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Abstract

We consider distributed stochastic variational inequalities (VIs) on unbounded
domains with the problem data that is heterogeneous (non-IID) and distributed
across many devices. We make a very general assumption on the computational
network that, in particular, covers the settings of fully decentralized calculations
with time-varying networks and centralized topologies commonly used in Fed-
erated Learning. Moreover, multiple local updates on the workers can be made
for reducing the communication frequency between the workers. We extend the
stochastic extragradient method to this very general setting and theoretically ana-
lyze its convergence rate in the strongly-monotone, monotone, and non-monotone
(when a Minty solution exists) settings. The provided rates explicitly exhibit the
dependence on network characteristics (e.g., mixing time), iteration counter, data
heterogeneity, variance, number of devices, and other standard parameters. As a
special case, our method and analysis apply to distributed stochastic saddle-point
problems (SPP), e.g., to the training of Deep Generative Adversarial Networks
(GANs) for which decentralized training has been reported to be extremely chal-
lenging. In experiments for the decentralized training of GANs we demonstrate the
effectiveness of our proposed approach.

1 Introduction

In large-scale machine learning (ML) scenarios the training data is often split between many devices,
such as geographically distributed datacenters or mobile devices [38]. Decentralized training methods
can learn an ML model with the same accuracy as if all the data would be aggregated on one single
server [54, 5]. At the same time, training in a decentralized fashion has many advantages over
traditional centralized approaches in such core aspects as data ownership, privacy, fault tolerance,
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and scalability. A particular instance of the decentralized learning setting is Federated Learning
(FL), where the training is orchestrated by a single device or server that communicates with all the
participating client devices [62, 38]. In contrast, in fully decentralized learning (FD) scenarios the
devices only communicate with their neighbors in the communication network graph with possibly
arbitrary topology [54]. Thus, decentralized algorithms are important in scenarios where centralized
communication is expensive, not desired, or impossible.

There have been tremendous advances recently in the development, design, and understanding of
decentralized training schemes [71, 95, 86, 54, 84, 92, 90, 94, 23, 81, 50]. In particular, such aspects
as data-heterogeneity [90, 78, 55], communication efficiency (through local updates [52, 44] or
compression [89, 45]), and personalization [93, 8] have been studied. However, all these advances
were aimed at training with single-criterion loss functions leading to minimization problems, and they
do not apply to more general problem classes. For example, the training of Generative Adversarial
Networks (GANs) [28] requires simultaneous competing optimization of the generator and the
discriminator objectives, i.e., solving a non-convex-non-concave saddle-point problem (SPP). This
problem structure makes GANs notoriously difficult to train even in the single-node setting [27, 15,
16], not talking about training over decentralized datasets [58, 69, 80].

Our goal in this paper is solving decentralized stochastic SPPs, and, more generally, decentralized
stochastic Minty variational inequalities (MVIs) [64, 37]. In a decentralized stochastic MVI, the data
is distributed over M � 1 devices/nodes and each device m 2 [M ] has access to its local stochastic
oracle Fm(z, ⇠m) for the local operator Fm(z) := E⇠m⇠DmFm(z, ⇠m). The data ⇠m in the device m
follows an unknown distribution Dm that can be different for each device m 2 [M ]. The devices
are connected via a communication network forming a graph such that two devices can exchange
information if and only if the corresponding nodes are connected by an edge in this graph. The goal
is, while respecting the communication constraints, to find cooperatively a point z⇤ 2 Rn such that,
for all z 2 Rn,

1
M

PM
m=1hE⇠m⇠DmFm(z, ⇠m), z⇤ � zi  0. (1)

A special instance of decentralized stochastic MVIs is the decentralized stochastic SPP with local
objectives fm(x, y) := E⇠m⇠Dm [fm(x, y, ⇠m)]:

min
x2Rnx

max
y2Rny

h
f(x, y) := 1

M

PM
m=1 fm(x, y)

i
. (2)

The relation to VI can be seen by considering the variable z =
⇥
x
y

⇤
and the gradient field Fm(z) =

⇥ rxfm(x, y)
�ryfm(x, y)

⇤
. In the special case when f(x, y) is convex-concave, the corresponding operator

F (z) = 1
M

PM
m=1 E⇠mFm(z, ⇠m) is monotone. However, in the context of GANs training, where x

and y are the parameters of the generator and the discriminator, respectively, the local losses fm(x, y)
are possibly non-convex-non-concave in x, y and one can not assume the monotonicity of F in
general, see also [21].

In this paper, we develop a novel algorithm for solving problems (1) and (2). Note that the gradient
descent-ascent scheme for the problem (2) may diverge even in the simple convex-concave setting
with M = 1 device [15]. Thus, unlike [58], we use extragradient updates [48, 37, 27] as a building
block and combine them with a gossip-type communication protocol [98, 12] on arbitrary, possibly
time-varying, network topologies. One of the main challenges due to the communication constraints
is a “network error” induced by the impossibility of all the devices to reach the exact consensus, i.e.,
to have exactly the same information about the current iterate of the algorithm. Thus, each device
stores a local variable, and only approximate consensus among the devices can be achieved by gossip
steps [47]. Unlike other decentralized algorithms [84, 58], our method avoids multiple gossip steps
per iteration, which leads to better practical performance and the possibility to work on time-varying
networks. Moreover, our method allows for multiple local updates between communication rounds to
reduce the communication overhead. This also makes our approach suitable for communication- and
privacy-restricted FL or fully decentralized settings [101].

Our contributions. 1) Based on extragradient updates, we develop a novel algorithm for distributed
stochastic MVIs (and, as a special case, for distributed stochastic SPPs) with heterogeneous data.
Our scheme supports a very general communication protocol that covers centralized settings as in
Federated Learning, fully decentralized settings, local steps in both the centralized/decentralized
settings, and time-varying network topologies. In particular, we are not aware of earlier works
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proposing or analyzing extragradient methods with local steps for the fully decentralized setting or
decentralized algorithms for stochastic MVIs over time-varying networks.

2) Under the very general communication protocol and in the three settings of MVIs, i.e., with an oper-
ator that is strongly-monotone, monotone, or non-monotone under the Minty condition, we prove the
convergence of our algorithm and give an explicit dependence of the rates on the problem parameters:
characteristics of the network (e.g., mixing time), data heterogeneity, the variance of the data, number
of devices, and other standard parameters. These theoretical results translate to the corresponding
three settings of SPPs (strongly-convex-strongly-concave, convex-concave, non-convex-non-concave
under Minty condition). All our theoretical results are valid in the important heterogeneous data
regime and allow judging in a quantifiable way how different properties, e.g., data heterogeneity,
the scale of the noise in the data, and network characteristics, influence the convergence rate of
the algorithm. Even for decentralized settings, our results are novel for time-varying graphs and
three different settings of monotonicity. See also Table 1 that gives more details on our contribution
compared to the existing literature. The main challenge of our analysis is to deal with the very general
assumption about the communication protocol and cope with the errors caused by the stochastic
nature and heterogeneity of the data and limited information exchange between the nodes of the com-
munication network. As a byproduct of independent interest, we analyze the stochastic extragradient
method with biased oracle on unbounded domains, which was not done so far in the literature.

3) We verify our theoretical results in numerical experiments and demonstrate the practical
effectiveness of the proposed scheme. In particular, we train the DCGAN [79] architecture on the
CIFAR-10 [51] dataset.

1.1 Related Work

The research on MVIs dates back at least to 1962 [64] with the classical book [41] and the recent
works [59, 56, 13, 21]. VIs arise in a broad variety of applications: image denoising [25, 14], game
theory and optimal control [26], robust optimization [9], and non-smooth oprimization via smooth
reformulations [74, 73]. In ML, MVIs and SPPs arise in GANs training [19, 15, 16], reinforcement
learning [76, 36], and adversarial training [60].

Extragradient. The extragradient method (EGM) was first proposed in [48], generalized as the
mirror-prox method for deterministic problems in [73] and for stochastic problems with bounded
variance in [37]. Yet, if the stochastic noise is not uniformly bounded, the EGM may diverge,
see [15, 66].

Reference base method arbitrary network time-varying local updates no multiple gossip steps SM M NM
Liu et al. 2019 [58] Stoch. ES 4 8 8 8 8 8 4†

Beznosikov et al. 2021[11] Alg. 2 Stoch. ES 4 8 8 8 4 4 8
Barazandeh et el. 2021 [6] Stoch. ES 4 8 8 8 8 8 4
Liu et al. 2019 [59] Deter. prox 4 8 8 4 8 8 4
Mukherjee and Chakraborty 2020 [69] Deter. ES 4 8 8 4 4 8 8
Tsaknakis et al. 2020 [91] Stoch. DA 4 8 8 4 8 8 4‡

Rogozin et al. 2021[80] Deter. ES 4 8 8 4 8 4 8
Xian et al. 2021 [97] Stoch. DA 4 8 8 4 8 8 4‡

Beznosikov et al. 2021 [11] Alg 3 Stoch. ES 8 8 4 -§ 4 8 8
Deng and Mahdavi 2021[20] Stoch. DA 8 8 4 - 4 8 4‡

Hou et al. 2021 [32] Stoch. DA 8 8 4 - 4 8 8
Ours Stoch. ES 4 4 4 4 4 4 4
† – homogeneous case, ‡ – non-convex-concave SPP (other works use minty condition – (NM)), § – this column does not apply to

centralized algorithms.

Table 1: Comparison of approaches for distributed strongly-monotone (SM), monotone (M), and non-monotone
(NM) VIs or, respectively, strongly-convex-strongly-concave, convex-concave, non-convex-non-concave SPPs.
Definitions of columns: base method — the non-distributed algorithm that is taken as the basis for the distributed
method, typically it is either the extragradient method (EGM) or the descent-ascent (DA); arbitrary network —
supporting fully decentralized vs. only centralized topology; time-varying — decentralized method supporting
time-varying network topology; local updates — method supporting local steps between communications; no
multiple gossip steps — at one global iteration the method does not use many iterations of gossip averaging to
reach a good consensus accuracy; SM, M, NM — monotonicity assumption, see Assumption 3.2.

Decentralized algorithms for MVIs and SPPs are the most closely related to our work. In Table 1,
we summarize their features and make a comparison with our algorithm, showing that, e.g., existing
methods do not support arbitrary time-varying network typologies. The methods that use multiple
rounds of gossip averaging (sparse communication) per iteration [58, 11, 6] can give near-optimal
theoretical rates, but are often unstable in practice. Thus, it is preferable to have only one sparse

3



communication per iteration [59, 69, 91, 80, 97]. The second column of the table refers to standard
algorithms that are extended to distributed settings in the corresponding work. In particular, the
algorithm of [59] requires expensive proximal updates. The closest work to ours is [11], where a
decentralized EGM without local steps is analyzed in the (strongly-)monotone setting. Unlike our
more general algorithm with local steps, theirs require multiple gossip updates in each iteration which
is not desired in practice. For the FL, i.e., centralized, setting, [11] studies the EGM with local steps
in the strongly-monotone setting, and [20, 32] study the descent-ascent method with local steps. Yet,
all three works do not consider arbitrary time-varying graphs as in our work.

2 Algorithm

In this section, we present and discuss the proposed algorithm (Algorithm 1) that is based on two
main ideas: (i) the extragradient step, as in the classical methods for VIs [48, 73], and (ii) the
gossip averaging [12, 71] widely used in decentralized optimization methods and in the literature
on diffusion strategies in distributed learning [82, 83, 99, 2, 61]. Unlike these papers that propose
algorithms for optimization problems by exploiting gradient descent, our algorithm is based on the
extragradient method and is designed to solve VIs and SPPs. Moreover, unlike the mentioned works,
our method also allows for local steps in-between the communication rounds and for time-varying
networks and has non-asymptotic theoretical convergence rate guarantees.

Each step of Algorithm 1 can be divided into two phases. The local phase (lines 4–6) consists of
a step of the stochastic extragradient method at each node using only local information. As in the
non-distributed case, the nodes first make an extrapolation step “to look into the future” and then an
update based on the operator value at the “future” point. This is followed by the communication phase
(gossip step) (line 7), during which the nodes share and average local iterates with their neighbors
N

k
m in the communication network graph corresponding to the iteration k. The averaging process

involves the weights wk
m,i which are the elements of the matrix W k called the mixing matrix:

Definition 2.1 (Mixing matrix). We call a matrix W 2 [0; 1]M⇥M a mixing matrix if it satisfies the
following conditions: 1) W is symmetric, 2) W is doubly stochastic (W1 = 1, 1TW = 1T , where 1
denotes the vector of all ones), 3) W is aligned with the network: wij 6= 0 if and only if i = j or the
edge (i, j) is in the communication network graph.

Reasonable choices of mixing matrices are, for example, (i) W k = IM �
Lk

�max(Lk) , where Lk is the
Laplacian matrix of the network graph at the step k and IM is the identity matrix, or (ii) using some
local rules in the graph, based on the degrees of the neighboring nodes [98]. Note that our setting
has a great flexibility since in-between the iterations the topology of the communication graph is
allowed to change, and the matrix W k, that encodes the current structure of the network, changes
accordingly. This is encoded in line 2, where the matrix W k is generated by some rule Wk which can
have different nature. Examples include deterministic choice of a sequence of matrices W k, sampling
from a time-varying probability distribution on matrices. Even local steps without communication
can be encoded with a diagonal matrix W k.

Algorithm 1 Extra Step Time-Varying Gossip Method
parameters: stepsize � > 0, {Wk

}k�0 – rules or distributions for mixing matrix in iteration k.
initialize: z0 2 Z, 8m : z0m = z0

1: for k = 0, 1, 2, . . . do
2: Sample matrix W k from W

k

3: for each node m do
4: Generate independently ⇠km ⇠ Dk, ⇠k+1/3

m ⇠ Dk

5: zk+1/3
m = zkm � �Fm(zkm, ⇠km)

6: zk+2/3
m = zkm � �Fm(zk+1/3

m , ⇠k+1/3
m )

7: zk+1
m =

P
i2Nk

m
wk

m,iz
k+2/3
i

8: end for
9: end for

To ensure that it is possible to approach the consensus between the nodes, we need the following
assumption on the mixing properties of the matrix sequence W k.
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Assumption 2.2 (Expected Consensus Rate). We assume that there exist a constant p 2 (0, 1]
and an integer ⌧ � 1 such that, after K iterations, for all matrices Z 2 Rd⇥M and all integers
l 2 {0, . . . ,K/⌧},

EW [kZWl,⌧ � Z̄k
2
F ]  (1� p)kZ � Z̄k

2
F , (3)

where Wl,⌧ = W l⌧
· . . . ·W (l+1)⌧�1, we use the matrix notation Z = [z1, . . . , zM ], Z̄ = [z̄, . . . , z̄]

with z̄ = 1
M

PM
m=1 zm, and the expectation EW is taken over distributions of W t and indices

t 2 {l⌧, ..., (l + 1)⌧ � 1}.

This assumption ensures that, after ⌧ gossip steps with such time-varying matrices, we improve the
consensus between the nodes, i.e., how close each zm is to z̄, by the factor of 1

1�p . Importantly, in this
case, some matrices W k can be, for example, the identity matrix (which corresponds to performing
only local steps in iteration k).

Assumption 2.2 has been recently quite popular in the literature on distributed optimization methods
[72, 44, 49]. Moreover, it is very general and covers many special cases of decentralized and
centralized algorithms. For example, if we fix W k = W for some fixed connected graph, we get a
decentralized algorithm on this graph. If, at the same time, we set the matrix W = 1

M 11T , then it is
easy to see that we get an analog of the centralized setting with the averaging over all nodes performed
in each communication step. If we take W k = W for some fixed connected graph at every ⌧ -th step
and in other steps use W k = IM , we have a decentralized (and, in particular, centralized) algorithm
with local steps [87, 30, 44] and communications after each ⌧ iterations. Generic Assumption 2.2
covers also many other settings of time-varying decentralized topologies, e.g., random topologies,
cliques, B-connected graphs [35, 70]. Below we show that, under an appropriate choice of the
stepsize, our extragradient method provably converges under such a general assumption that covers
centralized and decentralized settings, local steps in both centralized and decentralized settings, and
changing topologies of the communication graph. Even for decentralized settings, this is novel for
time-varying graphs and three different settings of monotonicity which we consider.

3 Setting and Assumptions

In this section, we introduce necessary assumptions that are used to analyze the proposed algorithm.
Assumption 3.1 (Lipschitzness). For all m, the operator Fm(z) is Lipschitz with constant L, i.e.,

kFm(z1)� Fm(z2)k  Lkz1 � z2k, 8z1, z2. (L)

This is a standard assumption that is used in the analysis of all the methods displayed in Table 1.
Assumption 3.2. We consider three scenarios for the operator F , namely, when F is strongly-
monotone, monotone and non-monotone, but with an additional assumption:
(SM) Strong monotonicity. There exists µ > 0 such that, for all z1, z2,

hF (z1)� F (z2), z1 � z2i � µkz1 � z2k
2. (SM)

(M) Monotonicity. For all z1, z2, it holds that:

hF (z1)� F (z2), z1 � z2i � 0. (M)

(NM) Non-monotonicity (Minty). There exists z⇤ such that, for all z,

hF (z), z � z⇤i � 0. (NM)

Assumptions (SM), (M) and (L) are standard and classical assumptions in the literature on VIs.
Assumption (NM) is sometimes called the Minty or Variational Stability condition and it has been
widely used recently by the community as a structured variant of non-monotonicity [18, 34, 63, 59,
39, 33, 21], particularly, since it is appropriate in GANs training [57, 58, 22, 6].

The next assumption is standard for the stochastic setting.
Assumption 3.3 (Bounded noise). Fm(z, ⇠) is unbiased and has bounded variance, i.e., for all z,

E[Fm(z, ⇠)] = Fm(z), E[kFm(z, ⇠)� Fm(z)k2]  �2. (4)
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Our last assumption reflects the variability of the local operators compared to their mean and is
usually called D-heterogeneity. This assumption is widely used in the analysis of local-steps (and
not only) algorithms for minimization problems [40, 96, 30, 85, 4, 1, 31, 17, 24]. Moreover, [20, 32]
use this assumption for the analysis of centralized local-steps methods for SPPs. The authors of [58]
assume D = 0 for the decentralized training of GANs. Even in this case algorithms’ analysis can be
challenging.
Assumption 3.4 (D-heterogeneity). The values of the local operator have bounded variablility, i.e.,
for all z,

kFm(z)� F (z)k2  D2. (5)

4 Main Results

In this section, we present the convergence rate results for the proposed method under different
settings of Assumption 3.2. To present the main result, we introduce notation z̄k := 1

M

PM
m=1 z

k
m,

z̄k+1/3 := 1
M

PM
m=1 z

k+1/3
m for the averaged among the devices iterates and bzk = 1

k+1

Pk
i=0 z̄

i+1/3

for the averaged among the devices and iterates sequence, a.k.a. ergodic average. Finally, we denote
� = ⌧

p

�
D2⌧
p + �2

�
which plays the role of the consensus error, i.e., the error caused by the

impossibility of reaching the exact consensus between the nodes. Note that the data heterogeneity
appears in the convergence rates only through the quantity �.
Theorem 4.1 (Main theorem). Let Assumptions 2.2, 3.1, 3.3, 3.4 hold and the sequences z̄k, bzk be
generated by Algorithm 1 that is run for K > 0 iterations. Then,

• Strongly-monotone case: under Assumption 3.2(SM), with � = Õ

⇣
min

n
p
⌧L ,

1
µK

o⌘
it holds that

E
⇥
kz̄K+1

� z⇤k2
⇤
= Õ

⇣
kz0 � z⇤k2 · exp

⇣
�

µKp
240L⌧

⌘
+ �2

µ2MK + L2�
µ4K2

⌘
; (6)

• Monotone case: under Assumption 3.2(M), for any convex compact C s.t. z0, z⇤ 2 C and

maxz,z02C kz � z0k  ⌦C , with � = O

✓
min

⇢
1
L ,

⇣
⌦2

CM
K�2

⌘ 1
2
,
⇣

⌦2
C

K2L2�

⌘ 1
4

�◆
it holds that

supz2C E
⇥⌦
F (z), bzK � z

↵⇤
= O

✓
L⌦2

C
K + �⌦Cp

MK
+

p
L⌦3

C
p
�p

K
+

q
(�+L2⌦2

C)⌦C
p
�

KL

◆
. (7)

Under the additional assumption that, for all k, kz̄kk  ⌦, with � =

O

✓
min

⇢
1
L ,

⇣
⌦2

CM
K�2

⌘ 1
2
,
⇣

⌦2
C

K2L2�

⌘ 1
4
,
⇣

⌦2
C

K((⌦+⌦C)L
p
�+�)

⌘ 1
2

�◆
, we have that

supz2C E
⇥⌦
F (z), bzK � z

↵⇤
= O

✓
L⌦2

C
K + �⌦Cp

MK
+

p
L⌦3

C
p
�

K3/4 +

q
((⌦+⌦C)L

p
�+�)⌦2

C
K

◆
; (8)

• Non-monotone case: under Assumption 3.2(NM) and if kz0k  ⌦, kz⇤k  ⌦, with � =

O

✓
min

⇢
1
L ,

⇣
⌦2

K2L2�

⌘ 1
4

�◆
:

E
h

1
K+1

PK
k=0 kF (z̄k)k2

i
= O

⇣
L2⌦2

K + �2

M + L⌦
p
�+

p
L⌦�3/4p

K

⌘
. (9)

Under the additional assumption that, for all k, kz̄kk  ⌦, with � = O

✓
min

⇢
1
L ,

⇣
⌦2

KL�

⌘ 1
3

�◆
,

we have that

E
h

1
K+1

PK
k=0 kF (z̄k)k2

i
= O

⇣
L2⌦2

K + �2

M + (L⌦�)2/3

K1/3 + L⌦
p
�
⌘
. (10)

The proof of the theorem is given in the supplementary material, where one can also find explicit
dependence of the rates on the stepsize � before it is chosen optimally. We underline that the standard
analysis [37] does not apply for the following reasons. Firstly, unlike [37], in our problem (1), the
feasible set is not bounded, which is especially important for the analysis in the monotone and
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non-monotone settings. Secondly, our algorithm has an additional communication step (line 7)
between the computational nodes, which leads to the impossibility for all the nodes to have the same
information about the global operator F (z) and about the current iterate z. This, in order, leads
to a biased oracle that, unlike existing works, has to be analyzed in the setting of an unbounded
feasible set, which is quite challenging. To analyze our variant of the extragradient method, we
successfully handle this challenge. Our key steps are to bound the bias (see, e.g., the last two terms in
the r.h.s. of Lemma C.8 that are caused by the network errors), prove the boundedness in expectation
of the sequence of the iterates for monotone (see Section C.3.1 of the supplementary material) and
non-monotone (see Section C.4.1 of the supplementary material) cases, which may be of independent
interest and which we have not seen in the literature, even in the non-distributed setting with biased
stochastic oracles. Proving the boundedness is challenging due to the noise caused by the stochasticity
and heterogeneity of the data and network effects due to the imperfect exchange of information.
Surprisingly, in the end, we still manage to analyze our algorithm under the very general Assumption
2.2 and we are not aware of any results with similar generality of the settings: different network
topologies (including time-varying), distributed architectures, different monotonicity assumptions.

The provided convergence rates have an explicit dependence on the problem parameters: the network
that is characterized by the mixing time ⌧ and the mixing factor p, the data heterogeneity D (these
three quantities appear in the convergence rates only through the quantity �), the variance �2 of
the noise in the data, the Lipschitz constant L, the strong monotonicity parameter µ, the number of
nodes/devices M . Thus, our rates allow judging how different properties, e.g., data heterogeneity,
noise level, and network characteristics influence the convergence rates. This, in particular, opens up
an opportunity for a meta-optimization process if we can design the network and change M , ⌧ , p to
achieve faster convergence.

We now discuss the convergence results obtained in the theorem, and also compare them with already
existing algorithms (see Table 1) and their guarantees. Firstly, all the estimates have a similar
several-term structure. The first term corresponds to the deterministic setting and is similar to existing
methods for smooth VIs in the non-distributed setting. Only in the strongly-convex case, there
is an additional factor ⌧/p that increases the condition number L/µ of the problem. The second
(stochastic) term is also standard for the non-distributed setting and corresponds to the stochastic
nature of the problem. Note that, for a very general distributed setting, we have managed to obtain
the corresponding terms similar to the non-distributed setting. Moreover, we can see the benefit of
exploiting distributed computations: the leading stochastic term depends on �2/M that decreases as
the number M of the nodes increases. The other terms correspond to the consensus error � and are
due to the imperfect communications between the nodes, i.e., that all the nodes can’t have exactly the
same information about the current iterate. Importantly, in all the cases, this error does not make the
overall convergence worse since the dependence on K is no worse in these terms than the dependence
on K in the stochastic term. In the experimental section, we illustrate that the network error is not an
artifact of the analysis but is indeed present in practice.

Theorem 4.1 is formulated for a fixed budget of iterations K and the corresponding stepsizes � that
depend on K, which is pretty standard in the literature [37, 88, 10], where many algorithms fix the
stepsize depending on the budget of the iterations. In Section D of the supplementary material, we
present a simple restarting procedure that allows to extend the results of Theorem 4.1 to any-time
convergence without a-priori fixing K. The idea is to set Kt = 2t for t = 0, 1, . . . and restart the
algorithm after each Kt iterations. We next make refined comments for each particular setting of
monotonicity.

• Strongly-monotone case: In the centralized setting with local updates, our rate is slightly better
than in [11]. Unlike our algorithm, centralized algorithms with local steps for SPPs in [20, 32]
are based on the gradient descent-ascent method that may diverge in the stochastic setting even for
bilinear problems. Moreover, their analysis implies a very small stepsize � ⇠

µp
L2⌧ (cf. ours � ⇠

p
L⌧ ),

which greatly slows down the convergence of the algorithm.

For the decentralized setting, [11] propose an optimal algorithm with the rate matching the lower
bound which they also give. Our rate is worse probably because of the generality of the Assumption
2.2. On the other hand, our algorithm is more practical since it avoids using multiple gossip steps at
each iteration. Also, our algorithm is more general, allowing us to work with time-varying topologies
and local steps even in the decentralized setting.
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• Monotone case: The quantity supz2C E
⇥⌦
F (z), bzK � z

↵⇤
in the convergence rates estimates

reflects the stochastic nature of the problem and is a counterpart of the standard restricted gap
(or merit) function [75]: GapC(u) := supz2C [hF (z), u� zi]. When F is a monotone operator, if
GapC(û) = 0 and C contains a neighborhood of û, then [75, 3] û is a solution to (1) and even more:
it is a strong solution to the corresponding variational inequality, i.e., for all z, hF (û), û� zi  0.
Thus, GapC(u) is an appropriate measure of suboptimality in this setting and (7) guarantees that after
a sufficient number of iterations, we obtain an approximate solution in expectation. Importantly,
for (7), neither z nor z̄k are assumed to be bounded. As in the previous works on non-distributed
algorithms for MVIs [75, 3], we use GapC(u) with an arbitrary compact set C that contains z0 and z⇤

(this can be a large set). Further, (8) is a refined version of the general result (7) under the additional
assumption of the boundedness of the averaged iterates. If the boundedness does not hold, we still
have (7). Moreover, (7) and (8) hold for the same method, and to run the algorithm, there is no need
to know in advance whether the generated sequence is bounded or not.

Only [11, 80] consider MVIs with monotone operator in distributed setting. Our algorithm is
more general than theirs: our algorithm supports time-varying networks and local steps between
communications. The algorithm in [11] uses multiple gossip steps between the updates of the iterates.
On the one hand, this allows decreasing the consensus error �. On the other hand, this leads to an
additional factor in the number of communications compared to our estimates: the first term in their
bound is p� times larger than ours, where � > 1 is some condition number of the mixing matrix.
Moreover, multiple gossip steps may be impractical if the communication is performed through
unstable channels or is expensive for some reason. The paper [80] considers only deterministic
setting.

• Non-monotone case: The same as in the previous case remark on the boundedness of z̄k, z⇤
assumed to obtain (10) applies in this case. Further, in this setting, the convergence is guaranteed
up to some accuracy that is governed by the stochastic nature of the problem (the �2-term) and by
the distributed nature of the problem (the �-terms). With this respect, the results are similar to
the non-distributed stochastic extragradient method [7] and the distributed method [58] analyzed in
the homogeneous case D = 0. To the best of our knowledge, convergence up to arbitrarily small
accuracy can be guaranteed only for deterministic distributed methods [59], i.e., in a much simpler
setting than ours. Moreover, the methods of [59] are not the most robust since they require evaluating
the proximal operator of a function and it is assumed that this can be done in a closed form, which is
computationally expensive and may not hold in practice.

Note that, based on our result, it is possible to achieve convergence up to arbitrarily small accuracy if
one considers the homogeneous case with D = 0. Indeed, choosing the right batch size, for example,
proportionally to K↵ with ↵ > 0, one can replace �2 by �2

K↵ in (9) and (10) and get convergence
guarantees.

5 Experiments

In this section, we present two sets of experiments to validate the performance of Algorithm 1. In
Section 5.1, we verify the obtained convergence guarantees on two examples: a strongly-monotone
and a monotone bilinear problems, and in Section 5.2, we explore the non-monotone case with
an application to GANs training. Extended details of the experimental setup can be found in the
supplementary material.

5.1 Verifying Theoretical Convergence Rate

First, we focus on the verifying whether the actual behaviour of Algorithm 1 is predicted by the
theoretical convergence rate in Theorem 4.1.

Setup. We consider a distributed bilinear SPP (2) with the objective functions
fm(x, y) = a

2kxk
2 + bx>y �

a
2kyk

2 + c>mx, where x, y, cm 2 Rn, a, b 2 R and m 2 {1, . . . ,M}.
This set of functions satisfy Assumptions 3.1, 3.2, 3.4 with constants µ = a, L2 = a2 + b2,
D = maxm kcm � c̄k. In this section, we use a ring topology on M = 20 nodes with uniform
averaging weights, and we set the dimension n = 5, b = 1, D ⇡ 3, and keep ⌧ = 1. The value of the
parameter p in this setting is approximately 0.288 [46, Table 1]. To satisfy Assumption 3.3, we gen-
erate stochastic gradients by adding to the exact gradients unbiased Gaussian noise with variance �2.
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Figure 1: Convergence of Algorithm 1 with constant stepsize in the presence of stochastic noise in strongly-
monotone (left) and monotone (right) cases. We observe linear convergence up to an error floor depending on
the noise variance and problem parameters (cf. Theorem 4.1). In Section A.2 of the supplementary material we
show convergence to arbitrary accuracy with decreasing stepsizes.

Convergence Behaviour. In Figure 1, we show the convergence of Algorithm 1 with a fixed stepsize
on the strongly-monotone (a = 1) and monotone (a = 0) instances. In the strongly-monotone
case, we see a linear convergence up to some level defined by the heterogeneity parameter and the
noise. The convergence for the non-strongly-monotone problem is slower, but we also see a linear
convergence up to some level (for bilinear problems this behavior is expected from the theoretical
point of view [48]). Note that the convergence to some limiting accuracy is expected since when
a constant stepsize is used in stochastic optimization/stochastic variational inequalities with strong
convexity/monotonicity, algorithms are usually guaranteed to converge only to a vicinity of the
solution, see, e.g., Theorem 2 in [66]. This is also in accordance with Theorem 4.1 that, for a fixed
stepsize, guarantees the convergence to some non-zero limit accuracy and says that, to achieve the
zero error, one needs to choose a decreasing stepsize. We additionally validate in Section A.2 of the
supplementary material that with a decreasing stepsize, the algorithm can converge to the zero error.

Figure 2: Verifying the O
�

D2

p2K2

�
convergence rate for the strongly-monotone noiseless (�2 = 0) case.

Dependence on the Heterogeneity parameter D. In the second set of experiments, we aim to
verify the dependence on the data heterogeneity parameter D. Therefore, we consider the setting
when �2 = 0. From our theory, equation (6), we predict that the most significant term in the
convergence rate when �2 = 0 scales as O

�
D2

p2K2

�
(since the primary goal of this experiment is

to study the dependence on p, D, K, we omit all the other fixed parameters for simplicity). We
take b = 1, a = 1 and conduct experiments with the number of iterations needed to achieve the
error 1

M

PM
m=1 kz

k
m � z⇤k2 < ", for different ". In all these experiments, the stepsize is tuned

individually.

First, we verify the power of K in the bounds. For this experiment, we keep D, p constant and vary
the accuracy ". As we can see from the leftmost subplot in Figure 2, the number of iterations scales
as K /

1p
"
, confirming the predicted O

�
1

K2

�
dependency of the error on K. Next, we measure the

number of iterations sufficient to reach the error " = 0.01 while varying D. The middle plot shows
that the number of iterations scales proportionally to D (showing D / K). Lastly, we depict the
number of iterations to reach " = 0.01 while changing the graph parameter p and again observe
1
p / K. Summarizing, these experiments verify the O

�
D2

p2K2

�
term in the convergence rate.

5.2 Training GANs

Our algorithm allows combining in the distributed learning setting different communication graph
topologies, as well as local steps. Thus, our goal in this section is to illustrate this empirically with
the experiments on GANs training. In Section A.1 of the supplementary material, we discuss to what
extent our theoretical results hold for GANs training.
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Data and model. We consider the CIFAR-10 [51] dataset containing 60000 images, equally dis-
tributed over 10 classes. We increased the size of the dataset by 4 times using transformations and
adding noise. We simulate a distributed setup of 16 nodes on two GPUs and use Ray [67]. To emulate
the heterogeneous setting, we partition the dataset into 16 subsets. For each subset, we select a major
class that forms 20% of the data, while the rest of the data split is filled uniformly by the other classes.
As a basic architecture we choose DCGAN [79], conditioned by class labels, similarly to [65] (the
network architecture can be found in Section A.1). We chose Adam [42] as the optimizer. We make
one local Adam step and then one gossip averaging step with time-varying matrices W k—similar to
Algorithm 1.

Setting. We compare the following three topologies (and the corresponding matrices W k):
• Full. Full graph at the end of each epoch, otherwise local steps. This means that we make 120
communication rounds (by communication round we mean the exchange of information between a
pair of devices) in an epoch.
• Local. Full graph at the end of each 5th epoch, otherwise local steps. This means that we make 24
communication rounds in an epoch (in average: 4 epochs without communications and 1 epoch with
120 rounds).
• Clusters. At the end of each epoch, clique clusters of size 4 are randomly formed (in total 4
cliques). This means that we make 24 communication rounds in an epoch.

Note that the communication budget of the first approach is 5 times larger.

We use the same learning rate equal to 0.002 for the generator and discriminator. The rest of the
parameters and features of the architecture can be found in the supplementary material.

Figure 3: Comparison of the three network topologies in DCGAN
distributed decentralized learning on CIFAR-10. FID Score and
Inception Score vs the number of communications (two top), and
the same Scores vs the number of local epochs (two bottom). The
experiment was repeated 5 times on different random data splitting,
the maximum and minimum deviations are depicted in the plots by
the shade.

Results. The results of the experi-
ment are presented in Figure 3 and
Figure 6 (Section A.3). In terms
of the number of local epochs, all
the methods converged quite close to
each other and produced similar im-
ages. In terms of communications,
Local and Cluster topologies lead to
much better results, and the Cluster
topology is slightly better than the
Local.

6 Conclusion

We propose a novel efficient al-
gorithm for solving decentralized
stochastic MVIs and SPPs under a
very general assumption on the net-
work topology and communication
constraints. In particular, our method
is the first decentralized extragradient method with local steps for time-varying network topologies.
Moreover, for the proposed algorithm, we prove the convergence rate theorem in the SM, M and NM
cases. In the numerical experiments, we verify that the dependence of our rates on the data hetero-
geneity parameter D is tight in the SM case, and cannot be further improved in general. By training
DCGAN on a decentralized topology, we demonstrate that our method is effective on practical DL
tasks. As a future work it would be interesting to generalize such algorithms for infinite-dimensional
problems.

Acknowledgments

This research of A. Beznosikov has been supported by The Analytical Center for the Gov-
ernment of the Russian Federation (Agreement No. 70-2021-00143 dd. 01.11.2021, IGK
000000D730321P5Q0002). The work by P. Dvurechensky in Section C.3 was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy
– The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689).

10



References
[1] Artem Agafonov, Pavel Dvurechensky, Gesualdo Scutari, Alexander Gasnikov, Dmitry Kam-

zolov, Aleksandr Lukashevich, and Amir Daneshmand. An accelerated second-order method
for distributed stochastic optimization. In 2021 60th IEEE Conference on Decision and Control
(CDC), pages 2407–2413, 2021.

[2] Sulaiman A Alghunaim and Kun Yuan. A unified and refined convergence analysis for
non-convex decentralized learning. IEEE Transactions on Signal Processing, 2022.

[3] Kimon Antonakopoulos, Veronica Belmega, and Panayotis Mertikopoulos. An adaptive
mirror-prox method for variational inequalities with singular operators. In Advances in Neural
Information Processing Systems 32 (NeurIPS), pages 8455–8465. Curran Associates, Inc.,
2019.

[4] Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learning
and optimization. arXiv preprint arXiv:1506.01900, 2015.

[5] Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Michael Rabbat. Stochastic gradient
push for distributed deep learning. In Proceedings of the 36th International Conference on
Machine Learning (ICML). PMLR, 2019.

[6] Babak Barazandeh, Tianjian Huang, and George Michailidis. A decentralized adaptive mo-
mentum method for solving a class of min-max optimization problems. Signal Processing,
189:108245, 2021.

[7] Babak Barazandeh, Davoud Ataee Tarzanagh, and George Michailidis. Solving a class of
non-convex min-max games using adaptive momentum methods. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3625–3629, 2021.

[8] Aurélien Bellet, Rachid Guerraoui, Mahsa Taziki, and Marc Tommasi. Personalized and private
peer-to-peer machine learning. In Proceedings of the Twenty-First International Conference
on Artificial Intelligence and Statistics (AISTATS), volume 84, pages 473–481. PMLR, 2018.

[9] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust Optimization. Princeton
University Press, 2009.

[10] Aleksandr Beznosikov, Eduard Gorbunov, Hugo Berard, and Nicolas Loizou. Stochastic gradi-
ent descent-ascent: Unified theory and new efficient methods. arXiv preprint arXiv:2202.07262,
2022.

[11] Aleksandr Beznosikov, Valentin Samokhin, and Alexander Gasnikov. Distributed saddle-
point problems: Lower bounds, optimal algorithms and federated GANs. arXiv preprint
arXiv:2010.13112, 2021.

[12] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip
algorithms. IEEE transactions on information theory, 52(6):2508–2530, 2006.

[13] Brian Bullins and Kevin A. Lai. Higher-order methods for convex-concave min-max optimiza-
tion and monotone variational inequalities. arXiv preprint arXiv:2007.04528, 2020.

[14] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of mathematical imaging and vision, 40(1):120–145,
2011.

[15] Tatjana Chavdarova, Gauthier Gidel, François Fleuret, and Simon Lacoste-Julien. Reducing
noise in GAN training with variance reduced extragradient. In Advances in Neural Information
Processing Systems 32 (NeurIPS), 2019.

[16] Tatjana Chavdarova, Matteo Pagliardini, Sebastian U. Stich, Francois Fleuret, and Martin
Jaggi. Taming GANs with lookahead-minmax. In International Conference on Learning
Representations (ICLR), 2021.

11



[17] Amir Daneshmand, Gesualdo Scutari, Pavel Dvurechensky, and Alexander Gasnikov. Newton
method over networks is fast up to the statistical precision. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pages 2398–2409. PMLR, 18–24 Jul 2021.

[18] Cong D Dang and Guanghui Lan. On the convergence properties of non-Euclidean extragradi-
ent methods for variational inequalities with generalized monotone operators. Computational
Optimization and Applications, 60(2):277–310, 2015.

[19] Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training GANs
with optimism. In International Conference on Learning Representations (ICLR), 2018.

[20] Yuyang Deng and Mehrdad Mahdavi. Local stochastic gradient descent ascent: Convergence
analysis and communication efficiency. In International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 1387–1395. PMLR, 2021.

[21] Jelena Diakonikolas, Constantinos Daskalakis, and Michael Jordan. Efficient methods for
structured nonconvex-nonconcave min-max optimization. In International Conference on
Artificial Intelligence and Statistics (AISTATS), pages 2746–2754. PMLR, 2021.

[22] Zehao Dou and Yuanzhi Li. On the one-sided convergence of adam-type algorithms in
non-convex non-concave min-max optimization. arXiv preprint arXiv:2109.14213, 2021.

[23] Pavel Dvurechensky, Darina Dvinskikh, Alexander Gasnikov, César A. Uribe, and Angelia
Nedić. Decentralize and randomize: Faster algorithm for Wasserstein barycenters. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems 31, NeurIPS 2018, pages 10783–10793. Curran
Associates, Inc., 2018.

[24] Pavel Dvurechensky, Dmitry Kamzolov, Aleksandr Lukashevich, Soomin Lee, Erik Ordentlich,
César A. Uribe, and Alexander Gasnikov. Hyperfast second-order local solvers for effi-
cient statistically preconditioned distributed optimization. EURO Journal on Computational
Optimization, page 100045, 2022. (accepted), arXiv:2102.08246.

[25] Ernie Esser, Xiaoqun Zhang, and Tony F Chan. A general framework for a class of first order
primal-dual algorithms for convex optimization in imaging science. SIAM Journal on Imaging
Sciences, 3(4):1015–1046, 2010.

[26] F. Facchinei and J.S. Pang. Finite-Dimensional Variational Inequalities and Complementarity
Problems. Springer Series in Operations Research and Financial Engineering. Springer New
York, 2007.

[27] Gauthier Gidel, Hugo Berard, Pascal Vincent, and Simon Lacoste-Julien. A variational
inequality perspective on generative adversarial nets. In International Conference on Learning
Representations (ICLR), 2019.

[28] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems (NIPS), 2014.

[29] Eduard Gorbunov, Pavel Dvurechensky, and Alexander Gasnikov. An accelerated method
for derivative-free smooth stochastic convex optimization. arXiv preprint arXiv:1802.09022,
2018.

[30] Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. Local sgd: Unified theory and new
efficient methods. In International Conference on Artificial Intelligence and Statistics, pages
3556–3564. PMLR, 2021.

[31] Hadrien Hendrikx, Lin Xiao, Sebastien Bubeck, Francis Bach, and Laurent Massoulie. Statisti-
cally preconditioned accelerated gradient method for distributed optimization. In International
Conference on Machine Learning, pages 4203–4227. PMLR, 2020.

[32] Charlie Hou, Kiran K Thekumparampil, Giulia Fanti, and Sewoong Oh. Efficient algorithms
for federated saddle point optimization. arXiv preprint arXiv:2102.06333, 2021.

12



[33] Yu-Guan Hsieh, Franck Iutzeler, Jérôme Malick, and Panayotis Mertikopoulos. Explore
aggressively, update conservatively: Stochastic extragradient methods with variable stepsize
scaling. Advances in Neural Information Processing Systems, 33:16223–16234, 2020.

[34] Alfredo N Iusem, Alejandro Jofré, Roberto Imbuzeiro Oliveira, and Philip Thompson. Extra-
gradient method with variance reduction for stochastic variational inequalities. SIAM Journal
on Optimization, 27(2):686–724, 2017.

[35] A. Jadbabaie, Jie Lin, and A.S. Morse. Coordination of groups of mobile autonomous agents
using nearest neighbor rules. IEEE Transactions on Automatic Control, 48(6):988–1001, 2003.

[36] Yujia Jin and Aaron Sidford. Efficiently solving MDPs with stochastic mirror descent. In
Proceedings of the 37th International Conference on Machine Learning (ICML), volume 119,
pages 4890–4900. PMLR, 2020.

[37] Anatoli Juditsky, Arkadi Nemirovski, and Claire Tauvel. Solving variational inequalities with
stochastic mirror-prox algorithm. Stochastic Systems, 1(1):17–58, 2011.

[38] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
Rafael G. L. D’Oliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang
He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri
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