
]
.

This helps avoid a collapse of the latent space to a lower-dimensional subspace. The overall loss is
then given by

L = LILCM + αLreco + γLentropy (16)

with hyperparameters α, γ ≥ 0.

Training phases We train ILCM models in four phases:

1. We begin with a short pre-training phase, in which the noise encoder and noise decoder are
trained on a plain β-VAE loss with a standard Gaussian prior,

Lphase 1 = Ex,x̃Ee,ẽ∼q(e|x)q(ẽ|x̃)
[
log p(x|e) + log p(x̃|ẽ)

+β
{
logN (e) + logN (ẽ)− log q(e|x)− log q(ẽ|x̃)

}]
. (17)

This provides a good starting point for the remainder of the training, in which the encoders
and decoders have already learned some patterns in the data space.

2. Next, we train the noise encoder, noise decoder, and intervention encoder. In this phase
we do not yet use the neural solution functions and instead model p(ẽi|e) with a uniform
probability density. Ignoring irrelevant constants, the total loss is given by

Lphase 2 = Ex,x̃EI∼q(I|x,x̃)Ee,ẽ∼q(e,ẽ|x,x̃,I)
[
log p(x|e) + log p(x̃|ẽ) + β

{
log p(I)

+
∑
i

log pi(ei)− log q(I|x, x̃)− log q(e, ẽI |x, x̃, I)
}]

+ αLreco + γLentropy . (18)

This avoids harmful feedback from the randomly initialized solution functions influencing
the training of the encoder and decoders, stabilizing the learning of good latent representa-
tions.

3. We then “switch on” the solution functions and model the intervention targets with the
density p(ẽi|e) as given above and train on the combined loss L.
On image datasets, we freeze the convolutional layers in the encoder in this stage and only
continue training the final layers of the encoder together with the solution functions.

4. For a final fine-tuning phase, we change the setup in two more ways. First, we analyze the
learned solution functions to infer the most likely topological order. For this we use the step
1 of the heuristic algorithm for graph inference, which we will define in Sec. C.5 below.
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Then the solution functions are modified such that si only depends on the ancestors eanci
according to the inferred topological order:

si(ei; e\i)→ si(ei; eanci) . (19)

This is implemented with a suitable masking layer in the neural network implementation
of si. We find that this form of inductive bias in the prior helps with learning cleanly
disentangled representations.
Second, we fix the intervention encoders to the deterministic,

qdeterministic(I|x, x̃) =
{
1 I = argmaxI q(I|x, x̃)
0 else ,

q(e, ẽ, I|x, x̃) = qdeterministic(I|x, x̃)q(e, ẽ|x, x̃, I) . (20)

This further improves the training efficiency.

We summarize the whole ILCM training procedure in Alg. 1. The separation of phase 2 and 3—first
training the encoder with a simplified prior, then training the solution functions—improved the
success of our method substantially. Adding the pre-training and fine-tuning phases 1 and 4 slightly
improved the efficiency of the training, but is not critical.

We use the Adam optimizer [9] with a cosine annealing schedule [10], which is restarted at the
beginning of training phases 3 and 4. The hyperparameters differ slightly between experiments and
will be given in Sec. D.

C.4 Identifiability

We will now show that our identifiability result extends to implicit latent causal models. We construct
an equivalence Ω : ILCM → ELCM between ILCMs and ELCMs, which preserves the weakly
supervised distribution p(x, x̃). This gives an equivalence relation on ILCMs, namely if their
corresponding ELCMs are isomorphic according to Def. 9. A direct corollary of Thm. 1 is then that
the weakly supervised distributions of ILCMs N ,N ′ are equal, pN (x, x̃) = pN ′(x, x̃), if and only if
they are equivalent, N ∼ N ′.

To construct the map Ω between an ILCM N and ELCMM, let both have equal: solution function
s : E → Z , noise distribution p(ϵ), intervention distribution p(I), intervention encoder. Let the
encoder q(e|x) of N be equal to the encoder q(z|x) ofM, post-composed with the inverse solution
function s−1 : Z → E , and the decoder be pre-composed with the solution function. Let the explicit
graph inM equal the graph induced by the solution function of N , with ∀i ̸= j, the edge i → j
exists if ∃ϵ such that ∂s(ϵ)j/∂ϵi ̸= 0.

To map from an ILCM N to an ELCMM, we pick the intervened causal mechanism f̃i as any map
such that the causal distribution p(z̃i) = (f̃i)∗p(ei) ofM equals the post-intervention causal-variable
prior π̃(z̃i) in N . For R-valued variables and fully supported distributions with smooth densities,
there are exactly two possible choices for f̃i. To map from an ELCMM to an ILCM N , we set
π̃(z̃i) := (f̃i)∗p(ei).

Following the definitions of the weakly supervised distributions, it is easy to see that Ω preserves
weakly supervised distribution, so that if M = Ω(N ), then pM(x, x̃) = pN (x, x̃), and if N =
Ω−1(M), then pM(x, x̃) = pN (x, x̃). This proves that our identifiability result of ELCMs also
applies to ILCMs.

C.5 Graph inference

ILCMs do not contain an explicit graph representation, but the causal structure is implicitly repre-
sented by the learned solution functions. We propose two algorithms for causal discovery based on a
trained ILCM model.

ILCM-E We can perform causal discovery in a two-stage procedure. After training an ILCM to
learn the causal representations, we use an off-the-shelf method for causal discovery on the learned
representations. Since the ILCM allows us to infer intervention targets, we can use intervention-
based algorithms. In this paper, we use ENCO [11], a recent differentiable causal discovery method
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that exploits interventions to obtain acyclic graphs without requiring constrained optimization.
Alternatives to ENCO include DCDI [12] and GIES [13].

ILCM-H Alternatively, we can unearth the causal structure encoded in the learned solution func-
tions si, which map noise variables to causal variables. We introduce a heuristic algorithm that can
find the causal graph G and the causal mechanisms fi from a trained ILCM. It proceeds in three steps:

1. Computing the topological order: To determine the topological order of the causal graph,
we use the property that after convergence, the solution function zi = si(ei; e) will only
depend on the ancestors of ei. This allows us to define a heuristic that determines whether
zi is an ancestor of zj . For each pair (i, j), we compute

ancestry(i, j) = d
(
sj(ej ; e), sj(ej ; maski[e])

)
. (21)

Here d(·, ·) is a distance measure between two functions; in practice, we use the expected
MSE over a validation dataset. The function maski[e] replaces the i-th component of e with
uninformative input, for instance median of that component computed over the training
dataset.
After computing these ancestry scores, we can compute a topological order by sorting the
variables such that likely ancestors appear before their likely descendants according to this
heuristic. We do this with a greedy algorithm.

2. Extracting the causal mechanisms: Next, we compute the causal mechanisms fi such that
zi = fi(ei; zanci). We begin by setting i to the root node (the first variable in the topological
order computed in step 1) and proceed in topological order. At every step we set

fi(ei; zanci) = si(ei; ê) with êj =

{
f−1
j (zj ; zancj ) j ∈ anci
mask[ej ] otherwise .

(22)

3. Finding causal parents: Finally, we check whether an ancestor zi is a parent of a node zj by
testing whether fj explicitly depends on zi. Again, we use a heuristic measure of functional
dependence:

paternity(i, j) = d
(
fj(ej ; zancj ), fj(ej ; maski[zancj ])

)
. (23)

We then construct the causal graph by thresholding on this heuristic. This gives us the
inferred adjacency matrix

Âij =

{
1 i ∈ ancj and paternity(i, j) > pmin

0 else
(24)

where pmin > 0 is a hyperparameter.

The heuristic algorithm (ILCM-H) does not require any optimization and is thus computationally
more efficient, but arguably less principled than the likelihood-based ENCO approach (ILCM-E).
In our experiments, the ILCM-H approach finds the correct graph in 7 out of the 8 datasets, while
ILCM-E always yields the correct causal graph.

D Experiments

D.1 General setup

Baselines We compare our ILCM-E and ILCM-H results (which differ only by the graph inference
algorithm, as described above) to three baseline methods. The disentanglement VAE (dVAE) method
is a VAE for paired data with individual latent components changing between the pre-intervention
latents and the post-intervention latents, but without causal structure. We implement it by using an
ILCM, but enforce a trivial causal graph by not allowing the solution functions si(·; e) to depend on
e.

Our second baseline is an unstructured β-VAE, which treats pre-intervention and post-intervention
data as i. i. d. and models both with a standard Gaussian prior.

Finally, we include a slot attention baseline. We use as many slots as there are latents. We break the
symmetry between the slots by initialising the slots not with a random vector, but with a different
learned vector per slot, as is done in Ref. [14]. We choose a six-dimensional latent for each slot.
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Metrics We evaluate the disentanglement of the learned causal variables by computing the DCI
disentanglement, completeness, and informativeness scores [15]. They are based on a feature
importance matrix that quantifies how important each model latent is for predicting each ground-truth
causal factor; we compute the feature importance matrix with gradient boosted trees in sciki-learn’s
implementation with default parameters [16]. There are many other disentanglement metrics, but
empirically these tend to be highly correlated with the DCI disentanglement score [17], so we omit
them here for simplicity. For the slot attention models, we add up the contribution of the latent
dimensions of each slot, to get a importance matrix between slots and ground truth causal variables.

The quality of intervention inference is evaluated with the accuracy of the intervention encoder. Since
we can only identify causal variables and intervention targets up to a permutation, we compute this
accuracy for any possible permutation of the causal variables and then report the best result.

Finally, we evaluate the quality of the inferred causal graphs. We identify the ground-truth variables
with the corresponding learned causal variables based on the importance matrix computed for the
DCI disentanglement score [15]. We then compute the structural Hamming distance (or graph edit
distance) between the learned graph and the true graph. As an example, consider the case of two
causal variables, where the ground-truth graph is z1 → z2, the ILCM graph is z′1 → z′2, and the
ground-truth and learned variables are mapped to each other as z1 ↔ z′2 and z2 ↔ z′1. Then the
structural Hamming distance will be 1, as the cause and effect are flipped in the learned model.

D.2 2D toy experiment

Dataset We first demonstrate LCMs in a pedagogical toy experiment with X = Z = R2. Training
data is generated from a nonlinear SCM with the graph z1 → z2 and mapped to the data space
through a randomly initialized normalizing flow.

In particular, we have that z1 ∼ N (z1; 0, 1
2) and z2 ∼ N (z1; 0.3z

2
1+0.6z1, 0.8

2). This latent data is
mapped to the data space X = R2 with a randomly initialized coupling flow with five affine coupling
layers interspersed with random permutations of the dimensions. For the weakly supervised setting
we use a uniform intervention prior over {∅, {z1}, {z2}}. We generate 105 training samples, 104
validation samples, and 104 evaluation samples (where each sample is one pair (x, x̃) of pre- and
post-intervention data).

Architecture The noise encoder and noise decoder are Gaussian, with mean and standard deviation
computed by fully connected networks. The solution functions are implemented as affine transfor-
mations with slope and offset computed as a function of the pre-intervention noise encodings, also
implemented with fully connected networks. For each MLP, we use two hidden layers with 100 units
each and ReLU activations.

Training Models are trained using the procedure described in Sec. C.3. We train for 9 · 104 steps
using a batch size of 100 and an initial learning rate of 10−3. The weights of the different loss terms
and regularizers are as follows: β is initially set to 0 and increased to its final value of 1 during
training, α = 10−2, and γ = 0 throughout training. For each method, we train models with three
random seeds and in the end select the median run according to the validation loss.

D.3 Causal3DIdent experiments

Dataset In the Causal3DIdent experiments we consider six different datasets, each generated from
a different causal graph, SCM, and decoder. The six causal graphs we consider are:

• the trivial graph ,
• single edge ,
• the chain ,
• the fork ,
• the collider , and
• the full graph .

For each of these subsets, we randomly generate a nonlinear SCM with heteroskedastic noise: for
each causal mechanism, we randomly initialize an MLP that outputs the scale and shift of an affine
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Table 2: Detailed experiment results. We compare our ILCM-E (using ENCO for graph inference)
and ILCM-H (with a heuristic for graph inference) to disentanglement VAE (dVAE-E), unstructured
β-VAE, and slot attention baselines. We show the DCI scores (disentanglement D, completeness
C, informativeness I), the accuracy of intervention inference, the learned graph, and the structural
Hamming distance (SHD) between learned and true graph. Best results in bold.

Dataset True graph Method D C I Int. accuracy Learned graph SHD

2D toy data ILCM-E (ours) 0.99 0.99 0.00 0.96 0
ILCM-H (ours) 0.99 0.99 0.00 0.96 0
dVAE 0.35 0.50 0.01 0.96 1
β-VAE 0.52 0.53 0.00 – – –

Causal3DIdent ILCM-E (ours) 0.99 0.99 0.00 0.98 0
ILCM-H (ours) 0.99 0.99 0.00 0.98 0
dVAE 1.00 1.00 0.00 0.98 0
β-VAE 0.94 0.94 0.00 – – –
Slot attention 0.90 0.90 0.01 – – –

ILCM-E (ours) 1.00 1.00 0.00 0.98 0
ILCM-H (ours) 1.00 1.00 0.00 0.98 0
dVAE 0.91 0.91 0.00 0.98 1
β-VAE 0.92 0.92 0.00 – – –
Slot attention 0.56 0.84 0.02 – –

ILCM-E (ours) 0.99 0.99 0.00 0.98 0
ILCM-H (ours) 0.99 0.99 0.00 0.98 0
dVAE 0.83 0.83 0.00 0.98 2
β-VAE 0.63 0.71 0.00 – – –
Slot attention 0.42 0.59 0.02 – – –

ILCM-E (ours) 0.99 0.99 0.00 0.98 0
ILCM-H (ours) 0.99 0.99 0.00 0.98 1
dVAE 0.79 0.81 0.00 0.98 2
β-VAE 0.63 0.68 0.01 – – –
Slot attention 0.87 0.87 0.03 – – –

ILCM-E (ours) 0.99 0.99 0.00 0.98 0
ILCM-H (ours) 0.99 0.99 0.00 0.98 0
dVAE 0.80 0.81 0.01 0.98 2
β-VAE 0.28 0.52 0.16 – – –
Slot attention 0.32 0.35 0.04 – – –

ILCM-E (ours) 0.99 0.99 0.00 0.98 0
ILCM-H (ours) 0.99 0.99 0.00 0.98 0
dVAE 0.60 0.64 0.00 0.98 3
β-VAE 0.57 0.61 0.01 – – –
Slot attention 0.53 0.67 0.01 – – –

CausalCircuit ILCM-E (ours) 0.97 0.97 0.00 1.00 0
ILCM-H (ours) 0.97 0.97 0.00 1.00 0
dVAE-E 0.34 0.55 0.00 1.00 5
β-VAE 0.39 0.43 0.00 – – –
Slot attention 0.39 0.82 0.00 – – –
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Figure 8: Effect of varying the learned causal factors on the image in the Causal3DIdent dataset. We
encode a single test images (middle column) into the three learned causal variables. We then vary
each of these causal factors in isolation (without performing interventions, that is, without including
the causal effects on other variables) and show the reconstructed images. The ILCM (top) learns
a representation that is quite disentangled: z1 largely corresponds to the spotlight color, z2 to the
spotlight position, and z3 to the object color. In contrast, the acausal dVAE baseline entangles the
object color and spotlight color in its learned representation z1.

transformation as a function of the causal parents. We choose an MLP initialization scheme that
emphasizes nontrivial, nonlinear causal effects. We then identify a random permutation of the three
causal variables with three high-level concepts in the Causal3DIdent dataset: the object hue, the
spotlight hue, and the spotlight position. We use the following causal graphs:

• single edge: object hue→ spotlight position;
• chain: spotlight position→ spotlight hue→ object hue;
• fork: spotlight hue→ spotlight position, object hue;
• collider: spotlight hue→ object hue← spotlight position;
• full graph: spotlight hue → object hue → spotlight position, spotlight hue → spotlight

position.

Since all of these properties are defined on a range [0, 2π), we apply an elementwise arctanh
transform and rescaling to our variables such that they populate a subset of [0, 2π). This also avoids
topological issues. Next, we generate images in 64× 64 resolution following the procedure described
in Ref. [7]. We use Blender [18] to generate 3D rendered images based on the previously defined
causal variables. To increase diversity of the six datasets, we render each dataset with a different
object: Teapot [19], Armadillo [20], Hare [21], Cow [22], Dragon [23], and Horse [24]. We generate
105 training samples, 104 validation samples, and 104 evaluation samples.
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Architecture For the noise encoder and noise decoder we use a convolutional architecture with
four residual blocks, using downsampling via average-pooling and bilinear upsampling, respectively.
We do not use BatchNorm, as we found that that can lead to practical issues when images in a batch
are very similar. The output of the convolutional layers is then fed through a fully connected network
with two hidden layers, 64 units each, and ReLU activations. For each of the three latents output by
the encoder, we apply an additional elementwise MLP with one hidden layers, 16 units each, and
ReLU activations. For the solution functions we use the same architecture as in the 2D toy data.

Training Models are trained using the procedure described in Sec. C.3. We train for 2.5 · 105 steps
using a batch size of 64 and an initial learning rate of 8 · 10−5. The weights of the different loss terms
and regularizers are as follows: β is initially set to 0 and increased to its final value of 0.05 during
training, α = 10−2, and γ = 5 throughout training. For each method, we train models with three
random seeds and in the end select the median run according to the validation loss.

Results In the main paper, we report aggregate metrics averaged over the subsets in Tbl. 1 and
demonstrate intervention inference in Fig. 5. In the latter, we infer intervention targets the intervention
encoder q(I|x, x̃), find the pre- and post-intervention noise encodings with the noise encoder, e, ẽ ∼
q(e, ẽ|x, x̃, I), intervene in the latent space by constructing a new noise encoding consisting of e\I
and ẽI , and push to the data space with the decoder.

In addition to the results shown in the main paper, we show metrics for each separate subset in in
Tbl. 2 and visualize the disentanglement properties of the learned representations in Fig. 8.

D.4 CausalCircuit experiments

Dataset We introduce the new CausalCircuit dataset. This environment is built in the MuJoCo
simulator [25], using a model of the TriFinger robotic platform [26], of which we use a single finger.
There are four causal variables: the three lights and the robot arm. The arm state is the position along
an arc that goes over three buttons. The position on the arc is translated into actuator angles using an
inverse kinematic model. To obtain a sample, the arm is moved away from the buttons, then lowered
to the desired position, after which a rendering is recorded. Each red, green and blue button then has
a pressed state bR, bG, bB that depends on how far the button is touched from the center and scales
linearly in the radial distance from 0 to 1. The causal model for the red, green and blue light variables
and the arm zA then is:

vR = 0.2 + 0.6 ∗ clip(zG + zB + bR, 0, 1)

vG = 0.2 + 0.6 ∗ bG
vB = 0.2 + 0.6 ∗ bB
zR ∼ Beta(5vR, 5 ∗ (1− vR))
zG ∼ Beta(5vG, 5 ∗ (1− vG))
zB ∼ Beta(5vB , 5 ∗ (1− vB))
zA ∼ Uniform(0, 1)

The scene is rendered in 512× 512 pixels using the MuJoCO renderer.

Dimensionality reduction Rather than training directly on images, we found it beneficial for
fast experimentation to first condense the image datasets into a lower-dimensional representation
and then train both ILCMs and baselines excluding slot attention) on that data. We used a β-VAE
with a standard Gaussian prior with 16 latent dimensions; the encoder and decoder follow the same
architecture as for the Causal3DIdent dataset. This VAE was trained for 8.5 · 104 steps using the
Adam optimizer, an initial learning rate of 3 · 10−4, cosine annealing, and batchsize 128.

For slot attention, we reduced the resolution to 64× 64, as we found it difficult to train the model on
the full resolution 512× 512.

Architecture On this dimensionality-reduced, 16-dimensional data, we use fully connected net-
works for noise encoder and noise decoder, each with five hidden layers with 64 units each and ReLU
activations. The solution functions have the same architecture as in the other experiments.
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Figure 9: Effect of varying the learned causal factors on the image in the CausalCircuit dataset.
We encode a single test images (left column) into the four learned causal variables. We then vary
each of these causal factors in isolation (without performing interventions, that is, without including
the causal effects on other variables) and show the reconstructed images. The ILCM (top) learns a
representation that is quite disentangled: z1 corresponds to the blue light, z2 to the green light, z3 to
the robot arm position, and z4 to the red light. In contrast, the acausal dVAE baseline entangles the
different lights and the robot arm position in its learned latent factors.
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Image Recon. Slot 1 Slot 2 Slot 3 Slot 4

Image Recon. Slot 1 Slot 2 Slot 3 Slot 4

Image Recon. Slot 1 Slot 2 Slot 3 Slot 4

Figure 10: The slots found by slot attention. We see that the slots do not correspond to the causal
variables. Only the arm is disentangled from the buttons and lights.

Training Models are trained using the procedure described in Sec. C.3. We train for 9.4 · 104 steps
using a batch size of 64 and an initial learning rate of 3 · 10−4. The weights of the different loss terms
and regularizers are as follows: β is initially set to 0 and increased to its final value of 3 · 10−4 during
training, α = 10−2, and γ = 10 throughout training. For each method, we train models with three
random seeds and in the end select the median run according to the validation loss.

Results In addition to the results in the main paper, Fig. 9 shows that our ILCM model successfully
disentangled the causal factors, while the dVAE baseline failed at that task. Similarly, in Fig. 10 we
see that the slot attention model fails to assign the causal variables into separate slots. We presume
this is because the lights blend into each other, making them only describable by a single slot.

D.5 Graph scaling

Dataset Finally, we study the scaling of LCMs with the size of the causal graph. We generate
synthetic datasets with n ∈ {2, 4, 6, 8, 10, 12, 15, 20} causal variables. For each dimensionality,
we generate three different datasets with different SCMs and maps to the data space. The causal
graphs are generated by fixing a topological order, then for each edge consistent with the topological
order we draw a Bernouilli random variable with probability 1

2 to determine whether the edge exists.
The SCMs are additive noise models with linear causal effects, zj = ϵj +

∑
j∈pai

aijzi, where
ϵj ∼ N (0, 1) and the coefficients aij are drawn from a Gaussian mixture model with two equally
likely components with means ±1 and standard deviation 0.3. (Drawing the strengths of the causal
effects from such a mixture model makes it unlikely to draw a causal effect very close to 0, which
corresponds to a faithfulness violation.) Causal variables are mapped to the data space Rn by a
randomly sampled SO(n) transformation.

Architecture We use fully connected networks for noise encoder and noise decoder, each with
two hidden layers with 64 units each and ReLU activations. The solution functions have the same
architecture as in the other experiments.

Training Models are trained using the procedure described in Sec. C.3. We train for 1.4 · 105 steps
using a batch size of 64 and an initial learning rate of 3 · 10−4. The weights of the different loss
terms and regularizers are as follows: β is initially set to 0 and increased to its final value of 1 during
training, α = 10−2, and γ = 1 throughout training. We find it beneficial to not fix the topological
order during training. For each dataset and each method, we train models with three random seeds; in
the end we take the mean over all datasets and seeds.
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Figure 11: Scaling with graph size. We show the mean SHD between the learned and true causal
graph (lower is better) and the standard error of the mean. The graphs found with ILCM-E are of a
high quality for up to around 10 causal variables, but ILCM does not yet scale to even larger systems.

Results In addition to the results in the main paper, Fig. 11 shows the accuracy of the learned
causal graphs as a function of the size of the system inferred with ENCO. For up to around 10 causal
variables, our method lets us disentangle the causal variables reliably, and the graphs found by ILCM
are more accurate than those found by the baseline. Scaling ILCMs to even larger system will require
additional research.

E Explicit latent causal models

E.1 Setup

Explicit latent causal models (ELCMs) are variational autoencoders, in which the latent variables are
the causal variables of an SCM. They consist of a causal encoder q(z|x), decoder p(x|z), and a prior
p(z, z̃) that encodes the causal structure.

Intervention targets can either be inferred with an intervention encoder q(I|x, x̃), similar to our ILCM
model, or be marginalized over explicitly as p(z, z̃) =

∑
I p(I)p(z, z̃|I). We have experimented

with both settings, for concreteness we here focus on the second, simpler setup.

The conditional prior p(z, z̃|I) is the weakly supervised distribution of an SCM. They are parameter-
ized through the causal graph G, neural causal mechanisms fi(ϵi; zpai), and noise base distributions.
To learn the graph, the simplest option is to instantiate one LCM per graph equivalence class, train
them, and select the model with the lowest validation loss. Alternatively, we can parameterize the
graph in a differentiable way [11, 12, 27, 28] and learn the graph together with the other components
through gradient descent.

We contrast the VAE setup of ILCMs and ELCMs in Tbl. 3.

Like ILCMs, ELCMs are trained on a VAE loss corresponding to a variational bound on log p(x, x̃).
Following common practice in causal discovery [11, 12, 29], we incentivize learning the sparsest
graph compatible with the data distribution by adding a regularization term proportional to the number
of edges in the graph to the loss.

E.2 Experiments

Dataset We experiment with ELCMs in similar datasets as we did in the main paper with ILCMs. In
particular, we report results on six Causal3DIdent variations. However, we performed these datasets
on an earlier iteration of these datasets: while main parameters of the scenes and the causal graphs
are the same as in the experiments reported in the main paper, the ground-truth causal mechanisms
are different. The metrics reported here are therefore not directly comparable to the ILCM results in
the main paper.
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Table 3: Differences between explicit and implicit latent causal models (ELCMs and ILCMs).
Optional learnable components are shown in parantheses.
1For simplicity, in this section we describe an ELCM implementation without intervention encoder. 2We achieved
the best results when inferring and enforcing a topological order only for the last phase of ELCM training, see
Sec. C.3.

Explicit latent causal model Implicit latent causal model

Latent variables causal variables (z, z̃) noise encodings (e, ẽ)
intervention targets I intervention targets I

Learnable components encoder q(z|x) encoder q(e|x)
decoder p(x|z) decoder p(x|e)
(intervention encoder q(I|x, x̃))1 (intervention encoder q(I|x, x̃))
graph G (topological order)2

causal mechanisms fi(ϵi; zpai) solution functions si(ei; e\i)

Table 4: ELCM experiments on Causal3DIdent datasets. We show the learned causal graph, the struc-
tural Hamming distance SHD between the learned and the true graph and the DCI disentanglement
score (D). The datasets differ slightly from the ones used in our main experiments, so metrics are not
directly comparable.

True graph D Learned graph SHD

1.00 0
0.99 0
0.45 3
0.98 0
0.98 0
0.43 2

Hyperparameters Our ELCM architecture and training follows similar hyperparameters to our
ILCM experiments. We experimented with various graph parameterizations and sampling procedures,
including directed edge existence probabilities with Gumbel-Softmax sampling [12, 27], undirected
edge existence probabilities and edge orientation probabilities [11], and the parameterization through
edge existence probabilities and a distribution over permutations [28]. While our implementation all
of these methods were able to successfully learn causal graphs given the true causal variables, we
were not able to reliably learn the representations and the graph jointly. We observed a higher success
rate when training separate models for different fixed DAGs and then selecting the best graph based
on the validation loss. The results reported below were generated with this exhaustive graph search
strategy. Again we show the median run out of three random seeds according to the validation loss.

Results In Tbl. 4 we show disentanglement scores and learned graphs. The results are mixed: in
some of the datasets the graph was correctly identified and the variables are disentangled, while
in others the model failed at both tasks. Notably, we find that the results strongly vary with the
initialization (i. e. the random seed). In Tbl. 4 we only show the median result out of three runs,
but in almost all datasets there is one random seed that lead to successful disentanglement (always
with the best training and validation loss) and one random seed that led to failed disentanglement
(with a worse training and validation loss). ELCM training is thus much less robust than our ILCM
experiments, where the results were largely stable across random seeds.

Discussion This result hints at the presence of local minima in the loss landscape that models
can get stuck in when starting from an unlucky initialization. By manually analyzing the trained
ELCMs, we find that one common failure mode us that models learn variables that are to some extent
disentangled and the graph has the right skeleton, but some of the causal effects are wrongly oriented
(swapping cause and effect). Such graphs are often in the same Markov equivalence class as the
correct graph, which is why such a model can minimize the observational contribution − log p(z)
to the overall loss. Smoothly changing the representations would take the model out of the Markov
equivalence class, increase this term and thus the overall loss; this configuration thus presents a
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local loss minimum. The same phenomenon occurs in our experiments with differentiable graph
parameterizations.

F Potential societal impact

Although we expect the immediate societal impact of this work to be negligible, more generally
causal representation learning may have significant impact in the longer run. It will allow for the
discovery of potential causal relationships in unstructured human-centric data. This may be beneficial,
for example as it allows one to inspect if a model has learned sensible or fair causal relationships. A
potential risk is that, for example because certain confounding variables are not discovered from the
data, the algorithm may conclude erroneously that sensitive variables are causes of relevant outcomes.
Users of the algorithms should be cautious of that.
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