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A Related work

Algorithms for minimax optimization. There is a vast literature on algorithms for minimax
optimization. The most popular algorithms include the Extragradient (EG), the Optimistic Gradient
Descent Ascent (OGDA) and the Gradient Descent Ascent and their variants. The EG algorithms in-
troduced in [Korpelevich, 1976], has been analyzed in several papers including [Monteiro and Svaiter,
2010, Mokhtari et al., 2020a,b, Golowich et al., 2020b] for (strongly)convex-(strongly)concave
problems. Another popular algorithm is OGDA introduced in [Popov, 1980] and has been analyzed
in several recent works including [Daskalakis et al., 2017, Hsieh et al., 2019, Golowich et al., 2020a].
Once again, all these works focus on the (strongly)convex-(strongly)concave setting. Stochastic
versions of these algorithms in similar settings have also been analyzed in several papers including
[Nemirovski et al., 2009, Hsieh et al., 2019, Fallah et al., 2020]. A few papers including [Lin et al.,
2020, Zhang et al., 2020, Huang et al., 2022, Zhang et al., 2021c, Ostrovskii et al., 2021b, Kong et al.,
2019, Zhang et al., 2020] analyze gradient based algorithms in the nonconvex-(strongly)concave cases.
Some papers including [Rafique et al., 2018, Yang et al., 2021, Ostrovskii et al., 2021a, Grimmer
et al., 2020] analyze special cases of nonconvex-nonconcave (like nonconvex-PL) for algorithms like
GDA and its variants. However, in this paper, we are interested in the generalization performance
of these algorithms. We summarize below the most related literature that studies the generalization
behavior in minimax optimization problems.

Algorithm-independent generalization. Specific to the machine learning problems of GAN and
adversarial training, there have been several papers studying the uniform convergence generalization
bounds. [Arora et al., 2017] establish a uniform convergence generalization bound which depends
on the number of discriminator parameters. [Wu et al., 2019] connect the stability-based theory to
differential privacy ([Shalev-Shwartz et al., 2010]) in GANs and numerically study the generalization
behavior in GANs. [Zhang et al., 2017, Bai et al., 2018] analyze the Rademacher complexity of
the players to show the uniform convergence bounds for GANs. In the simpler Gaussian setting,
[Feizi et al., 2020] and [Schmidt et al., 2018] derive bounds for GANs and adversarial training,
respectively. The uniform convergence bounds for adversarial training have also been studied under
several statistical learning frameworks, e.g., PAC-Bayes [Farnia et al., 2018], Rademacher complexity
[Yin et al., 2019], margin-based [Wei and Ma, 2019], and VC analysis [Attias et al., 2019]. Recently,
[Zhang et al., 2021b] investigate the generalization of empirical saddle point (ESP) solution in
strongly-convex-concave problems using a stability-based approach. Note that these results are not
specific to the optimization algorithms being used.

Algorithm-dependent generalization. Algorithm specific generalization bounds for minimax
optimization have attracted increasing attention. Based on the algorithmic stability framework
in [Bousquet and Elisseeff, 2002], [Farnia and Ozdaglar, 2021] have established generalization
bounds of standard gradient descent-ascent and proximal point algorithms under the convex-concave
setting, and those of stochastic GDA and GDMax under the nonconvex-strongly concave setting.
Concurrently, [Lei et al., 2021] derive high-probability generalization bounds for both convex-
concave and weakly convex-weakly concave settings, with possibly nonsmooth objectives, also
through the lens of algorithmic stability. Both works hinged on the metrics of primal risk and
primal-dual risk. As shown in the present work, the former is not necessarily suitable to characterize
the generalization behavior of minimax optimization, while the latter is known to be appropriate only
when the saddle point exists, which is usually not the case in the nonconvex settings that are common
in machine learning. Following this line of work, [Xing et al., 2021] provide generalization bounds
specifically for adversarial training, which is essentially the primal risk, also using the algorithmic
stability framework. Recently, [Yang et al., 2022] study the generalization of stochastic GDA under
differential privacy constraints.
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Reference Assumption Metric Rate
[Farnia and Ozdaglar, 2021] NC-µ-SC PR L

√
κ2 + 1ε

[Lei et al., 2021] NC-µ-SC PR L(1 + κ)ε

[Lei et al., 2021] µ-SC-SC PD
√

2L(1 + κ)ε

This work (Theorem 2) NC-C PG
√

4L`C2
p ·
√
ε+ εL+ 4L∗θCe/

√
n

This work (Lemma 1) NC-C PR
√

4L`C2
p ·
√
ε+ εL

This work (Theorem 7) C-C PD
(√

4L`C2
p +

√
4L`(Cwp )2

)√
ε+ 2εL

Table 1: Generalization bounds for ε-stable algorithms. PR stands for Primal Risk, PD stands for the primal-
dual risk and PG stands for the primal gap. NC-µ-SC stands for nonconvex-µ strongly concave. µ-SC-SC stands
for µ strongly convex-µ strongly concave. NC-C stands for nonconvex-concave. C-C convex-concave. L is the
Lipschitz constant of the function f . κ stands for the condition number L/µ. The constants in the theorems
have been defined in the appropriate sections. Note that there are other results in [Farnia and Ozdaglar, 2021,
Lei et al., 2021] for cases where the expectation and max operator can be interchanged. This case is almost
identical to the minimization problem and we thus do not include it in the table.

A.1 Existing Related Results

From [Farnia and Ozdaglar, 2021], we have the following theorem showing the connection between
stability and generalization for minimax problems.
Theorem 5 ([Farnia and Ozdaglar, 2021]). Consider an Algorithm A which is ε-stable. We have the
following two claims:

1. If the maximization and the expectation can be swapped when computing r(w), then

ESEA[ζPgen(A)] ≤ ε.

2. If f(·, ·; z) is nonconvex-strongly-concave and f is µ-strongly-concave with respect to θ,
then

ESEA[ζPgen(A)] ≤ L
√
κ2 + 1ε.

Remark 3. In [Lei et al., 2021], the authors proved a generalization bound in a weak sense, i.e.,
they consider the weak duality gap:

(max
θ∈Θ

ESEAr(w
A
S , θ)− min

w∈W
ESEAr(w, θ

A
S ))− (max

θ∈Θ
ESEArS(wAS , θ)− min

w∈W
ESEArS(w, θAS )).

However, notice that the expectation is inside the min and max operators. It does not deal with the
coupling of the maximization and expectation.
Remark 4. According to Theorem 5, the generalization bound for ζPgen scales with the condition
number κθ, and therefore cannot give useful bounds in the absence of strong concavity (when
κθ →∞).
Remark 5. The generalization bounds for ζPgen of algorithms for problems in terms of stability
without strong concavity is still open to the best of our knowledge. As mentioned in [Lei et al.,
2021], finding generalization bounds without the strong concavity assumption is an interesting open
problem.

B When is Primal Risk a Valid Metric for Minimax Learners?

According to the discussions for minimization problems in Section 2, we know that the primal risk is
a valid metric to study generalization behavior in these problems, and furthermore, the generalization
error bound of the primal risk can be estimated in terms of algorithmic stability. However, Theorem 1
cannot be directly extended to analyze the generalization behavior of minimax learners because we
have an additional maximization step before taking expectation.

A natural question emerges: Under what conditions does primal risk serve as a valid metric to study
generalization behavior of minimax problems. One sufficient condition is when the maximization
step and expectation can be interchanged, i.e., when

max
θ∈Θ

Ez∼Pzf(w, θ; z) = Ez∼Pz [max
θ∈Θ

f(w, θ; z)]
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for any distribution Pz . Letting fmax(w; z) := maxθ∈Θ f(w, θ; z), we further have

r(w) = max
θ∈Θ

Ez∼Pzf(w, θ; z) = Ez∼Pz [max
θ∈Θ

f(w, θ; z)] = Ez∼Pzfmax(w; z).

Therefore, the minimax problem in (1) is equivalent to the (stochastic) minimization problem with
loss function fmax(w; z). Moreover, letting P (S) be the uniform distribution over the dataset
S = {z1, · · · , zn}, we have

rS(w) = max
θ∈Θ

Ez∼P (S)[f(w, θ; z)]Ez∼P (S)[max
θ∈Θ

f(w, θ; z)] =
1

n

n∑
i=1

fmax(w; zi).

Therefore, rS(w) is just the empirical primal risk corresponding to the minimization problem with
loss function fmax(w; z). Hence, Theorem 1 can be directly used to minimax problems where the
maximization and expectation can be interchanged.

Theorem 6. Suppose that f(w, θ; z) is L̄-Lipschitz continuous with respect to w, i.e., |f(w1, θ; z)−
f(w2, θ; z)| ≤ L̄‖w1 − w2‖ for any w1, w2 ∈ W, θ ∈ Θ and z. If an Algorithm A is ε-stable, we
have

ESEA[r(wAS )− rS(wAS )] ≤ L̄ε.

Proof. From the previous analysis along with Theorem 1, it suffices to show that fmax(·; z) is
L̄-Lipschitz continuous. In fact, we have

fmax(w1; z)− fmax(w2; z) = f(w1, θ(w1); z)− f(w2, θ(w2); z)

≤ f(w1, θ(w1); z)− f(w2, θ(w1); z) ≤ L̄‖w1 − w2‖,

where θ(w) ∈ arg maxθ∈Θ f(w, θ; z), the first inequality is because of the definition of θ(w) and
the second inequality is because of the Lipschitz continuity of f with respect to w. Using the same
argument, we can prove

fmax(w2; z)− fmax(w1; z) ≤ L̄‖w1 − w2‖.

Therefore, we prove the L̄-Lipschitz continuity of fmax(·; z) and hence finish the proof.

By the above discussion, we know that if maximization and expectation can be interchanged, the
minimax problem can be reduced to a minimization problem and hence the primal risk is a valid metric
for studying the generalization behavior of minimax learners and the generalization error can be
estimated using the same method as for minimization problems. In practice, the adversarial-training
problems can be such an example of minimax problems.

Example 4 (Adversarial-training). We consider the adversarial training problem [Madry et al.,
2017]. Suppose we have loss function g(w; z) for a supervised learning problem. Here z denotes
the training sample and w denotes the model parameter. Due to the noise in the data or due to an
adversarial attack, for any sample z, we consider an uncertainty set B(z, ε0) around it. The goal is
to train a model that is robust to the data with possible perturbation in the uncertainty set. Let θz be
some adversarial sample from the set B(z, ε0) and let θ be an infinite dimensional vector (functional)
with the component θz corresponding to the sample z. Define the function ιB(v) to be the indicator
function of the set B, i.e., ιB(v) = 0 if v ∈ B and ιB(v) =∞ otherwise. The goal of adversarial
training is to solve the following minimax problem:

min
w

max
θ

Ez∼Pzf(w, θ; z), (9)

where f(w, θ; z) = g(w; θz) + ιB(z,ε0)(θz). For any distribution Pz over z’s, we have

max
θ

Ez∼Pzf(w, θ; z) = max
θ

Ez∼Pz [g(w; θz) + ιB(z,ε0)(θz)] = Ez∼Pz [max
θz

(g(w; θz) + ιB(z,ε0)(θz))]

= Ez∼Pz [max
θ

f(w, θ; z)],

where the second and the third equalities use the fact that θz′ does not contribute to f(w, θ; z) if
z 6= z′. Therefore, the expectation and maximization can be interchanged in adversarial training
problems. This implies that the results of Theorem 6 can be applied and therefore primal risk is a
valid metric to study the generalization behavior in such problems.
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Remark 6. For Example 4, since the maximization and expectation can be interchanged, the minimax
problem is equivalent to a minimization problem. Then we have

ES [min
w
rS(w)] = ES [min

w
max
θ
Ez∼Pz(S)f(w, θ; z)] = ES [min

w
Ez∼Pz(S)[max

θ
f(w, θ; z)]]

= ES [min
w
Ez∼Pz(S)[fmax(w; z)]] ≤ ES [Ez∼Pz(S)[fmax(w; z)]]

for any w. Therefore, we have ES [minw rS(w)] ≤ minw r(w). Consequently, we have ζPgen ≥ ζPGgen,
which means that good generalization bounds for the primal risk implies good generalization bounds
for the primal gap. Therefore, if the maximization and expectation are interchangeable, primal risk is
sufficient to study the generalization behavior because the generalization error of the primal risk is
an upper bound of the generalization error of the primal gap in this case.

Unfortunately, maximization and expectation are not necessarily interchangeable for many minimax
problems. If they are not interchangeable, it is unclear how to estimate the generalization error bound
of the primal risk. In fact, whether primal risk is still a good metric for studying generalization
behavior in such problems remains elusive.

In section 3, we will see how to estimate generalization error bound of primal risk for nonconvex-
concave and even nonconvex-nonconcave problems. To the best of our knowledge, this is the
first result which provides generalization error bounds for the primal risk without assuming the
interchangeability or strong concavity of the inner maximization problems (see e.g., Lei et al. [2021]).
Furthermore, we will see that even in some simple minimax problems, the generalization error bound
of the primal risk can fail to capture the generalization behavior of minimax learners. We then propose
a new metric and use its generalization error to properly characterize the generalization behavior of
minimax learners.

C Analysis of Example 1

In this section, we analyze the toy example given in Example 1.

Proposition 2. For the risk function and data distribution given in Example 1, we have

ES [r(w)− rS(w)] ≤ 0

for any w ∈W .

Proof. For a fixed w, r(w) = w2/2− w. On the other hand,

rS(w) = max
θ∈Θ

r(w, θ) (10)

≥ rS(w, 0) (11)
= r(w). (12)

Therefore, we have the desired result.

Next, we prove that |
∑n
i=1 zi| will stay in the interval [0.5, λ] with high probability.

Lemma 7. For large enough λ > 2, we have

Pr

(∣∣∣∣ n∑
i=1

zi

∣∣∣∣ ∈ [0.5, λ]

)
> 0.4, Pr

(∣∣∣∣ n∑
i=1

zi

∣∣∣∣ ∈ [2, λ]

)
> 0.01.

Proof. Let yi ∼ N(0, 1/
√
n), i = 1, · · · , n be n i.i.d. variables. Then

∑n
i=1 yi ∼ N(0, 1). Accord-

ing to the table of Normal distribution, we have Pr(|
∑n
i=1 yi| ∈ [0.5, λ]) ≥ 0.41. By the definition

of zi, we have

Pr(|
n∑
i=1

zi| ∈ [0.5, λ]) ≥ Pr(|
n∑
i=1

yi| ∈ [0.5, λ], |yi| < 3 log n/
√
n)+Pr(max

i∈[n]
(|yi|) ≥ 3 log n/

√
n).
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For the first term, we have

Pr(|
n∑
i=1

yi| ∈ [0.5, λ], |yi| < 3 log n/
√
n)

≥ Pr(|
n∑
i=1

yi| ∈ [0.5, λ])− Pr(max
i∈[n]

(|yi|) ≥ 3 log n/
√
n)

≥ 0.41−
n∑
i=1

Pr(|yi| ≥ 3 log n/
√
n)

≥ 0.41− ne−γ9 log2 n ≥ 0.41− 1/nλγ−1.

Taking λ sufficiently large yields the desired result, where the first inequality is because of the
union bound and the second inequality is due to the tail bound of Normal distribution. Therefore,
Pr(|

∑n
i=1 zi| ∈ [0.5, λ]) > 0.4 for sufficiently large n. The second statement follows similarly,

noting from the table of Normal distribution that Pr(|
∑n
i=1 yi| ∈ [0.5, λ]) ≥ 0.046.

Proposition 3. For sufficiently large λ > 0, we have

ES [r(wS)− min
w∈W

r(w)] ≥ 0.001.

Proof. If |
∑n
i=1 zi| ∈ [0.5, λ], we have

wS = max(0, 1− (

n∑
i=1

zi)
2/2) ≤ 0.9.

In this case, we have
r(wS)− min

w∈W
r(w) ≥ 0.005, (13)

by direct calculation. Therefore, we have

ES [r(wS)− min
w∈W

r(w)] (14)

≥ Pr(|
n∑
i=1

zi| ∈ [0.5, λ]) · 0.05 + Pr(|
n∑
i=1

zi| /∈ [0.5, λ]) · 0 (15)

≥ 0.02, (16)

where the first inequality is because of (13) and the fact that r(wS) −minw∈W r(w) ≥ 0 for any
S.

Proposition 4. For sufficiently large λ > 0, we have:

ES [ min
w∈W

rS(w)− min
w∈W

r(w)] ≥ 0.005

for Example 1.

Proof. If |
∑n
i=1 zi| ≥ λ > 2, we have wS = 0 and hence rS(wS) = 0. If |

∑n
i=1 zi| ≤ λ, we have

rS(wS)− r(w∗) ≥ rS(wS)− r(wS) = wS(

n∑
i=1

zi)
2/2 ≥ 0.

Therefore, minw∈W rS(w) ≥ minw∈W r(w) for any S. By Lemma 7, we can prove that
Pr(|

∑n
i=1 zi| ∈ [2, λ]) ≥ 0.01 for sufficiently large λ. Notice that for |

∑n
i=1 zi| ∈ [2, λ],

rS(wS)−minw∈W r(w) = 1/2. Therefore, we have

ES [ min
w∈W

rS(w)− min
w∈W

r(w)] ≥ Pr(|
n∑
i=1

zi| ∈ [2, λ]) · 1/2 ≥ 0.005.

This completes the proof.
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D Deferred Results and Proofs in Section 3

D.1 Proof of Lemma 1

In this subsection, we assume that A is an ε-stable algorithm. For any w ∈ W , let ΘS(w) =
arg maxθ∈Θ rS(w, θ) and Θ(w) = arg maxθ∈Θ r(w, θ) be the solution sets of the problems. Let
θ(w) be any element in Θ(w). Then

EAES [r(wAS )− rS(wAS )] = EAES [r(wAS , θ(w
A
S ))− rS(wAS , θS(wAS ))]

≤ EAES [r(wAS , θ(w
A
S ))− rS(wAS , θ(w

A
S ))],

where the inequality is because rS(wAS , θS(wAS )) ≥ rS(wAS , θ) for any θ. Let f be µ-strongly concave
with respect to θ. We denote the condition number by κθ = `θθ/µ.

In the strongly concave case, Θ(w) has a unique element θ(w), which is κθ-Lipschitz continuous
with respect to w (see [Lin et al., 2020]).

Then, defining f̃(w, z) = f(w, θ(w); z), the minimax problem reduces to the usual minimization
problem on the function f̃ . The stability and the Lipschitz continuity of θ(w) with respect to w
yield the generalization bound of L

√
κ2 + 1ε. This is the result shown in Theorem 1 of [Farnia and

Ozdaglar, 2021].

However, if the maximization problem is not strongly concave, we lose the Lipschitz continuity and
the uniqueness. To overcome this difficulty, we define an approximate maximizer θ̄(w) to r(w, θ).
Concretely speaking, we define θ̄(w) to be the point after s steps of gradient ascent for the function
r(w, ·) with a stepsize 1/`θθ and being initialized at 0. Then we have the following lemma:
Lemma 8. For any w ∈W , we have6

1. ‖θ̄(w)− θ̄(w′)‖ ≤ s `
`θθ
‖w − w′‖.

2. r(w)− r(w, θ̄(w)) ≤ `θθC2
p/s.

Proof. To prove the first part, let θ0 = θ′0 = 0. Define θt, θ′t recursively as follows:

θt+1 = θt +∇θr(w, θt)/`θθ
and

θ′t+1 = θ′t +∇θr(w′, θ′t)/`θθ.
We prove ‖θt − θ′t‖ ≤ t `

`θθ
‖w − w′‖ by induction. For t = 0, θ0 − θ′0 = 0. Assume the induction

hypothesis ‖θt−1 − θ′t−1‖ ≤ (t− 1) `
`θθ
‖w − w′‖ holds. We have

‖θt − θ′t‖ = ‖(θt−1 +∇θr(w, θt−1)/`θθ)− (θ′t−1 +∇θr(w, θ′t−1)/`θθ)

+ (∇θr(w, θ′t−1)−∇θr(w′, θ′t−1))/`θθ‖
≤ ‖(θt−1 +∇θr(w, θt−1)/`θθ)− (θ′t−1 +∇θr(w, θ′t−1)/`θθ)‖

+ ‖(∇θr(w, θ′t−1)−∇θr(w′, θ′t−1))/`θθ‖
≤ ‖θt−1 − θ′t−1‖+ `‖w − w′‖/`θθ

≤ (t− 1)
`

`θθ
‖w − w′‖+

`

`θθ
‖w − w′‖

= t
`

`θθ
‖w − w′‖,

where the first inequality follows from the triangle inequality, the second inequality follows from
non-expansiveness of gradient ascent for concave functions and the `-Lipschitz continuity of∇r, and
the third inequality follows from the induction hypothesis.

Therefore, letting t = s completes the proof of the first part. The second part of this lemma is just the
convergence result for gradient ascent on smooth concave functions (see e.g., [Nesterov, 2013]).

6For point 2, it holds when s > 0. For s = 0, we have the bound r(w)− r(w, θ̄(w)) ≤ `θθC2
p . We do not

separate this degenerate case for ease of presentation.
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Consider a virtual algorithm Ā: for any S, the algorithm returns w = wAS and θ = θ̄(wAS ).

Lemma 9. The stability of this virtual algorithm is ε

√(
s `
`θθ

)2

+ 1.

Proof. It is direct from the first part of Lemma 8.

Then we have the generalization bound of rS(w, θ):

Lemma 10. We have

ESEA[r(wAS , θ̄(w
A
S ))− rS(wAS , θ̄(w

A
S ))] ≤ εL

√(
s
`

`θθ

)2

+ 1.

Proof. For any z, by Assumption 4, we have

‖f(wĀS , θ
Ā
S ; z)− f(wĀS′ , θ

Ā
S′ ; z)‖ ≤ εL

√(
s
`

`θθ

)2

+ 1.

The result follows directly from the standard stability theory in [Hardt et al., 2016].

Now we are ready to derive the generalization error bound of the Primal Risk for an Algorithm A
with ε-stability. First, we have

ESEA[r(wAS )− rS(wAS )] ≤ ESEA[r(wAS )− rS(wAS , θ̄(w
A
S ))]

≤ ESEA[(r(wAS , θ̄(w
A
S ) + `θθC

2
p/s)− rS(wAS , θ̄(w

A
S ))]

= ESEA[r(wAS , θ̄(w
A
S ))− rS(wAS , θ̄(w

A
S ))] + `θθC

2
p/s

≤ εL

√(
s
`

`θθ

)2

+ 1 + `θθC
2
p/s

≤ εLs `

`θθ
+
`θθC

2
p

s
+ εL

where the first inequality is because rS(wAS ) = maxθ rS(wAS , θ), the second inequality is because of
the second part of Lemma 8 and the last inequality is because of Lemma 10. Optimizing over7 s, the
generalization error is bounded by ζPgen(A) ≤

√
4L`C2

p ·
√
ε+ εL. This completes the proof.

D.2 Tightness of the bound for Primal Risk

Consider the following risk function:

f(w, θ; z) =
√
n/ε((w/(n

√
nε)− z)θ − θ2/(2n

√
nε)),

where w ∈ W = [−λε
√
n log n, λε

√
n log n] and θ ∈ Θ = R. The sample z is drawn from the

uniform distribution over {−1/
√
n, 1/

√
n}. Then we have

r(w) =
√
n/ε(w2/(2εn

√
n)),

and

rS(w) =
√
n/ε((εn

√
n)(w/(εn

√
n)−

n∑
i=1

zi/n)2/2).

Now we have ` =

√
n/ε

(εn
√
n)

, Cp = λε
√
n log n and L =

√
n/ε√
n

. If we perform one-step of GDMax

with stepsize 1/`rS where `rS =
√
n/ε/(εn

√
n), then we attain wS = arg minw∈W rS(w). The

7Here we assume that the optimal s is a real number greater than 0. Constraining s to be an integer and also
incorporating 0 does not change the result and we ignore this case here. See also Footnote 6.
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stability bound of the GDMax is ε. Therefore, the generalization error of the primal risk is estimated
as:

ζPgen(GDMax) ≤
√

8L`C2
p

√
ε = 8λ log n

√
ε.

On the other hand,
∑n
i=1 zi/n ∈ [−λ log n/n, λ log n/n] holds with probability at least 1−C/nλ by

Hoefding inequality. Let w̄S = ε
√
n(
∑
zi∈S zi). Then with probability at least 1−C/nλ, wS = w̄S .

Notice that

ES [r(w̄S)− rS(w̄S)] = ES

[
√
n · (
√
εn
√
n) ·

(∑
zi∈S

zi/n

)2]
=
√
ε.

It is not hard to show that |r(w̄S)| ≤ n
√
ε, rS(w̄S) = 0, |r(wS)| ≤ 2n

√
ε and |rS(wS)| ≤ 2n

√
ε.

Then we have

ES [r(w̄S)− rS(w̄S)]− ES [r(wS)− rS(wS)] ≤ 5Cn
√
ε/nλ.

Therefore, E[r(wS)− rS(wS)] ≥
√
ε/2 for sufficiently large λ and n. Then in this example we have

√
ε/2 ≤ ζPgen(A) ≤ 8λ log n

√
ε.

For ε ≤ 1/nτ+1, we have

log n ≤ 1

τ + 1
log(1/ε).

Therefore, the estimate ζPgen ≤ λ
√
ε log(1/ε)/(τ + 1) is tight up to a log(1/ε) factor.

D.3 Proof of Theorem 2

Recall that the empirical primal gap is defined as

∆S(w) = rS(w)− min
w∈W

rS(w)

and the population primal gap is given by

∆(w) = r(w)− min
w∈W

r(w).

Suppose we are given an ε-stable Algorithm A. We then want to derive the generalization error

ζPGgen(A) = ESEA[∆(wAS )−∆S(wAS )].

Since we already have the generalization error for the primal risk ESEA[r(wAS ) − rS(wAS )] in
Theorem 1, we only need to estimate

ESEA[ min
w∈W

rS(w)− min
w∈W

r(w)] = ES [ min
w∈W

rS(w)− min
w∈W

r(w)]

to get a generalization error bound on the primal gap.
Lemma 11. Let w∗ ∈ arg minw∈W r(w). Suppose that f(w∗, ·; z) is L∗θ Lipschitz continuous with
respect to θ. Then we have

ES [ min
w∈W

rS(w)− min
w∈W

r(w)] ≤ 4L∗θCe/
√
n.

Proof. We use similar techniques as in the proof of Lemma 1.

Step 1. We define an approximate maximizer θ̃S of the function rS(w∗, ·). θ̃S is attained by
performing s steps of gradient ascent to rS(w∗, ·) with stepsize 1/`θθ and being initialized at 0.

Similar to Lemma 8, we have the following lemma:

Lemma 12. We have the following properties:

1. ‖θ̃S − θ̃S′‖ ≤ 2sL∗θ/(n`θθ).
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2. rS(w∗)− rS(w∗, θ̃S) ≤ `θθC2
e/s.

Proof. The proof is similar to the proof of Lemma 8. To prove the first part, let θ̃0 = θ̃′0 = 0. Define
θ̃t, θ̃

′
t recursively as follows:

θ̃t+1 = θ̃t +∇θrS(w∗, θ̃t)/`θθ
and

θ̃′t+1 = θ̃′t +∇θrS′(w∗, θ̃′t)/`θθ.
We prove ‖θ̃t − θ̃′t‖ ≤ L∗θ/(n`θθ) by induction. For t = 0, θ̃0 − θ̃′0 = 0. Assume the induction
hypothesis ‖θ̃t−1 − θ̃′t−1‖ ≤ (t− 1)L∗θ/(n`θθ) holds. We have

‖θ̃t − θ̃′t‖ = ‖(θ̃t−1 +∇θrS(w∗, θ̃t−1)/`θθ)− (θ̃′t−1 +∇θrS(w∗, θ̃′t−1)/`θθ)

+ (∇θrS(w∗, θ̃′t−1)−∇θrS′(w∗, θ̃′t−1))/`θθ‖
≤ ‖(θ̃t−1 +∇θrS(w∗, θ̃t−1)/`θθ)− (θ̃′t−1 +∇θrS(w∗, θ̃′t−1)/`θθ)‖

+ ‖(∇θrS(w∗, θ̃′t−1)−∇θrS′(w∗, θ̃′t−1))/`θθ‖
≤ ‖θ̃t−1 − θ̃′t−1‖+ `‖w − w′‖/`θθ

≤ (t− 1)
2L∗θ
n`θθ

+
2L∗θ
n`θθ

= t
2L∗θ
n`θθ

,

where the first inequality follows from the triangle inequality, the second inequality follows from non-
expansiveness of gradient ascent for concave functions and the L∗θ-Lipschitz continuity of f(w∗, ·; z),
and the third inequality follows from the induction hypothesis.

Therefore, letting t = s completes the proof of the first part. The second part of this lemma is just the
convergence result for gradient ascent on smooth concave functions (see e.g., [Nesterov, 2013]).

We then define the virtual algorithm Ã given by wÃS = w∗ and θÃS = θ̃S . Since the output argument
w of Ã is always w∗, the stability of Ã only depends on θ̃S . Then the stability bound of this virtual
algorithm is given in the following lemma:

Lemma 13. The stability of Algorithm Ã is given by εsta(Ã) = 2s(L∗θ)
2/(n`θθ).

Then by the standard stability theory in [Hardt et al., 2016], we have

|ESEA[rS(w∗, θ̃S)− r(w∗, θ̃S)]| ≤ 2s(L∗θ)
2/(n`θθ). (17)

Step 2. We have

ES [ min
w∈W

rS(w)− min
w∈W

r(w)]
(i)
= ES [rS(wS)− r(w∗, θ∗)]

(ii)
≤ ES [rS(w∗)− r(w∗, θ∗)]
(iii)
≤ ES [rS(w∗, θ̃S)− r(w∗, θ∗)] + `θθC

2
e/s

(iv)
≤ ES [rS(w∗, θ̃S)− r(w∗, θ̃S)] + `θθC

2
e/s,

where (i) follows from the definition of w∗, θ∗, (ii) follows since wS minimizes rS(w), (iii) follows
from Lemma 12, and (iv) follows from the optimality of θ∗ given w∗. Then by (17), we have

ES [ min
w∈W

rS(w)− min
w∈W

r(w)] ≤ ES [rS(w∗, θ̃S)− r(w∗, θ̃S)] + `θθC
2
e/s (18)

≤ 2s(L∗θ)
2/(n`θθ) + `θθC

2
e/s (19)

≤ 4L∗θCe/
√
n (20)

which completes the proof.

The final statement of the theorem follows from Lemma 11 and Lemma 1.
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D.4 Tightness of the bound for Primal Min Error

We can construct an example with Ce, L∗θ independent of n and the upper bound for ζPMgen is tight up
a log factor.

Consider the following example:

• Let

f(w, θ; z) =
1

M
(w2/2 + w(log2 nθ2/(2K2) + n log nzθ/K + 1)),

where w ∈ W = [−1, 1], θ ∈ Θ = [−λK, λK] for some arbitrary constants K > 0 and
M > 0. z is drawn from a truncated Gaussian distribution. Concretely speaking, let y ∼
N(0, 1/

√
n). Then z = y if |y| ≤ λ log n/

√
n and z = λ log n/

√
n if y ≥ λ log n/

√
n.

Notice that Mf(w, θ; z) = h(w, θ′; z), where θ′ = n log nθ/K,

h(w, θ′; z) = w2/2+w((θ′)2/(2n2)+zθ′+1), θ′ = n log nθ/K ∈ [−λn log n, λn log n].

Notice that h is just the risk function in Example 1 in the paper. Therefore, we can estimate
the lower bound of the Primal Min Error corresponding to f using the result in Example.
The lower bound of Primal Min Error of the problem in Example 1 (corresponding to h) is
0.005. Then the Primal-Min Error (corresponding to f )

ζPMgen (A) = ES min
w∈W

rS(w)− min
w∈W

r(w) ≥ 0.005/M.

On the other hand, it is not hard to have L∗θ = λ
√
n log2 n/MK, Ce = λK. Therefore,

L∗θCe = λ2
√
n log2 n/M . Let M =

√
n log2 n. Then L∗θ = λ/K.

If K does not depend on n, L∗θ, Ce do not depend on n. Therefore, the Primal-Min Error
ζPMgen (A) satisfies

0.005λ2(L∗θCe)/(log2 n
√
n) = 0.005(L∗θCe)/(ML∗θCe) ≤ ζPMgen (A) ≤ (L∗θCe)/

√
n,

which is tight up to a factor of log2 n.

• If we let M = 1 and K = 1, then ζPMgen (A) ≤ λ2 log2 n as discussed in the paper. This
upper bound means that we can not attain an arbitrary accuracy δ > 0. The lower bound,
i.e., ζPMgen (A) ≥ 0.005λ4, also implies that we can not attain an arbitrary accuracy.

• If we let M = 1/(λ2 log2 n) and K = 1, L∗θCe/
√
n = 1. This upper bound implies

that we can not let ζPMgen smaller than arbitrariy required accuracy. Return to the lower
bound, i.e., ζPMgen (A) ≥ 0.005/(λ2 log2 n). If we want to attain an accuracy δ, the required

sample complexity is 2λ/
√
δ , which is larger than a polynomial size and hence is still viewed

as intractable. In this sense, the upper bound and the lower bound do not make a major
difference.

• Combining the two points above, we can conclude that in terms of sample complexity, our
bound is tight (up to logarithmic factors).

D.5 Proof of Lemma 2

We only prove the first part of this lemma and the others can be proved similarly. Let s = [Dp/γ] + 1,
where [r] denotes the largest integer no more than r. To prove the first part, let θ0 = θ′0 = 0. Define
θt, θ

′
t recursively as follows:

θt+1 = θt + c0∇θr(w, θt)/t

and

θ′t+1 = θ′t + c0∇θr(w′, θ′t)/t.
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We prove ‖θt − θ′t‖ ≤ t `
`θθ
‖w − w′‖ by induction. For t = 0, θ0 − θ′0 = 0. Assume the induction

hypothesis ‖θt−1 − θ′t−1‖ ≤ (t− 1) `
`θθ
‖w − w′‖. We have

‖θt − θ′t‖ = ‖(θt−1 + c0∇θr(w, θt−1)/t)− (θ′t−1 + c0∇θr(w, θ′t−1)/t) (21)

+ c0(∇θr(w, θ′t−1)−∇θr(w′, θ′t−1))/t‖ (22)

≤ ‖(θt−1 + c0∇θr(w, θt−1)/t)− (θ′t−1 + c0∇θr(w, θ′t−1)/t)‖ (23)

+ c0‖(∇θr(w, θ′t−1)−∇θr(w′, θ′t−1))/t‖ (24)

≤ (1 + c0`θθ/t)‖θt−1 − θ′t−1‖+ c0`‖w − w′‖/t. (25)
Here the first inequality follows from the triangle inequality, the second inequality follows from the
`θθ−Lipschitz continuity of∇θr and `-Lipschitz continuity of∇r. Therefore, we have

‖θt − θ′t‖ ≤ (1 + c0`θθ/t)‖θt−1 − θ′t−1‖+ c0`‖w − w′‖/t.
Let δt = ‖θt − θ′t‖. Then by the above recursion, we have

δt + `/`θθ‖w − w′‖ ≤
t∏
i=1

(1 + c0`θθ/i)`‖w − w′‖/`θθ.

Using the inequalities ea ≥ 1 + a and
∑t
i=1 1/i ≤ log t, we have

δt ≤
t`

`θθ
‖w − w′‖.

Letting t = s yields

‖θγp (w)− θγp (w′)‖ ≤ s`

`θθ
‖w − w′‖.

Since Dp > γ, we have
s ≤ [Dp/γ] + 1 ≤ 2Dp/γ.

Hence,

s
`

`θθ
· γ ≤ 2Dp`/`θθ.

Setting λp = 2Dp`/`θθ yields the desired result.

D.6 Proof of Lemma 3

This is similar to the proof of Lemma 1. We first define the virtual algorithm Ā which outputs
(wAS , θ

γ
p (wAS )). By Assumption 5, it can be easily seen that Ā is (1 + λp/γ)ε-stable. Then by

Theorem 1, we have
ESEA[r(wAS , θ

γ
p (wAS ))− rS(wAS , θ

γ
p (wAS ))] ≤ L(1 + λp/γ)ε.

This gives us:

ESEA[r(wAS )− rS(wAS )] ≤ ESEA[r(wAS , θ
γ
p (wAS ))− rS(wAS , θ

γ
p (wAS ))] + γ

≤ Lε+ Lλpε/γ + γ.

Taking γ =
√
Lλp
√
ε, we have

ζpgen(A) ≤ Lε+
√
Lλp
√
ε.

E Proofs in Section 4

E.1 Proof of Theorem 4

First, we have

ESEA0 [r(wA0,T
S )− min

w∈W
r(w)]

= ESEA0 [rS(wA0,T
S )− min

w∈W
rS(w)] + ESEA0 [r(wA0,T

S )− rS(wA0,T
S )]

+ ESEA0
[ min
w∈W

rS(w)− min
w∈W

r(w)]. (26)
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Algorithm 1 GDA
Input: initial iterate (w0

S , θ
0
S) = (0, 0), stepsizes αt, βt, projection operators PW and PΘ;

1: for t = 0, . . . , T − 1 do
2: wt+1

S = PW (wtS − αt∇wrS(w, θ))

3: θt+1
S = PΘ (θtS + βt∇θrS(w, θ))

4: end for

Algorithm 2 GDMax
Input: initial iterate (w0

S , θ
0
S) = (0, 0), stepsizes αt, projection operators PW and PΘ;

1: for t = 0, . . . , T − 1 do
2: wt+1

S = PW (wtS − αt∇wrS(w, θ))

3: θt+1
S = argmax

θ∈Θ
rS(wt+1

S , θ)

4: end for

Furthermore, by Assumption 7 and Theorem 2, we have

ESEA0
[r(wA0,T

S )−min
w∈W

r(w)] ≤ (φA0
(Mw)+φA0

(Ce(Θ0)))/ψA0
(T )+ζPgen(A0)+L∗θCe(Θ0)/

√
n.

Next, notice that the output of A0 is equal to the output of A with probability at least 1 − δ and
‖r(w)‖ ≤ 1. Therefore, we have

|ESEA[r(wA,TS )]− ESEA0
[r(wA0,T

S )]| ≤ δ,
which gives the desired result.

E.2 Proof of Lemma 4

Define δt = ‖(wtS , θtS)− (wtS′ , θ
t
S′)‖. We have

δt+1 ≤ (1 + c0`/t)δt + 2c0LΘGDAθ
/nt.

Therefore,

δt+1 +
2LΘGDAθ

`n
≤ (1 + c0`/t)

(
δt +

2LΘGDAθ

`n

)
≤

2LΘGDAθ

`n
T c0`, (27)

which completes the proof.

E.3 Proof of Lemma 5

For a fixed dataset S, let gt = ∇rS(wt, θt) and dt = ‖(w0, θ0) − (wt, θt)‖. Then we have
gt ≤ L0 + dt` and dt+1 ≤ dt + c0gt/t. Substituting the first inequality into the second one, we have

dt+1 ≤ dt + c0dt/t+ L0c0/t,

which gives us
dt+1 + L/` ≤ (1 + c0`/t)(dt + L0/`).

Multiplying this inequality from 0 to T − 1 yields

dT ≤ T c0`L0/`,

which completes the proof.

E.4 Proof of Lemma 6

Let u = [1, 1, · · · , 1, 0, · · · , 0]T ∈ R2n. Then θS(w) satisfies QTSθS(w) = u − b0e, where e =
[1, 1, · · · , 1]T ∈ R2n. It can be easily seen that ‖u− b0e‖ ≥

√
n/2.

We can also show that σmax(QS) ≤ 2σmax · σmax(P ), where P ∈ R2n×m is full row-rank and
independent rows. Moreover, every row of P has covariance matrix Im/

√
m. Then by random matrix

theory (see [Vershynin, 2010]), we have σmax(P ) ≤ O(
√
m/
√
m−C

√
n/
√
m+ log(1/δ)/

√
m) =

O(1) with probability 1− Cδ. Therefore, we have θS(w) ≥ Ω(
√
n).
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(a) GDA (b) GDMax

Figure 1: Comparison of the results on MNIST generated by GDA and GDMax.

E.5 Experiments on GAN-training

In this section, we provide some numerical results to corroborate our theoretical findings.

E.5.1 Setup

We train a GAN on MNIST data using two algorithms – GDA and GDMax. Since the stability is
improved by using adaptive methods like Adam, we use Adam-descent-ascent (ADA) and Adam-
descent-max (ADMax) instead. ADA simultaneously trains the generator and the discriminator, while
ADMax trains the optimal discriminator for each generator step. We simulate this by taking 10 steps
of ascent for every descent step. Figure 1 plots the images generated by GANs trained using these
two algorithms. Finally, in Figure 2, we plot the norms of the discriminator trained by these two
algorithms.

E.5.2 Results

Figure 1 plots the images generated by GANs trained using GDA and GDMax (using Adam instead
of the simple gradient step). As predicted by the theory in Section E, we can see that GDA produces
better images than the corresponding GAN trained using GDMax. Furthermore, the claim that
Ce >> Cp can be seen from Figure 2 where we see that the norm of the discriminator trained using
GDMax is much larger than the norm of the discriminator trained using GDA. This follows from the
results in Section 4.2. GDMax trains the discriminator to exactly distinguish between the empirical
data generated by the true and fake distributions. Therefore, when they are nearly the same, their
empirical distributions would be close as well. This would imply that the discriminator would need to
have a very large slope (Lipschitz constant) to exactly distinguish between the two empirical datasets,
and this in turn leads to a large discriminator norm (which captures the Lipschitz constant of the
discriminator).

F Generalization Error for Primal-Dual Risk

If the saddle-point exists, the primal-dual risk is often a good measure of generalization:
Definition 7. [Primal-dual risk] The population and empirical primal-dual (PD) risks are defined
as:

∆PD(w, θ) = max
θ′∈Θ

r(w, θ′)− min
w′∈W

r(w′, θ),

and
∆PD
S (w, θ) = max

θ′∈Θ
rS(w, θ′)− min

w′∈W
rS(w′, θ).
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Figure 2: Comparison of the norm squares of discriminator weights.

A point (w, θ) is called a saddle-point of rS (or r) if ∆PD
S (w, θ) = 0 (or ∆PD(w, θ) = 0). Fur-

thermore, if a saddle-point (wS , θS) exists for rS(·, ·), we have wS = minw∈W rS(w). Moreover,
if wS ∈ arg minw∈W rS(w) and θS ∈ arg maxθ∈Θ rS(wS , θ), then (wS , θS) is a saddle point of
rS(·, ·).

Notice that if we can find an approximate saddle point (wS , θS) of rS(w, θ), i.e., ∆PD
S (wS , θS) < ε

and guarantee that ∆PD(wS , θS) − ∆PD
S (wS , θS) is small, we can guarantee that ∆(wS , θS) is

small and therefore (wS , θS) is an approximate saddle point of r(·, ·). Hence if the saddle point
exists for rS(·, ·), the generalization error of the primal-dual risk can be a good measure for the
generalization of the solution to the empirical problem. We define the expected generalization error
for the primal-dual risk as follows:
Definition 8. The generalization error for the primal-dual risk is defined as

ζPDgen (A) = ESEA[∆PD(wAS , θ
A
S )−∆PD

S (wAS , θ
A
S )].

F.1 The generalization of the primal-dual risk for convex-concave problems

Similar to Definition 6, we define the W -capacity as follows:
Definition 9 (W-Capacity). Let

W ∗(θ) = min
w∈W

r(w, θ), and WS(θ) = min
w∈W

rS(w, θ).

The W -capacities Cwe and Cwp are defined as

Cwp = max
θ

dist(0,W ∗(θ)

Cwe = max
S,θ

dist(0,WS(θ)). (28)

Next, we also define the following:
Definition 10. Let f−(θ, w; z) = −f(w, θ; z). We first have

r−(θ, w) = Ez∼Pz [f
−(θ, w; z)], r−S (θ, w) =

1

n

n∑
i=1

f−(θ, w; zi). (29)

Furthermore, we define:

r−(θ) = max
w∈W

r−(θ, w) = −( min
w∈W

r(w, θ))

r−S (θ) = max
w∈W

r−S (θ, w) = −( min
w∈W

rS(w, θ)). (30)

Now, we have the following bound for the generalization error of the primal-dual risk, ζPDgen (A) for
an ε-stable Algorithm A:
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Theorem 7. Suppose that Algorithm A is ε-stable. The generalization error ζPDgen (A) for convex-
concave problem, i.e., when f(·, ·; z) is convex-concave for all z, is bounded by:

ζPDgen (A) ≤
(√

4L`C2
p +

√
4L`(Cwp )2

)√
ε+ 2εL.

Proof. Notice that

ζPDgen (A) = ESEA[∆PD(wAS , θ
A
S )−∆PD

S (wAS , θ
A
S )] (31)

= ESEA[r(wAS )− rS(wAS )] + ESEA[r−(θAS )− r−S (θAS )]. (32)

The two terms can be bounded by Lemma 1 respectively. By Lemma 1, we have

ESEA[r(wAS )− rS(wAS )] ≤
√

4L`C2
p

√
ε+ εL

and
ESEA[r−(θAS )− r−S (θAS )] ≤

√
4L`(Cwp )2

√
ε+ εL.

Combining these two inequalities yields the desired result.

F.2 ζPDgen (T ) for the proximal point algorithm

In this section, we study the generalization behavior of the proximal point algorithm (PPA) ((See
Equation (3) in [Farnia and Ozdaglar, 2021])). By [Farnia and Ozdaglar, 2021], the stability of T
steps of PPA can be bounded as follows:
Lemma 14 ([Farnia and Ozdaglar, 2021]). The stability of T steps of PPA can be bounded by
ε ≤ O (T/n).

Therefore, substituting the result of Lemma 14 in Theorem 7, we have the following bound for ζgen
for T steps of PPA:
Theorem 8. After T steps of PPA, the generalization error of the primal-dual risk can be bounded
by:

ζPDgen (T ) ≤ O
(√

T/n+ T/n
)
.

F.3 The population primal-dual risk of PPA

Finally, we give the population primal-dual risk after T steps of PPA. By [Mokhtari et al., 2020b], we
have the following convergence result of PPA.
Lemma 15 ([Mokhtari et al., 2020b]). Let (wtS , θ

t
S) be the iterates obtained after t iterations of

proximal point algorithm on the function rS(·, ·) and w̄tS = 1
t

∑t
i=1 w

i
S , θ̄

t
S = 1

t

∑t
i=1 θ

i
S be the

averaged iterates. Then we have

∆PD
S (w̄TS , θ̄

T
S ) ≤ `(C2

e + (Cwe )2)/T.

Combining Lemma 15 and Theorem 8, we have the following result:
Theorem 9. Let (wtS , θ

t
S) be the iterates obtained after t iterations of proximal point algorithm on

the function rS(·, ·) and w̄tS = 1
t

∑t
i=1 w

i
S , θ̄

t
S = 1

t

∑t
i=1 θ

i
S be the averaged iterates. Then, the

expected population primal-dual risk at the point (w̄tS , θ̄
t
S) can be bounded by:

ES [∆PD(wtS , θ
t
S)] ≤ O

(
1/T +

√
T/n+ T/n

)
.
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