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Abstract

Pretraining on large unlabeled datasets has been proven to improve the down-
stream task performance on many computer vision tasks, such as 2D object detec-
tion and video classification. However, for large-scale 3D scenes, such as outdoor
LiDAR point clouds, pretraining is not widely used. Due to the special data char-
acteristics of large 3D point clouds, approaches for 2D pretraining frameworks
tend to not generalize well to this domain. In this paper, we propose a new self-
supervised pretraining method that targets large-scale 3D scenes. We pretrain
commonly used point-based and voxel-based model architectures and show the
transfer learning performance on 3D object detection and semantic segmentation.
We demonstrate the effectiveness of our approach on both dense 3D indoor point
clouds and sparse outdoor LiDAR point clouds.

1 Introduction

Accurate and reliable perception is core to the capabilities and safety of autonomous and robotic
systems such as self-driving vehicles and indoor robotics. To accurately measure the structure of
their surroundings, such platforms usually rely on LiDARs and depth cameras for outdoor and indoor
scenes, respectively. Given the 3D point clouds, models are built for a variety of perception tasks,
such as object detection, scene segmentation, localization, and mapping.

Modern deep learning models have shown great capabilities when large quantities of annotated data
are given. However, generating the required amount of annotations is a laborious and expensive
manual process [14; 57; 18]. This is especially true for labeled datasets targeting object detection
and semantic segmentation of large real-world scenes, which can contain dozens of independently
moving objects and irregularly shaped background material. Moreover, the 3D data is difficult to
clearly visualize, manipulate, and annotate on a 2D screen. In the case of outdoor LiDAR scans, the
annotation tasks are further complicated by the sparsity of the typical point cloud. However, the cost
of acquiring a large quantity of unlabeled sensor data is usually much lower compared to manual
annotation. Hence, developing algorithms to automatically discover useful patterns and strengthen
the performance of models with few annotated examples is of great value.

Recently, researchers have explored self-supervised learning (SSL) to bootstrap model training in
various domains. In computer vision, [26; 8; 22; 25] make use of datasets such as ImageNet [50]
with carefully designed pretext tasks to learn useful features for downstream tasks such as object
detection and segmentation. These techniques rely on the enormous ImageNet dataset, which depicts
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Figure 1: Complexities of datasets. Other techniques pretrain on simpler scenes like ImageNet [50] (upper
left) where each image prominently features one foreground object or single ScanNet [14] frames (lower left).
On the other hand, we target highly complex indoor scenes like aggregated complete ScanNet scenes (middle)
and LiDAR scans of road scenes like SemanticKITTI [5] (right) with dozens of different objects (colored).

tens of thousands of object types. Most images prominently feature a single foreground object,
which can be well-described by a global feature vector for each sample. In the 3D point cloud
domain, several works [72; 65] have proposed pretraining techniques to learn useful features for
downstream tasks. However, these methods likewise primarily focus on much simpler scenes, such
as single objects or a limited indoor scene captured by a depth camera from a single viewpoint.

On the other hand, we target complex 3D scenes with a multitude of objects and background ma-
terial. We visualize the differences between the subject datasets of existing approaches and our
method in Figure 1. We first consider large-scale, complete 3D indoor scene models generated from
combined depth images. Next, we explore outdoor environments with LiDAR points up to 100m
away on dozens of objects and complex background regions. We refer to our method as SSPL (self
supervised pretraining for large-scale point clouds). Unlike most of the prior work, we propose a
technique which performs contrastive learning on local features extracted from sub-regions (vol-
umes) within large-scale point clouds. Our algorithm makes use of a local contrastive loss within a
scene and as well as a global contrastive loss across different scenes. As we will demonstrate, our
method involving local feature reasoning greatly outperforms the existing methods in our settings.

In practice, [71] has noted that there are significant domain gaps attributable to the LiDAR sensor due
to its sparsity, even when the observed scenes and downstream tasks are highly similar. Motivated
by this, we explore the setting of in-domain self-supervised pre-training for LiDAR point clouds. As
we will demonstrate, existing 3D SSL methods [72; 65] are unsuitable for highly complex outdoor
scenes, motivating the need for new algorithms.

In this paper, we make the following contributions:

• We propose a self-supervised pretraining method which leverages reasoning over local vol-
ume level features for 3D point clouds.

• We introduce a novel ClusterInfoNCE loss to efficiently perform contrastive learning glob-
ally for a large set of local volume features.

• We show that our pretraining approach outperforms baselines on multiple downstream tasks
on both single-view outdoor LiDAR and large-scale indoor point clouds, with up to +6.2%
higher AP25 in object detection and +3.6% mIoU in semantic segmentation.

2 Related work

Our method builds on and extends the work from the self-supervised learning literature, with a
focus on large-scale 3D point clouds. In this section, we give an overview of the recent advances in
self-supervised learning, as well as perception and representation learning in 3D.

Self-supervised learning for images Self-supervised learning has been studied extensively in ma-
chine learning and computer vision [61; 44; 49; 51; 39]. There are many approaches for 2D repre-
sentation learning, such as clustering [6; 7; 32], GANs [16; 40], various pretext tasks [15; 42; 62]
etc. Recent advances [41; 26; 28; 8; 10; 59; 35; 20; 22; 25] have shown that self-supervised pre-
training exhibits great advantages in transfer learning, especially for benchmark with limited labels.
[9; 4] both use similar local and global contrastive learning approaches but [9] uses domain specific
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Figure 2: Overview of SSPL- a 3D representation learning method for large-scale point clouds pretraining. We
split a 3D scene point cloud into M occupied volumes and apply two different data augmentations for point
clouds in each volume. In this figure, we show data augmentation examples of a single volume. We use a neural
network encoder and a momentum encoder to extract spatial features which are pooled and projected to obtain
local volume-level features. With paired volume features, SSPL optimizes the local contrastive loss between
paired features and optimizes a global contrastive loss between the local features and the features in the global
feature queue.

clustering for their global feature learning and [4] mainly studies the local feature affinities while we
explicitly conduct similarity measures across different instances. [27] conducts data augmentation
on local features but not global reasoning across different images. Our work adopts the momentum
encoder from MoCo [26] to extract features for instance discrimination, instead of a memory bank.

Self-supervised learning for 3D data Studies on unsupervised feature learning for 3D data have
mainly been focused on single 3D object representation with applications on reconstruction, classi-
fication or part segmentation [2; 17; 23; 24; 37; 52; 63; 69; 34; 1]. However, due to the domain gap
issues, features learned from single 3D object representations does not transfer well to scene level
understanding tasks [65]. Recently, there has been a growing interest in designing self-supervised
methods to build representations of scene level point clouds [65; 31; 72]. Xie et al. [65] proposed a
self-supervised method based on enforcing contrastive learning on point correspondences between
different views of 3D scenes. These point-wise correspondences can be acquired after aligning
different depth maps into a unified 3D scene, which requires time-consuming 3D registration algo-
rithms or specific human labeling efforts on identifying static correspondences. In the case of sparse
outdoor LiDAR point clouds, temporal correspondences are often not well defined. Similarly, an-
other line of work [31; 19] rely on multiple scene scans’ alignments. On the other hand, our method
only requires single frame 3D scans, making it more generally applicable. Zhang et al. [72] con-
ducted an instance discrimination task on global scene-level features while our method focuses on
reasoning across local patches.

Supervised 3D perception With the significant applications of robotics and self-driving vehicles,
3D perception has been a widely studied topic. Among the many perception tasks, supervised object
detection [46; 54; 67; 53; 55; 36; 70; 11; 68; 73] and semantic segmentation [74; 60; 66; 29; 30; 33]
have been explored by a large number of prior works. Because of the popularity and usefulness of
these tasks, we select them as the downstream tasks to analyze the effectiveness of our approach.
However, we note that as our self-supervision is task agnostic, it can be applied to other downstream
tasks. To achieve these tasks, a number of neural network backbones have been proposed to process
3D point cloud data, which is usually given as an unordered and irregular set of points [47; 21; 58].
In our work, we use both the popular PointNet++ [48] based on pointwise reasoning and 3D U-Net
[66] based on sparse voxel convolutions to demonstrate the general effectiveness of our approach.
Recently, [43] has proposed a similar local contrastive learning approach on clustered point clouds
but they did not conduct global reasoning for those local point clusters.

3 Method

We introduce our self-supervised pretraining framework: SSPL as outlined in Algorithm 1, and vi-
sualized in Figure 2. As shown in Figure 1, we focus on large-scale point clouds, which contain
numerous objects and distinct structures within each scene. In these cases, a global vector encod-
ing requires a combinatorial and intractable level of expressiveness to describe the attributes and
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Algorithm 1 Training Framework for SSPL

Input Backbone architecture NN; Dataset D = {X}Ni=1; Global feature queues Fg ∈ RC×D;
Output Pre-trained weight for the NN

for xi in X do
- Split xi into M occupied volumes: xi = {V }Mi=1
- From xi, generate two augmented versions x1

i and x2
i

- Generate local crops v1i in x1
i and global crops v2i in x2

i

- Compute volume features f1, f2 ∈ RM×D

- Compute local contrastive loss Lc(f
1, f2) and global contrastive loss Lg(f

1, f2, Fg)
- Update Fg with f2 and update NN

end for

locations of the various objects. Therefore, we propose to perform representation learning on lo-
cal features. We first describe local volume features extraction in Section 3.1, and introduce the
local contrastive loss in Section 3.2. Finally, we discuss the formulation of the global contrastive
reasoning in Section 3.3.

3.1 Local feature extraction

Given a large scale 3D point cloud instance xi, we split it into M occupied volumes. Similar to
patches in 2D images, we can predefine a volume size and sample up to M occupied volumes based
on typical scale of input scenes. xi is then transformed into two augmented views x1

i and x2
i by

applying random rotation and scaling. We then sample points in each occupied volume and generate
two crops with different sizes for two augmented views. The smaller crops v1i , generated from x1

i ,
are defined as local crops while larger ones v2i , generated from x2

i , are global crops. This scheme
creates natural local-global correspondences, which enables the network to predict global features
from local information in feature learning. x1

i and x2
i are mapped to feature vectors by applying

a neural network. After acquiring the per-point/per-voxel features, we group the features by their
corresponding volumes and apply max-pooling to the last layer’s features. We then apply a two layer
MLP as in [10] and L2 normalization to compute the volume features f1 and f2.

Momentum encoder Adapting the method of He et al. [26], we use an encoder θs to extract features
for x1

i and a momentum encoder θt to extract features for the augmented view x2
i . The weights of

the momentum encoder are updated with an exponential moving average (EMA) from the encoder’s
weights. The update rule is θt ← λθt + (1− λ)θs with a fixed λ = 0.999.

3.2 Local volume reasoning

Traditionally, given a pair of volume features f1, f2 ∈ RM×D from two augmented versions of
xi instance, feature consistency is usually applied as a pre-text task. For contrastive learning ap-
proaches, InfoNCE [26] is usually enforced, where volume features f1 and f2 are pushed to be simi-
lar and volume features f1 are dissimilar to all other volume features from other instances. However,
computation costs increase linearly as the number of feature embedding increases for each batch.
Traditionally, InfoNCE assumes that there is one feature embedding for each data instance. Since
in average there are about 300 occupied volumes for each scene in our experiments, it is computa-
tionally infeasible to perform InfoNCE on each volume feature with a large set of global features as
negative examples.

Therefore, we adapt the PointInfoNCE [65] loss to conduct contrastive learning between different
volumes of the same point cloud. Compared to PointInfoNCE, we reason about volume-level infor-
mation, where the loss is defined as:

Lc = −
∑
j∈M

log
exp(f1

j · f2
j /τ)∑

k∈M exp(f1
j · f2

k/τ)
(1)

Here, M is the set of all occupied volumes for the xi instance, and τ is a temperature parameter [64].
The positive examples are the two augmented crops from the same volume, while negative examples
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are from other volumes under the same instance. In practice, we find that performing this local
volume reasoning alone as a pre-text task gives comparable or better pretrained models compared to
baseline methods. Please refer to Section 5.4 for experimental evidences.

Although applying BYOL [22] as a pretext task does not yield computational issues, we find that it
results in minimal performance gains in our settings. Please see Section 5.3 for more details.

3.3 Global volume reasoning

One natural objective for global contrastive reasoning is to use instance discrimination on volume
features. As mentioned before, this objective does not scale well with large numbers of occupied
volumes. Across different large scale scene datasets, we observe that there are common objects
appearing in almost every scene, e.g. road and car in outdoor scenes or chair and sofa in indoor
scenes. Inspired by this, we propose to conduct global volume reasoning through a fixed number of
global clusters. This reduces the computational burden and adds regularization during pretraining.

Preliminary on unsupervised feature clustering Traditional methods on feature clustering, such
as k-means and DBSCAN have proven to be effective but time-consuming to apply on large dataset.
Recently, a line of methods [3; 8] show that pseudo-label assignment can be formulated as an optimal
transport problem, where clustering can be done efficiently by the Sinkhorn-Knopp algorithm [13].
We follow a similar approach for our feature clustering steps.

Global feature queue We first build a global feature queue Fg to store features of occupied volumes
over multiple data instances. Adapting from He et al. [26], the global feature queue is created with
volume features f2 from the momentum encoder. The following steps are then used during training.

Global feature clustering For building global clusters, we follow the same method proposed by
Asano et al. [3]. Given global feature queue Fg ∈ RC×D, where C is the queue size and D is
the feature dimension, we apply a classification head hg : RD → RK to convert the global feature
vectors to class (cluster ID) scores. We then map them to class probabilities via a softmax operator:
P = softmax(Fg · hg). We find the class label assignments Q by performing iterative Sinkhorn-
Knopp updates [13].

Global contrastive loss Given a pair of volume features f1, f2, we query the global feature queue
with local features f2 to extract the corresponding cluster labels for each volume. We use kNN on
l2 feature distances when querying, and we set k = 1 for clustering.

With volume level class labels, it is natural to use a classification pretext task for pretraining. How-
ever, compared with pretraining on object-level features (e.g. ImageNet), our volume-level features
usually lack class diversity and feature diversity. For indoor scenes, there are repeating wall and
floor volumes, while a majority of volumes are roads and buildings in outdoors scenes. We observe
that such pretraining strategy provides minimal improvements. (Please see section 5.4 for details.)
To directly apply feature representation learning across scenes, we propose a ClusterInfoNCE loss:

Lg = − 1

K

K∑
i=1

log
exp(f1

i · knn(f2
i , Fg)/τ)∑

j!=i exp(f
1
i · F

j
g /τ)

(2)

where K is the number of clusters and f1
i and f2

i are drawn from f1 and f2 if their corresponding
class labels are i. knn(f2

i , Fg) extracts the most similar features of f2
i from Fg , which serve as

positive examples. For negative examples, F j
g are sampled from Fg if their corresponding class

labels are j. In our experiments, we find that using 20k negative examples works well. Since the
runtime of ClusterInfoNCE loss depends only on number of clusters used, it scales well with more
occupied volumes. By optimizing this loss, we are explicitly enforcing feature consistency across
scenes and encouraging the volume features to form clusters globally. As shown in Section 4, we
observe that adding the ClusterInfoNCE loss results in improvements on various downstream tasks.
As well, we compare it with different negative sampling strategies in Section 5.4.

3.4 Implementation details

In our experiments, we set the size of global feature queue to be 300K. We use a temperature value
of 0.1 while computing the non-parametric softmax in Eq 1 and 3. The local and global contrastive
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Table 1: Fine-tuning performance on ScanNet Dataset and SUN RGB-D Dataset (AP25)

% of Scan Used for Fine-Tuning % of SUN Used for Fine-Tuning

Self-Supervision Method 20% 50% 70% 100% 20% 50% 70% 100%

None 46.1 52.3 54.0 58.6 45.2 55.2 55.6 57.4
BYOL [22] 48.2 54.0 55.5 59.1 47.7 55.6 56.4 58.0
PointContrast [65] - - - 59.2 - - - 57.5
DepthContrast [72] 50.1 56.0 57.0 60.1 45.5 56.5 57.5 59.1

Ours 53.0 58.5 60.6 63.0 47.5 57.8 58.5 60.1

loss are equally weighted. For training, we use a standard SGD optimizer with momentum 0.9, and
we use a cosine learning rate scheduler [38] which decreases from 0.06 to 0.00006 and train the
model for 500 epochs with a batch size of 96.

4 Experimental results

In this section, we thoroughly analyze the efficiency of our proposed method. First, we describe the
tasks and datasets involved in our experiments. Then, we present quantitative results, demonstrating
the increase in performance relative to our comparison baselines. Finally, we take a closer look at
the contributions of each of our proposed components.

The key goal of self-supervised learning is to automatically learn feature extractors that are useful
for actual downstream tasks. Moreover, it is beneficial if the learned features are useful for different
tasks, as this improves the usability of the technique and reduces the need for task-specific redesign.
Our approach is chiefly designed for large scale scenes that are not dominated by a single, well de-
fined foreground object. We demonstrate the effectiveness of our self-supervised learning approach
by showing that downstream models can achieve significantly higher performance using a small
fraction of available annotations. Next, we dive into the features learned by our model to gain addi-
tional insights, followed by various ablation studies to justify the design choices in our approach. As
mentioned in Section 1, for LiDAR point clouds, the sensor configuration has a tremendous impact
on the structure of perceived 3D points. Therefore, we opt to pretrain and finetune our models in
each domain individually for outdoor datasets.

4.1 Baseline methods

We limit our input data to measurements taken at single instants in time (instead of temporal se-
quences) for generalization. As such, we use the recent BYOL [22] and DepthContrast [72] (based
on MoCo [26]) as baselines. In both cases, we use the same full scene augmentation scheme as pro-
posed in DepthContrast. For indoor scene pretraining, to introduce more scene complexity, we use
the point clouds of fully reconstructed scenes built by aggregating multiple sequential measurements
of the scene. Therefore, we also use PointContrast [65] as a comparison for the indoor setting.

4.2 Large scale dense point clouds

First, we evaluate our feature learning framework on point clouds produced with common depth
cameras. In our work, we choose the ScanNet [14] dataset for pretraining. ScanNet contains 1500
large scale indoor scenes, with each scene consisting of a variety of objects. Additionally, it contains
more than 10 different room types with diverse room scales. We believe that ScanNet covers a
diverse set of indoor object distributions.

Compared to DepthContrast [72] and PointContrast [65], we only utilize the full scans from ScanNet
training dataset for pretraining. We aim to learn sharp local features from large scale scenes, and thus
we are only interested in feature learning with full views instead of partial views. The pretraining
dataset contains 1201 full view scans with 50k points per scan. We use a PointNet++ [48] backbone
network for pretraining, as it is widely used for different 3D perception benchmarks.

To evaluate the transfer learning performance of our pretrained models, we use two commonly used
indoor 3D object detection benchmarks: ScanNet (SCAN) [14] and SUN RGB-D (SUN) [56]. We
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finetune our pretrained model by using it as the backbone initialization of VoteNet [45] (a well
known 3D object detector), and report the detection performance using the mean Average Precision
at IoU=0.25 (AP25) metric. To study the label efficiency of our pretrained models, we also subsam-
ple different sets of the training data used for finetuning. We follow the setup in VoteNet [45] for
finetuning.

Based on the results in Table 1, our approach significantly improves downstream object detection
performance across all settings, with up to 4.4% improvement on ScanNet and 2.7% on SUN RGB-
D. Moreover, on ScanNet, our pretraining approach together with 20% of labeled data allows the
downstream detection task to achieve the equivalent performance of using 50% of labeled data and
training from scratch. Practically, this can lead to significant savings in labeling cost. Our ap-
proach also outperforms the top-performing baseline method DepthContrast. (Note that we repro-
duce DepthContrast with the original Votenet model and pretrain only on the 1200 instances for fair
comparison.) We see a more prominent performance gain on ScanNet compared to on SUN RGB-D,
as the former contains only 1201 training scenes while the latter contains more than 5k.

4.3 Large scale sparse point clouds

Next, we further increase the size and complexity of the 3D scene by using outdoor scenes collected
for autonomous vehicles using LiDAR units. These scenes consist of a large number of different
objects and regions, spanning dozens of semantic classes. As we will show, it is critical to consider
local regions separately in the self-supervised learning framework.

Our algorithm aims to learn useful features for all regions in a point cloud. While detectable in-
dividual objects cover a large fraction of the 3D structures present in the previous indoor datasets,
compact and countable foreground objects suitable for detection such as cars and pedestrians con-
sist of only 10% of a typical outdoor scene. As such, we select the semantic segmentation task to
validate our method, as it aims to give a meaningful label to every 3D point captured by the sensor.

We use two large scale, well-established public datasets for this task, which contain a large variety
of scenes. SemanticKITTI (SK) [5] is based on the original KITTI [18] dataset, which is one of
the original autonomous driving datasets that propelled a tremendous amount of progress in the
perception field. This dataset contains 19k training frames over 10 sequences with approximately
122k points per scene. The more recent Waymo Open Dataset (WOD) [57] provides a further leap
in the scale and variability of data by providing 24k training frames sampled from 850 driving
sequences, with a higher point density of 161k points per scene. Both datasets define approximately
20 semantic classes. For these experiments, we use the sparse 3D convolution backbone based on
U-Net [12] as it is used in current state of the art semantic segmentation models [66; 74]. As well,
we largely follow the training settings of [66].

To show that our approach extracts meaningful representations, we present semantic segmentation
results on subsampled sets of the training data provided by SemanticKITTI and WOD. The samples
are uniformly and randomly selected from the overall training datasets. To simulate the scenario
where different levels of human annotation effort is available, the samples are drawn such that any
smaller fractional subset is contained within any larger subset. The results are shown in Table 2.
We add a light-weight decoder with two convolutional layers to the pretrained point-wise feature
encoding backbone network, and finetune until convergence. In each case, we report the average
performance over the checkpoints of the last 15% of the training process to reduce noise.

Our approach significantly improves downstream semantic segmentation when the annotation is
limited. For example, we observe 3.6% and 2.3% improvements in mIoU on SemanticKITTI and
WOD, respectively, when annotations for 1% subsets of the full datasets are provided. Moreover,
these improvements are much more significant than those gained from pre-training with BYOL and
DepthContrast, suggesting that beneficial pre-training on large scale point clouds require designs
with specific considerations. On the other hand, we observe that the gains are reduced when addi-
tional annotated data is provided, as seen in the case with 5% and 10% annotations, as expected.

4.4 Feature analysis

Here, we examine the features learned by our self-supervision scheme. As with the other analysis
in our work, we compare with the BYOL and DepthContrast baselines, and use the SemanticKITTI
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Table 2: Fine-tuning performance on SemanticKITTI Dataset and Waymo Open Dataset (mIoU)

% of SK Used for Fine-Tuning % of WOD Used for Fine-Tuning

Self-Supervision Method 1% 2% 5% 10% 1% 2% 5% 10%

None 38.9 44.0 51.7 53.4 42.5 45.8 50.4 52.8
BYOL [22] 38.8 43.4 51.0 52.3 42.3 46.5 49.9 53.2
DepthContrast [72] 39.2 44.7 49.9 52.3 42.7 45.8 50.7 53.0

Ours 42.5 46.4 51.0 53.6 44.8 47.3 51.3 53.5

Figure 3: t-SNE visualization of features generated by backbone network with various weight settings.

dataset for the study. We visualize the final per-point features from the 3D UNet model using the
t-SNE dimensionality reduction and color the points according to their semantic class. For clearer
interpretability, we limit the semantic classes to the commonly seen and important classes of road,
person, and car. The points are subsampled from the validation set.

We see that the embeddings produced using DepthContrast and our approach are both able to sepa-
rate the three classes in feature space to a much stronger degree than the BYOL baseline, as well as
the random initialization which serves as a sanity check. In comparison with DepthContrast, our em-
beddings have larger variance within the feature space while still being able to separate the semantic
classes, suggesting that they can possibly preserve more distinctive geometric information while ex-
tracting meaning. This hypothesis is supported by the added performance gain of pretraining using
our method compared with DepthContrast as seen in Table 2.

5 Ablation study

In this section, we demonstrate the importance of each component in our training framework. We
conduct our ablation studies with models pretrained on the widely accepted SemanticKITTI dataset
with complex and large-scale scenes in autonomous driving.

5.1 Volume cropping ratios

In the left side of Figure 4, we report the impact of applying different cropping ratios for the local
crop. For the global crop, we randomly crop approximately 50% of the original volume so that most
of the geometry feature is still preserved in the momentum encoder. We observe that smaller local
crops produce marginal improvements in finetuning, and that a 10% crop ratio is optimal.

Figure 4: Segmentation ablation study on SemanticKITTI using 1% data for fine-tuning. Left: mIoU vs
number of occupied volumes, middle: mIoU vs volume crop ratios, right: mIoU vs number of global clusters.
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Table 3: BYOL vs contrastive methods

Scratch BYOL Contrastive

1% SK 38.9 39.8 41.7

Table 4: Different global volume reasoning strategies

Local Cls Hard Rand Our

1% SK 41.7 40.8 41.0 40.5 42.9

5.2 Number of occupied volumes

For local volume reasoning, the number of occupied volumes plays an important role as it directly
affects the number of negatives used for local contrastive loss. Intuitively, by increasing the num-
ber of occupied volumes, the local contrastive loss forces the network to learn more distinct local
features. However, with a fixed model size, the expressiveness of local features saturates after it
forms a certain number of clusters, which directly correlates with number of occupied volumes in
our training approach. As shown in the middle of Figure 4, we see strong performance with 400
occupied volumes with little gain for further increases.

5.3 BYOL vs contrastive method

Instead of contrastive methods, Grill et al. [22] proposed a new approach for self-supervised learn-
ing BYOL, which directly enforces feature consistency between a student network and a teacher
network. To better understand our framework, we reproduce the BYOL loss formulation to our best
effort to replace the PointInfoNCE in the local volume reasoning. Formally, we use the following
mean square error between the normalized predictions and target projections:

L
′

c =
∑
j∈M

||zθ(f1
j )− f2

j ||2 (3)

Similar to Equation 2, M is the set of all occupied volumes, and zθ is a predictor for the student
network. Based on the results from Table 3, the features learned with BYOL performs significantly
worse than the contrastive approach in 1% SemanticKITTI finetuning. We hypothesize that within
the same instance, some volumes share very similar feature patterns.

Without explicitly encouraging dispersion within the feature space (e.g. negative examples), BYOL
learns less distinguishing features in our setting.

5.4 Different strategies for global volume reasoning

As mentioned in Section 3, a natural pretext task for global volume reasoning is classfication. Given
a pair of volume features f1, f2 and their corresponding cluster labels Qv , we apply a linear repro-
jection hl to map the volume features to class scores, and optimize the classification loss below:

Lcls = −
∑
j∈M

Qv
j logP

1
j −

∑
j∈M

Qv
j logP

2
j (4)

where P 1
j = softmax(f1 ·hl) and P 2

j = softmax(f2 ·hl). As shown in Table 4 where Cls repre-
sents the model pretrained on the classification loss, we see that it does not improve the finetuning
performance, compared to using local contrastive loss alone (Local). We also compare different
negative sampling strategies for the ClusterInfoNCE loss. In our approach, after we find the positive
feature example for cluster i, we sample negative feature examples from other clusters. In Table 4,
we compare with only sampling negative examples from cluster i (Hard) (which can be seen as hard
negative sampling) as well as random sampling from all clusters (Rand). Based on the results, our
approach (Our) provides the largest performance boost.

5.5 Number of global clusters

We explore the impact of the number of global clusters used in our global feature queue to compute
the contrastive loss (right plot of Figure 4). This hyperparameter is shown to be impactful, where
64 is the best setting for the SemanticKITTI LiDAR scans. We believe that the optimal number is
influenced by the complexities of the 3D scenes in question.
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6 Limitations, future work, and broader impact

Lastly, we discuss the limitations of our model. As the characteristics of 3D sensors vary widely
(dense depth scans vs sparse LiDAR point clouds), our approach relies on in-domain unlabeled
data as opposed to producing a general purpose foundation model like those used in 2D images and
language. Moreover, we do not make use of any temporal information, which can provide significant
cues for feature consistency. We believe that these are possible areas for future research. We believe
that increasing 3D perception capabilities of autonomous agents will allow them to operate more
safely and enrich our lives. As self-supervised learning is able to extract useful representation from
unlabeled datasets, it can be less impacted by biases that may influence annotation processes, and
possibly improve the reliability and fairness of perception models.
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