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Figure 1: Reconstructed simulation (left) and real (right) spectral images with 28 wavelengths by our DAUHST.

All source codes and pre-trained models will be made publicly available for further research.1

In this supplementary material, we share more details that are not in our main paper, including:2

(a) Mathematical model of CASSI in Sec. 13

(b) Computational complexity comparisons with other Multi-head Self-Attention (MSA) in Sec. 24

(c) More qualitative comparisons with state-of-the-art (SOTA) methods in Sec. 35

(d) More ablation studies of stage number and mask modulation flexibility in Sec. 46

(e) Limitation of our work in Sec. 57

(f) Broader impact in Sec. 68

(g) Code submission and reproducibility in Sec. 79

1 Mathematical Model of CASSI10

We denote the 3D HSI cube (Fig. 2 left) as X ∈ RH×W×Nλ , where H , W , and Nλ represent the11

HSI’s height, width, and total number of wavelengths. Then the mask modulation is conducted as12

X′(:, :, nλ) = X(:, :, nλ)�M∗, (1)

where X′ ∈ RH×W×Nλ denotes the modulated signal, M∗ ∈ RH×W denotes a pre-defined coded13

aperture (physical mask), nλ ∈ [1, . . . , Nλ] indexes the spectral channels, and � is the inner product.14

After passing through a disperser, the 3D cube X′ becomes tilted and could be considered as sheared15

along the y-axis. Define X′′ ∈ RH×(W+d(Nλ−1))×Nλ as the tilted cube, and λc as the reference16

wavelength, i.e., X′[:, :, nλc ] is not sheared along the y-axis. Then the dispersion is formulated as17

X′′(u, v, nλ) = X′(x, y + d(λn − λc), nλ), (2)
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Figure 2: Illustration of a Single Disperser Coded Aperture Snapshot Spectral Imaging (SD-CASSI) system.

where (u, v) indicates the coordinate system on the detector plane, λn denotes the wavelength of the18

nλ-th spectral channel, d represents the shifting step, and d(λn − λc) signifies the spatial shifting19

for the nλ-th channel on X′. Since the sensor integrates all the light within the wavelength range20

[λmin, λmax], the compressed measurement at the detector y(u, v) can be modelled as21

y(u, v) =

∫ λmax

λmin

x′′(u, v, nλ)dλ, (3)

where x′′ denotes the continuous representation of X′′. Then we discretize Eq. (3) as22

Y =
∑Nλ

nλ=1
X′′(:, :, nλ) + N, (4)

where Y ∈ RH×(W+d(Nλ−1)) denotes the 2D compressed measurement that captures the information23

and N ∈ RH×(W+d(Nλ−1)) represents the imaging noise generated by the detector.24

To simplify the notations, we define M ∈ RH×(W+d(Nλ−1))×Nλ and X̃ ∈ RH×(W+d(Nλ−1))×Nλ as25

the shifted version of the mask M∗ and original HSI signal X corresponding to different wavelengths:26

M(u, v, nλ) = M∗(x, y + d(λn − λc)),
X̃(u, v, nλ) = X(x, y + d(λn − λc), nλ).

(5)

Subsequently, Y in Eq. (4) can be reformulated as27

Y =
∑Nλ

nλ=1
X̃(:, :, nλ)�M(:, :, nλ) + N. (6)

Vectorization. We define y = vec(Y) and n = vec(N) ∈ Rn as the vectorization of matrices28

Y and N, where vec(·) concatenates all the columns of a matrix as one single vector and n =29

H(W + d(Nλ − 1)). Similarly, we have x̃(nλ) = vec(X̃(:, :, nλ)), resulting in the vector x =30

vec([x̃(1), . . . , x̃(Nλ)]) ∈ RnNλ . We denote the sensing matrix as31

Φ = [D1, . . . ,DNλ ] ∈ Rn×nNλ , (7)

where Dnλ = diag(vec(M(:, :, nλ))) is a diagonal matrix with vec(M(:, :, nλ)) as the diagonal32

elements. As such, Eq. (6) can be reformulated in a vectorized version as33

y = Φx + n. (8)

Eq. (8) is similar to the compressive sensing [1, 2] as Φ is a fat matrix, i.e., more colums than rows.34

However, since Φ has the very special structure as in Eq. (7), most existing compressive sensing35

theories can not fit in our applications. Note that Φ is highly sparse with at most nNλ nonzero36

elements. Yet, it has been proved that the signal can still be reconstructed even when Nλ > 1 [3, 4].37

Given the compressed measurement y captured by the camera and sensing matrix Φ calibrated based38

on pre-design, one practical task of CASSI is to solve x, which is also the topic of our work.39
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2 Computational Complexity Comparisons of Different MSA Modules40

In this section, we compare the computational complexity of global MSA (G-MSA) [5], window-41

based MSA (W-MSA) [6] and our HS-MSA. Since the computational complexity of position embed-42

ding is negligible, we omit it for brevity and focus on comparing the self-attention calculation scheme.43

We denote the input tokens as Xin ∈ RH×Ŵ×C , where Ŵ =W + d(Nλ − 1). Subsequently, Xin44

is linearly projected into query Q ∈ RH×Ŵ×C , key K ∈ RH×Ŵ×C , and value V ∈ RH×Ŵ×C as45

Q = XinWQ, K = XinWK, V = XinWV, (9)

where WQ,WK,WV ∈ RC×C are learnable parameters and biases are omitted for simplification.46

2.1 Global Multi-head Self-Attention47

For G-MSA, Q,K,V are split along the channel dimension into N heads: Q = [Q1, . . . ,QN ],K =48

[K1, . . . ,KN ], V = [V1, . . . ,VN ]. The dimension of each head is dh = C
N . Then G-MSA samples49

all the tokens as key and query to calculate the self-attention Ai
g inside each head as50

Ai
g = softmax(

QiKiT

√
dh

)Vi, i = 1, . . . , N. (10)

Subsequently, the outputs ofN heads are concatenated along the spectral dimension and then undergo51

a linear projection to generate the output feature map Xout ∈ RH×Ŵ×C as52

Xout =
∑N

i=1
Ai
gW

i
g, (11)

where Wi
g ∈ Rdh×C are learnable parameters. The computational complexity of G-MSA is53

O(G-MSA) = 4HŴC2 + 2(HŴ )2C, (12)

where the first term comes from the linear projection in Eq. (9) and head merging in Eq. (11), the54

second term comes from the calculation of the self-similarity and content aggregation in Eq. (10).55

2.2 Window-based Multi-head Self-Attention56

W-MSA firstly partitions Q,K,V into non-overlapping windows with size M ×M and reshapes57

them into Qw,Kw,Vw ∈ R
HŴ
M2 ×M

2×C . Subsequently, Qw,Kw,Vw are split along the channel58

dimension into N heads: Qw = [Q1
w, . . . ,Q

N
w ],Kw = [K1

w, . . . ,K
N
w ],Vw = [V1

w, . . . ,V
N
w ].59

Then W-MSA samples the tokens inside each window to calculate the self-attention Ai
w in each head:60

Ai
w = softmax(

Qi
wKi

w
T

√
dh

)Vi
w, i = 1, . . . , N. (13)

Finally, the results of N heads are aggregated to generate the output feature Xout ∈ RH×Ŵ×C as61

Xout =
∑N

i=1
Ai
wWi

w, (14)

where Wi
w ∈ Rdh×C are learnable parameters. The computational complexity of W-MSA is62

O(W-MSA) = 4HŴC2 + 2M2HŴC, (15)

where the first term comes from the linear projection in Eq. (9) and head merging in Eq. (14), the63

second term comes from the calculation of the self-similarity and content aggregation in Eq. (13).64

2.3 Half-Shuffle Multi-head Self-Attention65

HS-MSA firstly splits Q,K,V into two equal parts along the channel dimension as66

Q = [Ql,Qnl], K = [Kl,Knl], V = [Vl,Vnl], (16)
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where Ql,Kl,Vl ∈ RH×Ŵ×C2 are fed into the local branch to capture local contents, while67

Qnl,Knl,Vnl ∈ RH×Ŵ×C2 pass through the non-local branch to model non-local dependencies.68

Local Branch. The local branch computes MSA within position-specific windows. More specif-69

ically, Ql,Kl,Vl are divided into non-overlapping windows with size M ×M . Then they are70

reshaped into R
HŴ
M2 ×M

2×C2 . Subsequently, Ql,Kl,Vl are split into h = N
2 heads along the channel71

wise: Ql = [ Q1
l , . . . ,Q

h
l ], Kl = [ K1

l , . . . ,K
h
l ], Vl = [ V1

l , . . . ,V
h
l ]. The dimension of each72

head is dh = C
2h . Then the local self-attention Ai

l is calculated inside each head as73

Ai
l = softmax(

Qi
l Ki

l
T

√
dh

) Vi
l , i = 1, . . . , h. (17)

Non-local Branch. The non-local branch computes cross-window interactions through shuffle74

operations inspired by ShuffleNet [7]. In particular, Qnl,Knl,Vnl ∈ RH×Ŵ×C2 are firstly di-75

vided into non-overlapping windows with size M ×M . Then their shapes are transposed from76

R
HŴ
M2 ×M

2×C2 to RM
2×HŴ

M2 ×C2 to shuffle the positions of tokens and establish inter-window depen-77

dencies. Subsequently, Qnl,Knl,Vnl are also split into h heads: Qnl = [Q1
nl, . . . ,Q

h
nl],Knl =78

[K1
nl, . . . ,K

h
nl],Vnl = [V1

nl, . . . ,V
h
nl]. Then the non-local self-attention Ai

nl is computed as79

Ai
nl = softmax(

Qi
nl Ki

nl
T

√
dh

) Vi
nl, i = 1, . . . , h. (18)

Subsequently, Ai
nl ∈ RM

2×HŴ
M2 ×dh is unshuffled by being transposed to shape R

HŴ
M2 ×M

2×dh . Then80

the outputs of the local branch and non-local branch are aggregated by a linear projection as81

Xout =
∑h

i=1
Ai
lW

i
l +

∑h

i=1
Ai
nlW

i
nl, (19)

where Wi
l , Wi

nl ∈ Rdh×C are learnable parameters. The computational complexity of HS-MSA is82

O(HS-MSA) = 4HŴC2 +M2HŴC +
H2Ŵ 2

M2
C, (20)

where the first term comes from linear projection in Eq. (9) and head merging in Eq. (19), the second83

and third terms come from self-similarity calculation and content aggregation in Eq. (17) and Eq. (18).84

Discussion. W-MSA suffers from limited receptive fields within position-specific windows. In85

contrast, our HS-MSA enjoys global receptive fields and can capture long-range dependencies.86

However, instead of globally sampling all tokens like global MSA, HS-MSA builds the inter-window87

correlations by shuffle operations. The self-attention is still calculated in the local window but with88

tokens from non-local regions. Thus, the computational cost of HS-MSA is much cheaper than that89

of global MSA. In implementation, H =W = 256, d = 2, C = Nλ = 28,M = 8. Compared with90

global MSA, HS-MSA only requires 0.89% computational cost, showing its efficiency advantage.91

3 More Qualitative Comparisons with State-of-the-Art Methods92

3.1 Simulation HSI Reconstruction93

All Spectral Channels. Fig. 1 (left) shows the reconstructed simulation images of Scene 6 with 2894

spectral channels. DAUHST-9stg successfully recovers the desired HSIs of Scene 6 at all wavelengths.95

Comparisons with SOTA methods. Fig. 3 depicts the reconstructed simulation HSI comparisons of96

Scene 5, 7, and 8 with 4 out of 28 spectral channels. Nine SOTA algorithms and DAUHST-9stg are97

included. Please zoom in for a better view. As can be seen from the reconstructed HSIs (bottom) and98

the zoomed-in patches (top-right) of the selected yellow boxes that other competitors fail to restore99

high-frequency HSI contents. They are favorable to yield over-smooth results sacrificing fine-grained100

details and structural textures, or introducing unpleasant artifacts. In contrast, our DAUHST-9stg101

is more effective in producing perceptually-pleasing and sharp images, and maintaining the spatial102

smoothness of the homogeneous regions without introducing artifacts. Additionally, we plot the103

spectral density curves (top-medium) corresponding to the picked regions of the green boxes in the104

RGB image (top-left). The highest correlation and coincidence between our curves and the ground-105

truth curves demonstrate the spectral-wise consistency reconstruction effectiveness of DAUHST.106
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Figure 3: Reconstructed simulation HSIs of Scene 5, 7, and 8 with 4 out of 28 spectral channels. Nine SOTA
methods and our DAUHST are included. The spectral curves correspond to the green boxes of the RGB image.
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Figure 5: Qualitative comparisons of HDNet, BIRNAT, and our DAUHST on simulation (left) Scene 2, 5, 6, 7
and real (right) Scene 1, 2, 4, 5. Our DAUHST yields more visually pleasant results. Zoom in for a better view.

3.2 Real HSI Reconstruction107

All Spectral Channels. Fig. 1 (right) depicts 28 spectral channels of the reconstructed real HSIs on108

Scene 1. Our DAUHST-3stg reliably reconstructs all the spectral channels of the desired HSI signal.109

Comparisons with SOTA methods. Fig. 4 shows the reconstructed real HSI comparisons of Scene110

2 (top), 4 (middle), and 5 (bottom) with 2 out of 28 spectral channels. Our DAUHST-3stg is superior111

to other methods in fine-grained content reconstruction, spectral density responses, and real noise112

suppression. These results suggest the robustness and generalization ability of the proposed DAUHST.113

3.3 Visual Comparisons with HDNet and BIRNAT114

Bearing the space constraints and resolution of figures in concern, we provide the qualitative compar-115

isons of HDNet [8], BIRNAT [9], and our DAUHST in Fig. 5. It can be clearly observed that our116

DAUHST achieves more visually pleasant results on all simulation (left) and real (right) scenes.117
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Stage 1 3 5 7 9

PSNR 34.36 37.21 37.75 38.20 38.36
SSIM 0.932 0.959 0.962 0.968 0.967
Params (M) 0.73 2.08 3.44 4.79 6.15
FLOPS (G) 9.72 27.17 44.61 62.05 79.50

(a) Ablation of the stage number.

Method TSA-Net [10] DGSMP [11] DAUHST-3stg

Mask-0 31.46 ↓ 0.00 % 32.63 ↓ 00.00 % 37.21 ↓ 0.00 %
Mask-1 29.18 ↓ 7.24 % 28.50 ↓ 12.66 % 36.43 ↓ 2.10 %
Mask-2 29.10 ↓ 7.50 % 27.87 ↓ 14.59 % 36.55 ↓ 1.77 %
Mask-3 29.01 ↓ 7.79 % 27.91 ↓ 14.47 % 36.38 ↓ 2.23 %

(b) Ablation of mask modulation flexibility.

Table 1: Ablation studies on simulation datasets [12, 13]. PSNR, SSIM, Params, and FLOPS are reported.

4 More Ablation Studies118

4.1 Number of Stages119

We conduct ablation to study how the performance and costs of DAUHST change with the stage120

number in Tab. 1a. The performance improves when we gradually increase the stage number. We121

notice that a 3-stage DAUHST can achieve a very impressive PSNR result of 37.21 dB.122

4.2 Mask Modulation Flexibility123

We change the mask by randomly cropping it with size 256×256 from the real mask of size 660×660124

to evaluate the flexibility of DAUHST for different signal modulations. The results are reported in125

Tab. 1b, where ‘Mask-0’ indicates the original mask used in training. Compared with the two SOTA126

methods TSA-Net (↓ 7.51% on average) and DGSMP (↓ 13.91%), our DAUHST-3stg declines by127

much smaller margins (↓ 2.03%) when the mask changes. These results suggest that DAUHST is128

more robust and flexible for large-scale SCI reconstruction.129

5 Limitation130

The main limitation of our work is that the performance improvement of our method comes with131

lowering down the inference speed and increasing the model complexity. Specifically, the Params,132

FLOPS, and depth of network increase with the stage number of DAUHST. For instance, compared133

with DAUHST-1stg, DAUHST-9stg achieves 4.00 dB improvement but requires 8.18× FLOPS,134

8.42× Params, and 4.04× inference time. To tackle this limitation, we will study how to improve the135

restoration performance without increasing the model complexity and sacrificing the inference speed.136

6 Broader Impact137

HSI reconstruction is one of the core tasks in snapshot compressive imaging (SCI) and has been138

studied for decades. Compared with normal RGB images, HSIs have more spectral bands to139

store richer information of the desired scenes. Hence, HSIs are widely applied in many computer140

vision related tasks, such as medical imaging [14, 15, 16], object tracking [17, 18, 19], remote141

sensing [20, 21, 22], and so on. Nowadays, billions of 3D HSIs are compressed by SCI systems.142

Therefore, how to reconstruct the original 3D HSI signal from the 2D compressed measurement is143

worth studying. Our algorithm, DAUHST, is capable of reconstructing HSIs more efficiently and144

accurately than all existing SOTA methods.145

Until now, HSI reconstruction techniques have no negative social impact yet. Our proposed DAUHST146

does not present any negative foreseeable societal consequence, either.147

7 Code Submission and Reproducibility148

We provide the source code and pre-trained models to reproduce the main results in Tab. 1 of our149

paper. Please refer to the folder ‘code’ and read the file ‘README.md’ for detailed instructions. All150

the source codes and pre-trained models will be released to the public for further research.151
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