
This document provides additional details, analysis, and experimental results. We begin by discussing
the detailed experimental setup and implementation of the methods in Section 7. Then, we provide
additional empirical experiments in Section 8. Finally, we discuss the limitation of our work in
Section 9.

7 Detailed Experimental Setup

To evaluate our method, we use four datasets, MNIST, CIFAR10, GTSRB (German Traffic Sign
Recognition Benchmark), and T-IMNET, to evaluate our method. Note that MNIST, CIFAR10,
and GTSRB have been widely used in the literature of backdoor attacks on DNN. On the other
hand, the use of a more complex dataset with more classes, T-IMNET, enables better evaluation
for the scalability of multiple-trigger and multi-payload backdoor. We present the details of the our
experiments on these datasets below:

• MNIST [21]: We applied random cropping and random rotation as data augmentation for
the training process. During the evaluation stage, no augmentation is applied. The dataset
can be found in: http://yann.lecun.com/exdb/mnist

• CIFAR10 [18]: We applied random cropping, random rotation, and random horizon-
tal flilp as data augmentation for the training process. The dataset can be found in:
https://www.cs.toronto.edu/ ~kriz/cifar.html

• GTSRB [40]: In our experiments, GTSRB input images are all resized into 32 ×
32 pixels, then applied a similar data augmentation as that of CIFAR10 in train-
ing. In the evaluation stage, no augmentation is used. The dataset can be found in:
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset

• T-IMNET [47]. Input images are all resized into 64 × 64 resolution. A similar data
augmentation as that of CIFAR10 is applied in the training stage. No augmentation is
used in the evaluation stage. The dataset can be found in: http://cs231n.stanford.edu/tiny-
imagenet-200.zip

Our experiments are conducted in multiple Linux machines, each of which has 128 cores, 1536GiB
of RAM, 8 A100-PCIE-40GB GPUs. The CUDA version is 11.2.

7.1 Class-Conditional Trigger Generator

For all experiments of Marksman, we model the class-conditional noise generator (trigger-pattern
generator) g as an autoencoder, whose input is an image and a learnable embedding of a target class.
The architecture of the autoencoder is presented in Table 5.

Table 5: Autoencoder-based class-conditional trigger-pattern generator network. The size of the class
embedding vector equals the number of possible labels (i.e., 10 for MNIST and CIFAR10, 43 for
GTSRB, and 200 for T-IMNET).

Layer Filters Filter Size Stride Padding Activation
Conv2D 16 3× 3 3 1 BatchNorm2D+ReLU

MaxPool2d - 2× 2 2 0 -
Conv2D 64 3× 3 2 1 BatchNorm2D+ReLU

MaxPool2d - 2× 2 2 0 -
ConvTranspose2D 128 3× 3 2 - BatchNorm2D+ReLU
ConvTranspose2D 64 5× 5 3 1 BatchNorm2D+ReLU
ConvTranspose2D 1 2× 2 2 1 BatchNorm2D+Tanh

7.2 Classification Models

For MNIST, we use the same simple CNN classifier as in WaNet [35] (detailed in Table 6). As
mentioned in the main paper, we use PreActResnet18 [16] for CIFAR10 and GTSRB datasets, and
Resnet18 [16] for T-IMNET.
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Table 6: CNN architecture for MNIST.

Layer Filters Filter Size Stride Padding Activation
Conv2D 32 3× 3 2 1 ReLU
Conv2D 64 3× 3 2 0 ReLU
Conv2D 64 3× 3 2 0 ReLU
Linear 512 - - - ReLU

Conv2D 10 - - - Softmax

7.3 Training Hyperparameters

Table 7 provides additional details to Section 5.1 in the main paper.

Table 7: Experimental setup and parameters for the datasets we used in this paper.

MNIST CIFAR10 GTSRB T-IMNET
Optimizer SGD SGD SGD SGD
Batch Size 128 128 128 128

Learning Rate 0.01 0.01 0.01 0.01
Learning Rate Schedule 10,20,30,40 100,200,300,400 100,200,300,400 100,200,300,400

Learning Rate Decay 0.1 0.1 0.1 0.1
Training Epochs 50 epochs 500 epochs 500 epochs 500 epochs
Clean Accuracy 0.99 0.94 0.99 0.58

As indicated in Section 5.1 of the main paper, we perform grid searches to select the best α and β
values using the CIFAR10 dataset. The selected values are 0.8 for α and 1.0 for β. We use these
values for all the experiments

8 Additional Experimental Results

We first provide, in Section 8.1, additional attack performance when varying the poisoning rate
for ReFoolMT and WaNetMT, as well as for PatchMT on T-IMNET. In Section 8.2, we provide a
qualitative analysis of the hyperparameters α and β on the CIFAR10 dataset. Finally, we present the
statistical errors for the main experiments of the paper in Section 8.3.

8.1 Additional Clean & Attack Performance Results with Different Poisoning Rates

We present the attack performance while varying the poisoning rates for PatchMT on T-IMNET in
Figure 8, and the other baselines (ReFoolMT and WaNetMT) in Figure 9. We can observe a similar
phenomenon (i.e., either performs noticeably worse on clean data with higher attack performance or
preserves the clean-data performance with significantly lower ASR) for PatchMT on T-IMNET in
Figure 8 and for ReFoolMT on all the datasets in Figure 9. For WaNetMT, its clean-data performance
is consistently sub-optimal, suggesting that it is more difficult to perform the multi-trigger and
multi-payload attacks using the warping mechanism.
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Figure 8: Clean (/C) and attack (/B) performance with different poisoning rates for Marksman and
PatchMT.
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Figure 9: Clean (/C) and attack (/B) performance with different poisoning rates for Marksman,
ReFoolMT, and WaNetMT.

8.2 Hyperparameter Analysis

As indicated in Section 5.1 of the main paper, we perform grid searches to select the best α and β
using the CIFAR10 dataset and use these values for all the experiments. However, we additionally
present the qualitative analysis of the hyperparameters α and β in Figure 10. As we can observe,
lower values of α result in lower clean-data accuracy, while an optimal value is closer to 1.0 (around
0.8). Note that when α = 1.0, the classifier is not poisoned. Thus, the ASR drops to 0. On the other
hand, clean and attack performances are not very sensitive to the values of β. In our experiments, we
set β = 1.0.
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Figure 10: Clean and attack performance when varying α and β (while keeping the other fixed) on
CIFAR10 dataset.

8.3 Statistical Importance

We present the statistical errors in our experiments in Figure 11. As we can observe, most methods,
except for ReFoolMT on MNIST, have very narrow (99%) confidence intervals in all experiments.
We also verify that the superior performance of Marksman is statistically significant with a p-value
less than 0.01.
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Figure 11: Performance and the error bars (confidence intervals).

8.4 Performance against NAD and ANP

We evaluate the robustness of Marksman against two representative post-training defenses, Neural
Attention Distillation (NAD) [23] and Adversarial Neuron Pruning (ANP) [46]. We follow the same
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experimental settings of NAD and ANP, which assumes a small subset of clean data (5%). Table 8
show the clean-data Accuracy and ASR of the poisoned models after they undergo the backdoor
erasing processes of NAD and ANP. As we can observe, for NAD, while ASR decreases, ACC
performance degrades even more significantly. This demonstrates that NAD’s defense is ineffective
against Marksman’s attack. For ANP, the defensive process does not significantly degrade the ASRs
of Marksman, while the ACCs also drop more significantly. Again, ANP is not effective against
Marksman’s attack.

Table 8: Performance against NAD and ANP.

Dataset NAD ANP
Clean Attack Clean Attack

CIFAR10 0.365 0.069 0.938 0.647
GTSRB 0.114 0.022 0.890 0.651

9 Limitations

To the best of our knowledge, Marksman is the first work that studies multi-trigger and multi-payload
backdoor with the capability of misclassifying an input to any target class. However, this assumes
that the adversary has the ability to embed digitally generated triggers into the images before feeding
them to the classifier. An interesting future direction is to extend the multi-trigger and multi-payload
scenario into physical attacks. Such evaluations can further assess whether Marksman is only a
hypothetical phenomenon or indeed a real-world threat.

Since this is the first work in this direction, there is no existing defense that targets the scenario
of Marksman, which can also be observed from our experiments that the existing representative
defensive methods are not effective against Marksman. On the other hand, these experiments do
not reasonably or effectively evaluate the performance of our approach. To this end, we encourage
future research on developing more powerful defenses to combat our stealthy backdoor attack with
significantly enhanced adversarial capabilities.

Societal Impacts: Our work on the backdoor attack is likely to increase the awareness and under-
standing of such vulnerability on neural networks. The proposed attack, if not appropriately used,
may bring security threats to the existing DNN applications. We believe our study is an important
step towards understanding the full capability of backdoor attacks. This knowledge will, in turn,
facilitate the further development of secure and trustworthy DNN models and powerful defensive
solutions.
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