
Self-Supervised Pretraining for Large-Scale Point
Clouds Supplementary Material

Zaiwei Zhang
AWS AI

Santa Clara, CA 95054
zaiweiz@amazon.com

Min Bai
AWS AI

Santa Clara, CA 95054
baimin@amazon.com

Erran Li
AWS AI

Santa Clara, CA 95054
lilimam@amazon.com

1 Appendix

We first provide the model architecture details in Section 1.1. We then discuss the hyper-parameters
used in training and finetuning for all our downstream tasks in Section 1.2. We also provide the
implementation details on the baseline methods in Section 1.3, and we show additional results, such
as per-class detection and segmentation performance in Section 1.4. Finally, we show more feature
visualizations in Section 1.5.

1.1 Model architecture

Point-based model We use PointNet++ model for 3D object detection with dense point clouds.
For ScanNet and SUN RGB-D, we use the same model. As shown in Table ??, PointNet++ is
consisted of four set abstraction layers and two feature up-sampling layers, as designed in [6]. Each
SA layer is specified by (n, r, [c1, ..., ck]), where n represents number of output points, r represents
the ball-region radius of the reception field, ci represents the feature channel size of the i-th layer
in the MLP. Each feature up-sampling (FP) layer upsamples the point features by interpolating the
features on input points to output points. Each FP layer is specified by [c1, ..., ck] where ci is the
output of the i-th layer in the MLP.

Voxel-based model We use the popular 3D U-Net with sparse computations for efficiency im-
provements [2; 1; 8; 10]. The input point cloud is voxelized using a regular voxel grid (at a resolu-
tion of 0.1× 0.1× 0.1m for SemanticKITTI and 0.1× 0.1× 0.15m for Waymo Segmentation). To
eliminate issues with intensity calibration and scaling, we use a binary occupancy grid. The model
consists of one input convolution followed by 6 layers of U-Net blocks with the standard skip links
between the encode and decode branches as proposed by [1] and used by [8]. Each block consists
of a 3D convolution with 2x downsampling, followed by one sub-block (batch normalization, ReLU
activation, and 3D convolution layer), and subsequently two similar sub-blocks to merge the higher
layer features. The final output of the network is reprojected to yield the 64-dimensional per-point
features which are used during pretraining. In the finetuning or inference mode, we further add a
two layer per-point MLP as an output head. The details are listed in Table 2.

1.2 Finetuning details

Object detection for ScanNet and SUN RGB-D We use the same configurations in VoteNet [7]
for finetuning. We apply Adam optimizer [4] and use a base learning rate 0.001 with a 0.1× weight

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

decrease at 80, 120 and 160 epochs. The model is trained for 180 epochs in total. We use a batch size
of 8 for both ScanNet and SUN RGB-D. We use the same configuration for training from scratch
and finetuning, and we only load the pretrained PointNet++ backbone during fine-tuning.

Semantic segmentation for KITTI and Waymo We use largely the same configurations as in
JS3C [8] for their segmentation network, with small modifications in number of epochs to account
for the greatly reduced training dataset sizes in our finetuning experiments. We train the model for
800, 600, 600, and 500 epochs on the 1%, 2%, 5%, and 10% splits, respectively, with a base learning
rate 0.001 and a 0.7x weight decay at every tenth of the training process. We use a batch size of 32
for both datasets, and as before use the same configurations for training from scratch and finetuning
experiments.

1.3 Baseline methods implementations

For this paper, we want to demonstrate that representation learning in local patch/volume level is
better than representation learning in global level. Therefore, we consider the general setting for
global-level feature learning, and we are not evaluating the benefits from multi-modality (2D-3D),
multi-representation (point-voxel), and etc.

DepthContrast [9] As mentioned before, we only focus on the general setting. Thus, we choose
to only use the within-format setting from DepthContrast to clearly compare the benefits between
local and global representation learning. Our proposed approach can be adapted to across-format
learning in a similar fashion. We will address that in future work. For pretraining in both dense and
sparse point clouds, we use the following data augmentations: RandomCuboidCropping, Random-
LocalDrop, RandomRotation, RandomFlipping, RandomScaling. We use the same configurations
as in the original DepthContrast. Since there are only 1201 training instances in ScanNet, we pre-
train the PointNet++ on ScanNet for 3K epochs, with a standard SGD optimizer with momentum
0.9. We also use a cosine learning rate scheduler [5] which decreases from 0.06 to 0.00006 and
train the model with a batch size of 96. On KITTI ans Waymo, we use the same pretraining settings
except that we pretrain for 500 epochs each.

BYOL [3] For BYOL baseline, we use a voxel-based model for pretraining, and we adopt the same
data augmentation from DepthContrast. For the BYOL formulation, we changed the momentum
encoder from DepthContrast to a teacher network and we add a predictor module to the student
network, which is the encoder from DepthContrast. We use different initialization for the teacher
and student network, and the weights of the teacher network are updated with an exponential moving
average (EMA) from the student’s weights. The update rule is θt ← λθt + (1 − λ)θs with a fixed
λ = 0.999. We use the following loss formulation to pretrain the model:

L
′

c =
∑
i∈N

||zθ(F 1
i)− F 2

i ||2 (1)

N is the total number of training instances and F 1
i , F 2

i is the i-th global encoding from the student
and teacher network, respectively. zθ is a predictor for the student network. We use the same
pretraining parameters as in DepthContrast.

layer name input layer type output size layer params
sa1 point cloud (xyz) SA (2048, 3+128) (2048, 0.2, [64, 64, 128])
sa2 sa1 SA (1024, 3+256) (1024, 0.4, [128, 128, 256])
sa3 sa2 SA (512, 3+256) (512, 0.8, [128, 128, 256])
sa4 sa3 SA (256, 3+256) (256, 1.2, [128, 128, 256])
fp1 sa3,sa4 FP (256, 3+256) [256, 256]
fp2 sa2,sa3 FP (256, 3+256) [256, 256]

Table 1: PointNet++ Network Architecture used in Section 1.4

2

1.4 More detailed results

Per-category results for ScanNet We provide the detailed per-category object detection results
for 100% annotated data setting in Table 3. We see that our pretraining improves the downstream
performance on most of the categories, especially on cabinet, door, and shower curtain. With our
local reasoning approach, we are able to extract more distinct features even with the planar surfaces,
which boosts the performance of those categories. We observe similar behaviors in SUN RGB-D.

Per-category results for SUN RGB-D Similar to the ScanNet dataset, we see notable improve-
ments on the SUN RGB-D dataset of our pretraining scheme as compared with training from scratch
and the other self-supervised learning baselines. The difference is particularly notable in the bathtub,
sofa, and bookshelf classes, which is similar to the case in ScanNet.

Per-category results for SemanticKITTI We provide the detailed per-category semantic seg-
mentation results for the 1% annotated data setting in Table 5. We see that our pretraining improves
the downstream performance after finetuning on the great majority of object classes, especially on
many small or rare classes including bicyclist, person, truck, and traffic-signs, where we see up to
14% improvement over training from scratch or the baseline methods.

Per-category results for Waymo Open Dataset Semantic Segmentation As with Se-
manticKITTI, we continue to observe significant improvements across the different semantic classes
on the Waymo dataset when 1% of annotations are used. The improvements are particularly notable
in the bicyclist, pedestrian, and bicycle categories.

1.5 More feature visualizations

In this section, we examine the evolution of the learned features of our approach through the learning
process at different epochs. In Figure 1, we see that the learned features gradually spread out in
feature space while maintaining significant separation between different classes. This demonstrates
the impact of our locally contrastive scheme.

input layer name output dims
occupancy grid conv in 16
conv in block 1 32
block 1 block 2 48
block 2 block 3 64
block 3 block 4 80
block 4 block 5 96
block 5 block 6 112
block 5, block 6 upblock 5 96
block 4, upblock 5 upblock 4 80
block 3, upblock 4 upblock 3 64
block 2, upblock 3 upblock 2 48
block 1, upblock 2 upblock 1 32
conv in, upblock 1 features 64
features logits num classes

Table 2: 3D U-Net Network Architecture used in Section 1.4

3

Figure 1: t-SNE visualization of features generated by backbone network with various weight settings.

Pretraining None BYOL [3] DepthCon [9] Ours
all 58.6 59.1 60.1 63.0
cabinet 36.3 37.4 35.8 41.2
bed 87.9 88.8 87.3 89.2
chair 88.7 88.3 88.8 90.1
sofa 89.6 88.4 88.1 86.8
table 58.8 61.4 63.3 65.4
door 47.3 50.1 50.1 55.1
window 38.1 38.7 41.3 47.3
bookshelf 44.6 58.9 57.7 52.9
picture 7.8 6.3 7.7 9.6
counter 56.1 50.2 47.1 49.7
desk 71.7 62.4 64.5 64.1
curtain 47.2 48.5 49.0 59.3
refrigerator 45.3 45.2 49.1 56.0
shower curtain 57.1 56.1 61.6 75.7
toilet 94.9 95.0 96.6 95.7
sink 54.7 50.9 55.4 56.0
bathtub 92.1 92.3 88.8 92.4
garbage bin 37.2 47.2 48.5 48.1

Table 3: Detailed results on 100% ScanNet

Pretraining None BYOL [3] DepthCon [9] Ours
all 57.4 58.0 59.1 60.1
bed 83.6 84.6 84.4 85.2
table 49.9 49.2 50.5 51.9
sofa 64.4 63.8 63.7 67.1
chair 74.8 74.9 75.5 75.3
toilet 89.8 88.9 89.7 88.8
desk 24.1 26.2 25.8 26.2
dresser 28.9 29.4 32.1 31.9
night stand 59.6 62.4 63.1 62.1
bookshelf 30.7 32.1 34.4 34.5
bathhub 71.2 70.8 71.9 77.5

Table 4: Detailed results on 100% SUN RGB-D

4

Table 5: Detailed semantic segmentation results on 1% SemanticKITTI (mIoU)

Pretraining None BYOL [3] DepthCon [9] Ours

all 38.9 38.8 39.2 42.5
car 90.9 90.4 90.6 91.5
bicycle 3.2 1.8 1.6 1.1
motorcycle 5.1 4.4 4.0 3.7
truck 15.8 22.1 16.6 29.9
other-vehicle 13.1 15.4 14.3 23.2
person 27.7 24.2 24.2 34.9
bicyclist 10.7 9.6 12.6 17.5
motorcyclist 0.0 0.0 0.0 0.0
road 87.5 85.3 86.8 88.8
parking 22.0 18.3 22.3 23.2
sidewalk 66.3 65.0 65.6 69.5
other-ground 1.1 0.1 0.3 0.2
building 84.1 85.2 86.1 86.2
fence 33.8 37.5 39.9 40.5
vegetation 82.8 82.0 83.5 84.4
trunk 46.6 50.7 48.1 51.9
terrain 66.3 67.4 67.5 69.5
pole 43.4 45.2 49.9 51.5
traffic-sign 38.3 33.4 31.5 40.8

Table 6: Detailed semantic segmentation results on 1% Waymo Open Dataset (mIoU)

Pretraining None BYOL [3] DepthCon [9] Ours

all 42.5 42.3 42.7 44.8
car 88.1 88.8 89.1 89.8
truck 40.9 45.2 44.5 44.3
bus 34.2 37.4 41.1 37.8
other vehicle 4.5 5.3 3.5 6.3
motorcyclist 0.1 0.3 0.0 0.0
bicyclist 17.5 16.7 15.3 21.3
pedestrian 68.3 70.0 70.5 71.8
sign 49.0 48.7 49.6 50.0
traffic light 23.4 23.8 20.3 23.2
pole 54.5 53.6 53.9 55.1
construction cone 28.4 27.8 24.2 29.4
bicycle 9.9 7.7 9.4 18.5
motorcycle 21.2 19.0 23.5 24.2
building 88.9 88.6 89.1 89.7
vegetation 81.2 81.3 81.8 82.5
tree trunk 53.8 53.8 53.3 55.3
curb 48.4 47.2 47.9 50.7
road 82.2 83.2 83.1 85.2
lane marker 19.3 18.9 19.7 23.1
other ground 10.6 8.0 10.8 11.1
walkable 58.4 56.7 58.3 61.1
sidewalk 51.4 49.6 51.1 54.3

5

References
[1] Cicek, O., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3d u-net: Learning

dense volumetric segmentation from sparse annotation. MICCAI (2016)

[2] Graham, B., Engelcke, M., van der Maaten, L.: 3d semantic segmentation with submanifold
sparse convolutional networks. CVPR (2018)

[3] Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch, C.,
Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al.: Bootstrap your own latent-a new approach
to self-supervised learning. Advances in Neural Information Processing Systems 33, 21271–
21284 (2020)

[4] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings (2015), http://arxiv.org/abs/1412.6980

[5] Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983 (2016)

[6] Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3d object detection in point
clouds. arXiv preprint arXiv:1904.09664 (2019)

[7] Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3d object detection in point
clouds. arXiv preprint arXiv:1904.09664 (2019)

[8] Yan, X., Gao, J., Li, J., Zhang, R., Li, Z., Huang, R., Cui, S.: Sparse single sweep lidar point
cloud segmentation via learning contextual shape priors from scene completion. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 3101–3109 (2021)

[9] Zhang, Z., Girdhar, R., Joulin, A., Misra, I.: Self-supervised pretraining of 3d features on any
point-cloud. In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 10252–10263 (2021)

[10] Zhu, X., Zhou, H., Wang, T., Hong, F., Ma, Y., Li, W., Li, H., Lin, D.: Cylindrical and asym-
metrical 3d convolution networks for lidar segmentation. arXiv preprint arXiv:2011.10033
(2020)

6

