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Abstract

The learned policy of model-free offline reinforcement learning (RL) methods is
often constrained to stay within the support of datasets to avoid possible dangerous
out-of-distribution actions or states, making it challenging to handle out-of-support
region. Model-based RL methods offer a richer dataset and benefit generalization
by generating imaginary trajectories with either trained forward or reverse dynamics
model. However, the imagined transitions may be inaccurate, thus downgrading
the performance of the underlying offline RL method. In this paper, we propose
to augment the offline dataset by using trained bidirectional dynamics models and
rollout policies with double check. We introduce conservatism by trusting samples
that the forward model and backward model agree on. Our method, confidence-
aware bidirectional offline model-based imagination, generates reliable samples
and can be combined with any model-free offline RL method. Experimental results
on the D4RL benchmarks demonstrate that our method significantly boosts the
performance of existing model-free offline RL algorithms and achieves competitive
or better scores against baseline methods.

1 Introduction

Offline reinforcement learning (offline RL), also known as batch RL [34], aims at learning from a
static dataset that was previously gathered by an unknown behavioral policy. Offline RL is deemed
to be promising [16, 14] as online learning requires the agent to continuously interact with the
environment, which however may be costly, time-consuming, or even dangerous. The progress in
offline RL will undoubtedly scale RL methods to being widely applied in real-world applications,
considering the impressive success in computer vision or natural language processing by adopting
large-scale offline datasets [9, 6].

Prior off-policy online RL methods [17, 21, 48] are known to fail on fixed offline datasets, even on
expert demonstrations [14], due to extrapolation errors [16]. In the offline setting, the agent can
overgeneralize from the static dataset, resulting in arbitrarily wrong estimates upon out-of-distribution
(OOD) state-action pairs and dangerous action execution. To address this issue, recent model-free
offline RL algorithms compel the learned policy to stay close to the behavioral policy [16, 31, 72], or
incorporate some penalties into the critic [50, 32, 29]. However, such approaches often suffer from
loss of generalization capability [73, 69], since they purposely avoid OOD states or actions.

Model-based offline RL methods, instead, enrich the logged dataset by generating synthetic samples
with the trained forward or reverse (backward) dynamics model [26, 75, 69, 74]. These methods
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benefit from better generalization thanks to richer transition samples. Intuitively, the performance of
the agent is largely confined by the quality of the model-generated data, i.e., learning on bad states or
actions will negatively affect the policy via backpropagation. Unfortunately, there is no guarantee
that reliable transitions can be generated by the trained forward or backward dynamics model [2].
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Figure 1: Illustration of the basic idea of
confidence-aware bidirectional offline model-
based imagination. To ensure that the forward
imagination ŝ2 from s1 is valid and reasonable,
one needs to ‘look back’ to check whether the
imagined previous state s̃1 based on ŝ2 is simi-
lar to s1. We trust ŝ2 if the deviation between
s1 and s̃1 is small.

In this paper, we aim to generate reliable transitions
for offline RL via a double check mechanism. The
intuition behind this lies in the fact that humans
often do double check when they are uncertain and
need to be cautious. Besides the forward model,
we train the backward model to generate simulated
rollouts backward and use one to check whether
the synthetic samples the other generated are credi-
ble. To be specific, we train bidirectional dynamics
models along with bidirectional rollout policies. In-
stead of injecting pessimism into value estimation,
we introduce conservatism into transition, i.e., only
samples that the forward model and reverse model
agree on are trusted.

We use Figure 1 to further illustrate our insight,
where we take forward transition generation as an
example, of which the process is identical to the
reverse setting. Starting from s1, the forward model
predicts next state ŝ2. However, it is hard for the
agent to decide whether ŝ2 is trustworthy. One
natural solution, which follows human’s way of
reasoning [22], is backtracking where it comes from,
i.e., looking backward to trace previous state s̃1, and check whether the imagined state s̃1 based on
ŝ2 is different from the true state s1. We are confident to ŝ2 if s̃1 is similar to s1 and vice versa.

To this end, we propose Confidence-Aware Bidirectional Offline Model-Based Imagination (CABI),
which is a simple yet effective data augmentation method. CABI generally guarantees the reliability
of the generated samples via the double check mechanism, and can be combined with any off-the-shelf
model-free offline RL methods, e.g., BCQ [16] and TD3_BC [15], to enjoy better generalization
in a conservative manner. Extensive experimental results on the D4RL benchmarks [14] show that
CABI significantly boosts the performance of the base model-free offline RL methods, and achieves
competitive or even better scores against recent model-free and model-based offline RL methods.

2 Related Work

In this paper, we consider offline reinforcement learning [34, 38], which defines the task of learning
from a static dataset that was collected by an unknown behavior policy. Applications of offline RL
include robotics [45, 57, 54], healthcare [19, 70], recommendation system [59, 64], etc.

Model-free offline RL. Since it is risky to execute out-of-support actions, existing offline RL algo-
rithms are often designed to constrain the policy search within the support of the static offline dataset.
They realize it via importance sampling [53, 63, 39, 49, 18], explicit or implicit policy constraints
[16, 31, 72, 35, 40, 78], learning conservative critics [32, 44, 30, 43, 29, 42], and quantifying estima-
tion uncertainty [73, 76, 10]. Recently, sequential modeling is also explored in the offline RL setting
[7, 24, 47]. Despite these advances, model-free offline RL methods suffer from loss of generalization
beyond the dataset [69], and CABI is proposed to mitigate it.

Model-based offline RL. Model-based offline RL algorithms benefit from better generalization as
the static dataset is extended by the synthetic samples generated from the trained forward [56, 13, 1]
or reverse dynamics model [69]. These methods heavily rely on uncertainty quantification [52, 75, 26,
11], compelling the policy towards the behavior policy [65, 46], representation learning [36, 54], and
penalizing Q-values [74]. However, it is hard to judge whether the transitions generated by the trained
dynamics model are reliable, and poor imagined samples will negatively affect the performance of
the agent. Recently, [75, 41] explore how inaccurate rollouts that are well penalized can still be
useful for model-based training. However, they work only for model-based offline RL methods.
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Figure 2: Illustration of the double check mechanism in bidirectional modeling. We use the trained
opposite dynamics model to check whether the synthetic transitions generated by the current dynamics
model are reliable. We are confident about the transitions that can be traced back to the starting state
with small errors (green check) and reject those with large disagreements (red cross).

There are also some studies that focus on trajectory pruning [26, 77], while they involve uncertainty
measurement. CABI, instead, ensures reliable imaginations by conducting double check with the
forward and backward models, which fully exploits the advantages of bidirectional modeling.

Model-based online RL. Model-based online RL methods achieve superior sample efficiency
[61, 25, 4, 23] by learning a dynamics model of the environment and planning with the model
[62, 68, 71]. Learning a backward dynamics model that produces traces towards the aimed state is
also widely explored [12, 37, 20, 33]. Among them, most similar to our work is [33], which leverages
bidirectional model rollouts for reduced compounding error in the online setting. However, the main
differences are: (1) CABI is proposed to augment the fixed dataset instead of performing policy
optimization in a model-based way; (2) CABI interpolates a double check mechanism for reliable
imaginations; (3) Model predictive control (MPC) [5] is not involved in CABI.

3 Preliminaries

We study RL under Markov Decision Process (MDP) specified by a tuple ⟨S,A, ρ0, p, r, γ⟩, where S
is the state space,A is the action space, ρ0 denotes initial state distribution, p(s′|s, a) is the stochastic
transition dynamics, r(s, a) : S × A 7→ R is the reward function, and γ ∈ [0, 1) is the discount
factor. The policy π(a|s) : S × A 7→ R+ is a mapping from states to a probability distribution
over actions. The goal of RL is to obtain a policy π such that the expected discounted cumulative
rewards can be maximized, maxπ Jρ0(π) := Es∼ρ0,at∼π(·|st),st+1∼p(·|st,at) [

∑∞
t=0 γ

tr(st, at)]. In
online RL, the agent learns from the experience collected from the interactions with the environment.
However, in the offline setting, both interaction and exploration are infeasible, and the agent can only
get access to the logged static dataset Denv = {(s, a, r, s′)}, which was gathered in advance by the
unknown behavior policy. Since the fixed dataset Denv is typically a subset of full space S ×A, the
generalization beyond the raw dataset becomes challenging. Model-based RL mitigates this issue by
learning a dynamics model p̂(s′|s, a) and reward function r̂(s, a), and generating synthetic transitions
to augment the dataset. However, there is no guarantee that the generated samples are reliable (see
Section 4.1), and we focus on addressing this issue in this paper.

4 Confidence-Aware Bidirectional Offline Model-Based Imagination

In this section, we first use a toy example to illustrate the necessity of training bidirectional models
with the double check mechanism. Then, we give the detailed framework of our method, Confidence-
Aware Bidirectional Offline Model-Based Imagination (CABI).
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4.1 You Need to Double Check Your State

Many model-free offline RL algorithms suffer from poor generalization as they are trained on a fixed
dataset with limited samples. Model-based methods extend the logged dataset by generating synthetic
transitions from the trained dynamics model. Despite such an advantage, they lack a mechanism
for checking the reliability of the generated samples. If the model is inaccurate, poor transition
samples that lie in the out-of-support region of the dataset can be generated, which may downgrade
the performance of offline RL algorithms.
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Figure 3: RiskWorld.

Human beings tend to conduct double check when they are uncertain
about the outcome, e.g., clinical medicine research [60], autonomous
driving [67], etc. Inspired by this nature, we propose to train bidi-
rectional dynamics models and admit the samples where the forward
model and backward model have few disagreements instead of roughly
trusting all generated samples. In this way, we introduce conservatism
into the transition itself instead of the critic or the actor networks. We
give the illustration of double check mechanism in Figure 2.

We argue that either forward dynamics model or backward dynam-
ics model is unreliable, and bidirectional modeling in conjunction
with the double check mechanism is critical for trustworthy sample
generation. We verify this by designing a toy task, 2-dimensional
environment with continuous state space and action space, namely
RiskWorld, as shown in Figure 3. The central point of the square
region in RiskWorld is (0, 0), and the state space gives D := [−1.5, 1.5]× [−1.5, 1.5]. Each episode,
the agent randomly starts at the regionD1 := {(x, y)|(x+1.5)2+(y+1.5)2 ≤ 1, x < 0, y < 0} and
takes actions a ∈ [−0.5, 0.5]. There is a danger zone D2 := {(x, y)|x2 + y2 ≤ 0.52}, and the done
flag would turn into true if the agent steps into this region, along with a reward of −3. The agent will
receive a reward of +1 if it lies in D3 := {(x, y)|(x− 1.5)2 + (y− 1.5)2 ≤ 0.82, x < 1.5, y < 1.5},
and 0 if it locates at D\(D2 ∪D3).

We run a random policy in RiskWorld for 104 timesteps to collect an offline dataset. Figure 4(a)
shows the state distribution (blue cross) of the dataset, where there are no transitions in D2 (red circle
area) as the episode terminates if the agent steps into D2. To compare different ways of imagination,
we train a forward model, a backward model, and a bidirectional model with the double check
mechanism on this dataset. The training epoch is set to be 100, and the rollout horizon is set to be 3
for all of them. The detailed experimental setup is available in Appendix A.
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Figure 4: Visualizations of the offline dataset collected by a random policy (a), and synthetic
transitions generated by a forward model (b), a backward model (c), a bidirectional model with the
double check mechanism (d), based on the offline dataset in (a).

We use the trained forward model, reverse model, and bidirectional model to generate 104 transition
samples, and plot the state distributions of their generated samples respectively. As shown in Figure
4(b), the forward model generates many samples in the danger zone D2 (red circle area). Figure 4(c)
reveals that the reverse model generates a lot of illegal samples that lie out of the state space D, and
also many transitions that lie in the dangerous area D2. These all show evidence that both the forward
and backward dynamics model fail to output reliable transitions. However, we observe in Figure 4(d)
that bidirectional modeling with the double check mechanism successfully produces reliable and
conservative synthetic samples, i.e., out-of-support or dangerous samples are not included, because
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Algorithm 1 CABI (Model Training)
Input: Dataset Denv, iterations N1, N2, learning rate αψ , αϕ, αθ, αω

1: Randomly initialize forward model parameters ψ and reverse model parameters ϕ
2: for i = 1 to N1 do
3: Compute Lfwd

ψ and Lbwd
ϕ via (1) and (2)

4: Update model parameters: ψ ← ψ − αψ∇ψLfwd
ψ , ϕ← ϕ− αϕ∇ϕLbwd

ϕ

5: end for
6: Randomly initialize forward and backward rollout policy parameters θ, ω
7: for i = 1 to N2 do
8: Compute Lfvae and Lbvae via (3) and (4)
9: Update forward and reverse rollout policy: θ ← θ − αθ∇θLfvae, ω ← ω − αω∇ωLbvae

10: end for

the forward model and backward model have large disagreements at those states. We hence argue
that bidirectional modeling with double check is necessary for reliable data generation in offline RL.

4.2 Bidirectional Models Learning in CABI

Bidirectional dynamics models training. Our bidirectional modeling models transition probability
and reward function simultaneously, i.e., the forward model p̂ψ(s′, r|s, a) and the reverse model
p̂ϕ(s, r|s′, a) parameterized by ψ and ϕ respectively. The forward model p̂ψ(s′, r|s, a) represents
the probability of the next state and corresponding reward given the current state and action, and
the backward model p̂ϕ(s, r|s′, a) outputs the probability of the current state and reward using the
next state and action as input. We assume that the predicted reward function r̂(s, a) only depends
on the current state s and action a, then the unified model can be decomposed as p̂ψ(s′, r|s, a) =
p̂(s′|s, a)p̂(r|s, a) and p̂ϕ(s, r|s′, a) = p̂(s|s′, a)p̂(r|s, a). We denote the loss functions for the
forward model and backward model asLfwd

ψ andLbwd
ϕ respectively, and optimize them by maximizing

the log-likelihood via (1) and (2), where Denv is the raw static dataset.

Lfwd
ψ = E(s,a,r,s′)∼Denv

[− log p̂ψ(s
′, r|s, a)] , (1)

Lbwd
ϕ = E(s,a,r,s′)∼Denv

[− log p̂ϕ(s, r|s′, a)] . (2)

Following prior work [75, 26], we train an ensemble of bootstrapped probabilistic dynamics models,
which has been widely demonstrated to be effective in model-based RL [8, 23]. Each model in the
ensemble is parameterized by a multi-layer neural network, which outputs a Gaussian distribution
N (µ,Σ). Detailed hyperparameter setup for dynamics models training is deferred to Appendix C.

Bidirectional rollout policies training. We additionally train bidirectional generative models, which
serve as rollout policies, and are used to generate actions to augment the static dataset. We model the
rollout policy with a conditional variational autoencoder (CVAE) [27, 58, 16], which offers diverse
actions while staying within the span of the dataset. CVAE is made up of an encoder E that outputs
the latent variable z under the Gaussian distribution, and a decoder D that maps z to the desired
space. We denote the forward rollout policy as Gfwd

θ (s) parameterized by θ = {ξ1, ν1} where ξ1
is the parameter of the encoder Efwd

ξ1
(s, a) and ν1 is the parameter of the decoder Dfwd

ν1 (s, z). The
forward rollout policy is then trained by maximizing its variational lower bound, which is equivalent
to minimizing the following loss:
Lfvae(θ) = E

(s,a,r,s′)∼Denv,z∼Efwd
ξ1

(s,a)

[
(
a−Dfwd

ν1 (s, z)
)2

+ DKL

(
Efwd
ξ1 (s, a)∥N (0, I)

)]
, (3)

where DKL(·∥·) denotes the KL-divergence, and I is an identity matrix. The first term of RHS of (3)
represents the reconstruction loss where we want the decoded action to approximate the real action.
Then for action generation, we first sample latent vector z from the multivariate Gaussian distribution
N (0, I), and then pass it with the current state s into the decoder Dfwd

ν1 (s, z) to output the action.

Similarly, the backward rollout policy Gbwd
ω (s′) parameterized by ω contains an encoder Ebwd

ξ2
(s′, a)

and a decoder Dbwd
ν2 (s′, z), ω = {ξ2, ν2}. The loss function of the backward rollout policy gives:

Lbvae(ω) = E
(s,a,r,s′)∼Denv,z∼Ebwd

ξ2
(s′,a)

[
(
a−Dbwd

ν2 (s′, z)
)2

+ DKL

(
Ebwd
ξ2 (s′, a)∥N (0, I)

)]
. (4)
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Algorithm 2 CABI (Data Generation)
Input: Offline dataset Denv, horizon H , iteration N

1: Initialize model replay buffer Dmodel ← ∅
2: for i = 1 to N do
3: Sample state st and next state st+1 from Denv

4: for j = 0 to H − 1 do
5: Obtain forward rollout {st+j , at+j , rt+j , st+1+j} from st+j by drawing samples from the

forward model p̂ψ and forward rollout policy Gfwd
θ

6: Generate backward state s̃t+j from st+1+j , and evaluate the deviation of s̃t+j from st+j
7: Get backward rollout {st−j , at−j , rt−j , st+1−j} from st+1−j by drawing samples from the

backward model p̂ϕ and backward rollout policy Gbwd
ω

8: Generate forward state ŝt+1−j from st−j . Evaluate the deviation of ŝt+1−j from st+1−j
9: Add selected imaginations into Dmodel

10: end for
11: end for
12: Get composite dataset Dtotal ← Denv

⋃
Dmodel

13: Get the final policy πout with any model-free offline RL algorithm based on the dataset Dtotal

We then draw z from the Gaussian distribution N (0, I), and draw the action from the action decoder
Dbwd
ν2 (s′, z) with the next state s′ and latent variable z as input.

We present the detailed procedure for the model training part of CABI in Algorithm 1.

4.3 Conservative Data Augmentation with CABI

After the bidirectional dynamics models and bidirectional rollout policies are well trained, we utilize
them to generate imaginary samples. Each time, we sample a state st from the raw dataset Denv

to produce imagined forward trajectory τ̂ fwd = {st+j , at+j , rt+j , st+1+j}H−1
j=0 with the forward

dynamics model p̂ψ and forward rollout policy Gfwd
θ , and sample the next state st+1 from Denv

to generate imagined reverse trajectory τ̂bwd = {st−j , at−j , rt−j , st+1−j}H−1
j=0 with the reverse

dynamics model p̂ϕ and reverse rollout policy Gbwd
ω . For each step in the rollout horizon H , we do

double check and reject those badly imagined synthetic transitions.

To be specific, when performing forward imagination from st and generating synthetic next state
ŝt+1, we trace back from ŝt+1 with the reverse model, and get the backward state s̃t. We evaluate the
deviation of s̃t from st, and trust ŝt+1 if the deviation is small. Similarly, starting from the state st+1,
we backtrack its previous state s̃t with the backward dynamics model, and then look forward from s̃t
to get ŝt+1 with the forward dynamics model. We trust s̃t if the deviation of ŝt+1 from st+1 is small.

We keep those trustworthy rollouts and gather them to get the model buffer Dmodel. We combine the
synthetic model buffer Dmodel with Denv to obtain the final buffer Dtotal, i.e., Dtotal = Denv ∪Denv.
We then can train any model-free offline RL algorithms based on the composite dataset.

One naïve way for implementing double check mechanism is to set a threshold δ, and admit the
transition if ∥st− s̃t∥2 ≤ δ for forward imagination, or ∥st+1− ŝt+1∥2 ≤ δ for backward imagination.
However, such a method lacks flexibility, and one may need to carefully tune δ per dataset based
on the strong prior knowledge about the dataset, which impedes the application of double check
mechanism. We resort to sorting the transitions in a mini-batch by the state deviation from small to
large and keep the top k% of them that have the smallest deviation. We keep 20% transitions that
have the smallest deviation for all of our experiments in Section 5 (empirical study on k is available
in Appendix C).

Our method is confidence-aware and conservative as we only admit the transitions that the forward
model and backward model agree on, thus excluding those poor transitions from the model buffer
Dmodel. The full procedure for the data generation part of CABI is available in Algorithm 2.
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Table 1: Normalized average score comparison of CABI+BCQ against different baselines on the
Adroit "-v0" tasks, where score 0 represents the performance of a random policy and 100 corresponds
to an expert policy performance. The results are averaged over the final 10 evaluations and 5 different
random seeds. The highest mean scores are in bold.

Task Name CABI+BCQ BCQ UWAC BEAR BC AWR CQL MOPO COMBO

pen-cloned 54.7±2.0 44.0 33.1 26.5 56.9 28.0 39.2 -2.1 -2.4
pen-human 75.1±1.5 68.9 21.7 -1.0 34.4 12.3 37.5 9.7 27.7
pen-expert 127.6±2.0 114.9 111.9 105.9 85.1 111.0 107.0 -0.6 11.5
door-cloned 0.5±0.2 0.0 0.0 -0.1 -0.1 0.0 0.4 -0.1 0.0
door-human 1.7±0.1 0.0 2.1 -0.3 0.5 0.4 9.9 -0.2 -0.3
door-expert 105.3±0.5 99.0 104.1 103.4 34.9 102.9 101.5 -0.2 4.9
relocate-cloned -0.2±0.0 -0.3 -0.3 -0.3 -0.1 -0.2 -0.1 -0.3 -0.1
relocate-human 0.1±0.1 0.5 0.5 -0.3 0.0 0.0 0.2 -0.3 -0.3
relocate-expert 105.9±1.0 41.6 105.6 98.6 101.3 91.5 95.0 -0.2 17.2
hammer-cloned 4.3 ±1.6 0.4 0.4 0.3 0.8 0.4 2.1 0.2 0.4
hammer-human 3.1±2.2 0.5 1.1 0.3 1.5 1.2 4.4 0.2 0.2
hammer-expert 128.9±0.9 107.2 110.6 127.3 125.6 39.0 86.7 0.3 0.3

Total Score 607.0 476.7 490.8 460.3 440.8 386.5 483.8 6.4 59.1

5 Experiments

In this section, we combine CABI with off-the-shelf model-free offline RL algorithms and conduct
extensive experiments on the D4RL benchmarks [14]. In Section 5.1, we combine CABI with BCQ
[16], and evaluate it on the challenging Adroit dataset to show the effectiveness of conservative data
augmentation with CABI. We present a detailed ablation study in Section 5.2, where we aim to
answer the following questions: (1) Is the double check mechanism a critical component for CABI?
(2) How does CABI compare with the forward/reverse imagination? (3) How does CABI compare
against other augmentation methods, e.g., random selection? Furthermore, we incorporate CABI
with another recent model-free offline RL method, TD3_BC [15], and evaluate it on the MuJoCo
datasets, to show the generality and advantages of CABI. We additionally combine CABI with IQL
[28] and evaluate the performance of CABI+IQL on both Adroit tasks and MuJoCo tasks. Due to the
space limit, the results are deferred to Appendix G.

5.1 Performance on Challenging Adroit Dataset

We demonstrate the benefits of CABI by combining it with BCQ and evaluating it on the challenging
Adroit dataset [55]. Adroit dataset involves controlling a 24-DoF simulated robotic hand that aims at
hammering a nail, opening a door, twirling a pen, or picking/moving a ball. It contains three types of
datasets for each task (human, cloned, and expert), yielding a total of 12 datasets. This domain is
very challenging for prior methods to learn from because the dataset is made up of narrow human
demonstrations on a sparse reward, high-dimensional robotic manipulation task.

We summarize the overall results in Table 1, where we compare CABI+BCQ against recent model-
free offline RL methods, such as UWAC [73], CQL [32], BCQ [16], and model-based offline RL
methods, such as MOPO [75], and COMBO [74]. We run MOReL and COMBO on these datasets
with our reproduced code. Results of MOPO and UWAC on the Adroit domain are acquired by
running their official codebases, and the results of the rest baselines are taken directly from [14]. All
methods are run over 5 different random seeds and normalized average scores are reported in Table 1.
We only report the standard deviation for CABI+BCQ, and the full table is deferred to Appendix H.

As shown, CABI significantly boosts the performance of vanilla BCQ on almost all datasets, achieving
a total score of 607.0 vs. 476.7 of BCQ. CABI+BCQ also surpasses the baseline model-free and
model-based offline RL methods on 7 out of 12 datasets and achieves the highest total score.

It is worth noting that model-based offline RL methods generally fail on the Adroit tasks, because
(1) the dataset distribution is narrow and high-dimensional, making it challenging for the trained
forward dynamics model to generate accurate and reliable transitions; (2) the actions in the synthetic
transitions are generated by the actor during the training process, thus the error may accumulate if
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Table 2: Normalized average score comparison on the Adroit tasks between CABI+BCQ, forward
imagination+BCQ, backward imagination+BCQ, and BOMI+BCQ, where ± captures standard
deviation. The results are averaged over the final 10 evaluations and 5 different random seeds. The
highest mean scores are in bold.

Task name BCQ +Forward +Backward +BOMI +CABI

pen-cloned 44.0 41.2±1.1 36.8±6.6 43.4±6.1 54.7±2.0
pen-human 68.9 57.8±9.3 60.9±5.6 49.6±1.4 75.1±1.5
pen-expert 114.9 114.4±5.4 118.5±4.7 121.8±1.2 127.6±2.0
door-cloned 0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.5±0.2
door-human 0.0 -0.1±0.1 0.0±0.1 0.0±0.1 1.7±0.1
door-expert 99.0 104.2±0.3 103.7±0.2 102.5±1.2 105.3±0.5
relocate-cloned -0.3 -0.3±0.0 -0.3±0.0 -0.2±0.0 -0.2±0.0
relocate-human 0.5 0.0±0.0 0.0±0.0 0.0±0.1 0.1±0.1
relocate-expert 41.6 72.9±2.0 76.8±6.8 80.1±9.3 105.9±1.0
hammer-cloned 0.4 1.7±0.1 0.4±0.1 3.1±3.8 4.3±1.6
hammer-human 0.5 2.0±0.2 2.8±0.5 2.1±0.7 3.1±2.2
hammer-expert 107.2 126.8±1.0 126.9±1.0 126.8±1.3 128.9±0.9

Total score 476.7 520.6 526.5 529.2 607.0

the actor is updated towards a wrong direction. CABI, instead, alleviates the underlying issues via
adopting the CVAE for action generation and conducting double check on state prediction.

5.2 Ablation Study

Is the double check mechanism critical? To answer this question, we exclude the double check
mechanism in CABI and admit all generated synthetic samples from bidirectional models, which
gives rise to Bidirectional Offline Model-based Imagination (BOMI). We evaluate CABI+BCQ and
BOMI+BCQ on the Adroit tasks with identical parameter configuration over 5 different random
seeds and show the average normalized scores in Table 2. It can be seen that BOMI brings some
performance improvement on most of the tasks via data augmentation with bidirectional models and
rollout policies. However, the generated data may be unreliable (we observe a performance drop
in pen-cloned, pen-human), which impedes the benefits of bidirectional data augmentation. Such
concern can be alleviated with the aid of the double check mechanism. As illustrated in Table 2,
CABI+BCQ outperforms BOMI+BCQ on most tasks and incurs a much better total score.

CABI against forward/backward imagination. We incorporate BCQ with the pure forward model,
backward model, and CABI, and conduct extensive experiments on the Adroit tasks over 5 different
random seeds. The forward model and reverse model are trained with the same configuration as
CABI. The results are summarized in Table 2. It can be seen that either the forward or reverse model
results in limited improvement, which is consistent with the results of BOMI. As previously discussed,
the forward model and reverse model may generate unreliable transitions. We see such evidence as
the performance of BCQ falls on some of the tasks (e.g., pen-cloned) if trained on mere forward
or reverse imagination. BCQ+CABI, instead, outperforms BCQ+Forward and BCQ+Backward on
all tasks. Hence, we conclude that CABI guarantees trustworthy transitions for training, and brings
improvement on almost all of the tasks.

CABI against other augmentation methods. We further compare CABI against three data aug-
mentation methods: (1) CABI-random where we replace the CVAE with the random policy as the
rollout policy in CABI; (2) R-20 where we randomly select 20% synthetic transitions for bidirectional
imagination; (3) EV-20 where we select 20% transitions with the smallest ensemble variance for
bidirectional imagination, i.e., we evaluate the variance of the output of the ensemble of the forward
and backward dynamics models and reject those with large variance. We use BCQ as the base
algorithm and run experiments on four Adroit tasks for these augmentation methods with identical
parameter setup as CABI (e.g., real data ratio). The results in Table 4 show that CABI performs
consistently better than these methods. Since the data augmentation process of CABI is isolated
from the policy optimization, we cannot leverage a random rollout policy because the generated
actions of a random policy may possibly lie out of the span of the dataset, which can negatively
affect the performance of the agent. Hence, CVAE is critical to ensure a safe and conservative data
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Table 3: Normalized average score comparison of CABI+TD3_BC vs. baseline methods on the
D4RL MuJoCo "-v0" dataset, where score 0 corresponds to a random policy performance and 100
corresponds to an expert policy performance. The results are averaged over the final 10 evaluations
and 5 different random seeds. The highest mean scores are in bold.

Task Name CABI+TD3_BC TD3_BC UWAC MOPO BCQ BC CQL FisherBRC

halfcheetah-random 15.1±0.4 10.2 2.3 35.4 2.2 2.0 21.7 32.2
hopper-random 11.9±0.1 11.0 9.8 11.7 10.6 9.5 10.7 11.4
walker2d-random 6.4±1.5 1.4 3.8 13.6 4.9 1.2 2.7 0.6
halfcheetah-medium-replay 44.4±0.2 43.3 38.9 53.1 38.2 34.7 41.9 43.3
hopper-medium-replay 31.3±0.7 31.4 18.0 67.5 33.1 19.7 28.6 35.6
walker2d-medium-replay 29.4±1.3 25.2 8.4 39.0 15.0 8.3 15.8 42.6
halfcheetah-medium 45.1±0.1 42.8 37.4 42.3 40.7 36.6 37.2 41.3
hopper-medium 100.4±0.3 99.5 30.3 28.0 54.5 30.0 44.2 99.4
walker2d-medium 82.0±0.4 79.7 17.4 17.8 53.1 11.4 57.5 79.5
halfcheetah-medium-expert 105.0±0.2 97.9 40.6 63.3 64.7 67.6 27.1 96.1
hopper-medium-expert 112.7±0.0 112.2 95.4 23.7 110.9 89.6 111.4 90.6
walker2d-medium-expert 108.4±1.3 101.1 14.8 44.6 57.5 12.0 68.1 103.6
halfcheetah-expert 107.6±0.9 105.7 104.0 - 89.9 105.2 82.4 106.8
hopper-expert 112.4±0.1 112.2 109.1 - 107.0 111.5 111.2 112.3
walker2d-expert 108.6±1.5 105.7 88.4 - 102.3 56.0 103.8 79.9

Total Score 1020.7 979.3 618.6 - 784.6 595.3 764.3 974.6

augmentation. Meanwhile, relying on the ensemble variance for data selection is not trustworthy as
the models in the ensemble are trained on the identical data and may all incur wrong predictions but
small variance.

Table 4: Normalized average score comparison on four Adroit tasks. The results are averaged over
the final 10 evaluations and 5 different random seeds. CABI-random denotes the rollout policy in
CABI is a random policy. R-20 denotes Randomly keep 20% transitions, EV-20 denotes keep 20%
samples that have the smallest Ensemble Variance.

Task Name BCQ +CABI +R-20 +EV-20 +CABI-random

pen-cloned 44.0 54.7±2.0 41.2±3.0 40.4±2.0 37.6±7.8
pen-expert 114.9 127.6±2.0 112.6±5.6 118.8±2.5 106.3±3.7
hammer-cloned 0.4 4.3±1.6 0.9±0.6 0.4±0.1 0.3±0.0
hammer-expert 107.2 128.9±0.9 104.2±24.6 125.5±5.5 103.8±1.5

5.3 Broad Results on MuJoCo Dataset

To show the generality of our method, we integrate CABI with another recent model-free offline
RL method, TD3_BC [15], and conduct experiments on 15 MuJoCo datasets. We widely compare
CABI+TD3_BC against other recent model-free offline RL methods, such as FisherBRC [29], UWAC
[73], CQL [32], and model-based batch RL method, MOPO [75]. We run CABI+TD3_BC over 5
different random seeds. We also run UWAC using the official codebase on the MuJoCo datasets over
5 different random seeds. The results of TD3_BC, BC, CQL, FisherBRC are taken directly from [15],
and the results of other baseline methods are taken from [73].

The experimental results in Table 3 reveal that our approach exceeds all baseline methods on 10 out
of 15 datasets, and is the strongest in terms of the total score. On almost all of the tasks, we observe
performance improvement with CABI over the base TD3_BC algorithm. Unfortunately, with the
existence of behavioral cloning term, the performance improvement upon TD3_BC is limited. Still,
the experimental results in Table 1 and 3 show that CABI is a powerful data augmentation method
and can boost the performance of the base model-free offline RL methods.
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6 Conclusion and Limitations

In this paper, we follow human nature and propose to do double check during synthetic transition
generation to ensure that the imagined samples are conservative and accurate. We admit samples that
the forward model and reverse model agree on. Our method, CABI, involves training bidirectional
dynamics models and rollout policies and can be combined with any off-the-shelf model-free offline
RL algorithms. Extensive experiments on the D4RL benchmarks show that our method significantly
boosts the performance of the base model-free offline RL method, and can achieve competitive or
better performance against recent baseline methods. For future work, it is interesting to evaluate
CABI in the online setting and investigate whether it can benefit model-based online RL as well.

The major limitation of our proposed method lies in the computation cost as we train bidirectional
dynamics models and rollout policies. However, since CABI is isolated from policy optimization, we
can enhance the dataset beforehand.
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