
Notation Meaning
k(x, x′) kernel (covariance) function evaluated at x and x′

GP Gaussian process
Z inducing-point locations
X second order process w.r.t X
X A rough path as a pair (X,X)
∥·∥α α-Hölder continuous norm
∥·∥p;[0,T] p-varation norm over [0, T]
ϱα(·, ·) α-Hölder metric distance

Table 1: List of notations

Pseudo-code for our approach solving SDEs Here, we provide our approach
in Algorithm 1 in contrast to the SDEs with Brownian motion in Algorithm 2.

Algorithm 1: Our approach solving SDE for mBm
Input: Drift function µ(t, x), diffusion function σ(t, x), initial value Xt0 , Hurst function h(·)

inducing-point locations Z
Output: Solution Xt1 at t1
/* Compute drift and diffusion in Eq. (12) */

1 def f_and_g(t, x):
/* Python syntax: global */

2 global inducing points u
/* Mean and variance of GP approximation in Eq. (3) */

3 m(t;u), v(t;u) = GP_approx(t, u, h(·))
4 ν(t;u) = m(t;u)
5 ς(t;u) = v(t;u)∆t
6 drift = µ(t, x) + σ(t, x)ν(t;u)
7 diffusion = σ(t, x)ς(t;u)
8 return drift, diffusion
9

10 def brownian_increment(t):
11 return Brownian noise ∆Wt

12
/* Use Eq. (9) and (10) */

13 inducingpoints u = sample_inducing(Z, h(·))
/* call SDE solver */

14 Xt1 = sdeint(f_and_g, brownian_increment, Xt0 , t0, t1)
15 return Xt1

Algorithm 2: SDE solver for Brownian cases
Input: Drift function µ(t, x), diffusion function σ(t, x), initial value Xt0
Output: Solution Xt1 at t1
/* Compute drift and diffusion directly */

1 def f_and_g(t, x):
2 return µ(t, x), σ(t, x)
3
4 def brownian_increment(t):
5 return Brownian noise ∆Wt

6
/* call SDE solver */

7 Xt1 = sdeint(f_and_g, brownian_increment, Xt0 , t0, t1)
8 return Xt1

Model training with Latent SDE The training method used in experiments of § 5.2 and § 5.3
is adopted from [54] via a Bayesian approximation method. Consider two SDEs sharing the same

17

diffusion function
dX̃t =µθ(t, X̃t) + σ(t, X̃t)dBt, (Prior SDE)
dXt =µϕ(t,Xt) + σ(t,Xt)dBt. (Approximate posterior SDE)

Applying our approach like in (12), we can obtain new drift and diffusion functions (with conditioned
on inducing points) for SDEs with Brownian motion. Let us write in this form

dX̃t =µ̄θ(t, X̃t) + σ̄(t, X̃t)dWt, (Prior SDE)
dXt =µ̄ϕ(t,Xt) + σ̄(t,Xt)dWt, (Approximate posterior SDE)

where µ̄θ, µ̄ϕ, σ̄ are derived similar to (12).
The variational bound requires computing the KL divergence between the approximate posterior and
prior which is related to the change of measures between prior paths and posterior paths, therefore,
is obtained by Girsanov Theorem. That is, with a well-defined u(t, x) satisfying σ̄(t, x)u(t, x) =
µ̄ϕ(t, x)− µ̄θ(t, x), the change of measure is written as

Mt = exp

(
−1

2

∫ t

0

|u(s,Xs)|2ds−
∫ t

0

u(s,Xs)dWs

)
.

Finally, the variational bound consists of the log-likelihood and E[logMt]. Details of the learning
algorithm can be found in [54].

A Fractional Brownian Motion and Multifractional Brownian Motion

This section contains additional background of fractional Brownian motions (fBm) and multifractional
Brownian motions (mBm) including their covariance function and a detail description of long-range
dependency in such processes.

A.1 Fractional Brownian Motion

Fractional Brownian motion can be viewed as a Gaussian process with covariance

kH(t, s) =
1

2
(|t|2H + |s|2H − |t− s|2H). (15)

Here, H is called the Hurst exponent. It has some properties: (1) long-range dependence (H > 1/2);
(2) anti-persistence or irregularity (H < 1/2). Such properties are interesting to applications in
modeling internet traffic, highly textured images.

A.2 Multifractional Brownian Motion

Multifractional Brownian motion B(h) is a Gaussian process with covariance [52]

kh(t, s) =
c2ht,s

ch(t)ch(s)
(|t|2ht,s + |s|2ht,s − |t− s|2ht,s), (16)

with h : [0, T] → (0, 1), ht,s :=
h(t)+h(s)

2 , and cx =
(

2π
Γ(2x+1) sin(πx

) 1
2

. This extension is to model
cases that behaviors of signals happen locally. If h(t) is close to 0, we expect irregular local behaviors.
If h(t) > 1/2 at time t, we expect local long-range dependence.

A.3 Itô Integral for Multifractional Brownian Motion

Traditional Brownian motion case The Itô integral is computed as

f(T,BT) = f(0, 0) +

∫ T

0

∂f

∂t
(t, Bt)dt+

∫ T

0

∂f

∂x
(t, Bt)dBt +

1

2

∫ T

0

∂2f

∂x2
(t, Bt)dt

Multifractional Brownian motion case The Itô integral has additional derivative of kernel function

f(T,B
(h)
T) = f(0, 0) +

∫ T

0

∂f

∂t
(t, B

(h)
t)dt+

∫ T

0

∂f

∂x
(t, B

(h)
t)dB

(h)
t +

1

2

∫ T

0

(
d

dt
Rh(t, t)

)
∂2f

∂x2
(t, B

(h)
t)dt.

The red term d
dtRh(t, t) is the derivative of variance function of mBm. This can be interpreted as the

second derivative term in Itô’s formula, ∂2f
∂x2 (t, B

(h)
t), is adjusted according to how fast the variance

function changes when time goes. Note that d
dtRh(t, t) = 2t2h(t)−1(h′(t)t ln(t) + h(t)) [52]. This

result is used in the main text to get the analytic solution of dXt = αXtdt+ βdBt

18

A.4 Properties of Fractional Brownian Motion

As discussed in the main text, fBm exhibits distinct properties including self-similarity and long-range
dependency. We provide a glimpse of these notions to readers.

Self-similarity Simply speaking, self-similarity in general refers to objects which look exact or
approximately similar to a part of itself. This concept is related to fractals. In statistics, consider
a discrete stochastic process {Xt}t∈N. We say X is self-similar if a finite sum, i.e., Xkm + · · · +
X(k+1)m−1 and a scaled version amXk have the same distribution. In a restricted definition when
am is just a polynomial of m, we say X

(m)
k = 1

m (Xkm + · · · +X(k+1)m−1) and m1−HX(m) are
distributionally equal or

(Xk1
, . . . , Xkd

) distributionally equal to (m1−HX
(m)
k1

, . . . ,m1−HX
(m)
kd

)

if X is self-similar.

Now, consider the noise with respect to fBm, defined as

Xk = BH(k + 1)−BH(k).

The self-similarity of X is expressed by comparing mX(m) and mHX . Both of them are zero-mean
Gaussian, having the same covariance because

Cov(Xkm + · · ·+X(k+1)m−1, Xlm + · · ·+X(l+1)m−1)

=Cov(BH((k + 1)m)−BH(km), BH((l + 1)m)−BH(lm))

=Cov(mHBH(k + 1)−mHBH(k),mHBH(l + 1)−mHBH(l))

=Cov(mHXk,m
HXl).

Long-range dependence Long-range dependence in stochastic processes means the sum of the
autocovariance function is unbounded. For fractional Gaussian noise, Xk = BH

k+1 − BH
k has the

autocovariance function

γ(k) =
1

2
(|k − 1|2H − 2|k|2H + |k + 1|2H).

This can be approximated as γ(k) ∼ H(2H − 1)k2H−2, leading
∑∞

k=1 γ(k) = ∞ when 1/2 <
H < 1.

Perhaps, fractional ARIMA is a more intuitive model to understand long-range dependency. While
well-known ARIMA model is defined as

ϕ(L)Wk = θ(L)ϵk
where L is the lag operator as LWk = Wk−1, ϕ and θ are polynomials. By introducing

(1− L)dWk =

∞∑
n=0

(
d

n

)
(−L)nWk,

(
d

n

)
=

Γ(d+ 1)

Γ(d− n+ 1)Γ(n+ 1)
,

we can construct fractional ARIMA model. The long-range dependence is expressed by the infinite
sum in the right hand side. Here, the Hurst parameter is H = d+ 1/2.

B Convergence analysis

In this section, we provide some background on rough path theory. Our proof will investigate
the variation of covariance of Gaussian processes and sparse Gaussian processes which help us to
judge their Hölder continuity. Then, we use results of rough path theory [56, 26] to bound the KL
divergence between solutions via the KL divergence fractional Brownian motions and their sparse
GP approximations. Finally, we use [8] to justify the convergence of sparse GPs.

B.1 Rough path theory

Here we give a brief review of rough path theory. For a complete introduction, readers can refer
to [26].

19

Notation We denote Xs,t := Xt −Xs and
∫ t

s
Xs,rdXr := Xs,t. Also, p-variation seminorm is

defined as

∥X∥p−var;[0,T] =

sup
P

∑
[s,t]∈P

|Xs,t|p
1/p

,

where P is a set of disjoint intervals of some partitioning scheme over [0, T]. We will write x ≲ y to
express x ≤ Cy for x, y > 0.
In this section, we will sometimes write the covariance as R(s, t). A rectangular increment of
covariance is denoted by

R

(
s, t
s′, t′

)
:= E[Xs,tXs′,t′]. (17)

The p-variation of a rectangle increment is written as ∥R∥p;[0,T 2 .

The space of rough paths The following will provide the specification of the space of rough paths
including its norm and its metric.
Definition 2. Given α ∈

(
1
3 ,

1
2

]
, the space of α-Hölder rough paths is defined by

• pairs (X,X) =: X

• norm

∥X∥α = sup
s̸=t∈[0,T]

|Xs,t|
|t− s|α

< ∞, ∥X∥2α = sup
s̸=t∈[0,T]

|Xs,t|
|t− s|2α

< ∞

• For any X and Y, (inhomogeneous) α-Hölder rough path metrics is
ϱα(X,Y) := ∥X − Y ∥α + ∥X− Y∥2α .

The space of geometric rough paths Many results in rough path theory require rough paths being
geometric where the following holds

Sym(Xs,t) =
1

2
(Xt −Xs)

2.

For Brownian motions, Stratonovich integration leads to geometric Brownian rough paths. There is a
way to convert between Itô and Stratonovich version of Brownian motions (see [39, §3]). A similar
technique can be achieved for fBm by [70].

Itô-Lyons map One of interesting results in rough path theory is the Itô-Lyons maps. Suppose we
have a solution map

B(ω)
Ψ7−→ (B,B)(ω) S7−→ X(ω).

Simply speaking, while Ψ is universal as it is just an enhancement of B, the solution map S is a
continuous map on both the initial conditions and driving noise. This property does not hold for Itô
maps from sole Brownian motion paths to solution paths.

B.2 Main proof

Before going to the main proof, we provide the Gaussian process form of sample paths B̂t corre-
sponding to B′

t described in (9) and (10). We can understand B̂t is the result of applying integration
operator on Bt (with small numerical error). Since integration operation is linear, B̂t is also a
Gaussian process:

B̂t ∼ GP
(
0, kB̂(t, s)

)
, kB̂(t, s) =

∫ t

0

∫ s

0

k(u, v)− α(u)⊤k(Z,Z)α(v)dudv. (18)

In fact, one can recover kH(t, s) in (15) which is
∫ t

0

∫ s

0
k(u, v)dudv = kH(t, s).

For relevant results of rough path theory in the context that driving signals are Gaussian processes,
we encourage readers to see [26, Chapter 10] for a complete description.

Proof of Theorem 1. Since E[(B̂t − B̂t+τ)
2] ≤ L|τ |1/ϱ, by [26, Theorem 10.9], the covariance of

B̂t has finite ϱ-variation which is ∥∥RB̂

∥∥
ϱ;[s,t]2

≤ M |t− s|1/ϱ.

20

As Bt is a fractional Brownian motion with Hurst exponent H , then the covariance of Bt has finite
ϱ̄-variation with ϱ̄ = 1

2H (see [26, Example 10.11]), or,

∥RB∥ϱ̄;[s,t]2 ≤ M |t− s|1/ϱ̄.

We consider R(B,B̂)(u, v) := E[BuB̂v]. Using Cauchy-Schwartz inequality, we have E[BuB̂v] ≤√
E[B2

u]

√
E[B̂2

v]. Since ϱ > ϱ̄, we use a similar technique in the proof of [26, Corollary 10.6]∥∥R(B,B̄)

∥∥
ϱ;[s,t]2

≤ M |t− s|1/ϱ.

Now applying the result in [26, Corollary 10.6], for every α ∈ (1/3, 1/2ϱ) and every θ ∈ (0, 1/2 − ϱα)
and q < ∞

|ϱα(B, B̂)|Lq ≲ sup
s,t∈[0,T]

[
E[|Bs,t − B̂s,t|2]

]θ
≲ sup

t∈[0,T]

[
E[|Bt − B̂t|2]

]θ
. (19)

This implies |ϱα(B, B̂)|Lq ≲ supt∈[0,T] W(Bt, B̂t)
2θ. Using Talagrand inequality [81], we have

|ϱα(B, B̂)|Lq ≲ sup
t∈[0,T]

KL(Bt||B̂t)
θ. (20)

We follow closely the proof of [39]. That is, following [26, Theorem 8.15], the solution map St(B, ·)
is a C1-diffeomorphism, i.e., its bijective and its inversion are differentiable. This means we can
obtain the solution Xt at time t via canonical lift B and initial state X0. Let us define the inverse
map as S−t(B, ·) which gives us a way to get X0 given Xt.
One can obtain the probability density distribution of solution at time t by a change of variables:

pt(x) = p0(S−t(B, x))|det∇xS−t(B, x)|, (21)

p̂t(x) = p0(S−t(B̂, x))|det∇xS−t(B̂, x)|. (22)
Then continuity of St or S−t is stated in [26, Theorem 8.5]. That is, given rough paths, X,Y, and
initial state x, y, we can obtain a local Lipschitz estimate, for any γ ∈ [1/3, α]

∥S(X, x)− S(Y, y))∥γ ≤ Cγ(∥x− y∥ + ϱα(X,Y)).

Combining the continuity of p0 and St, one can arrive with
| log p̂t(x)− log pt(x)| ≲ ϱα(B, B̂). (23)

It is easy to show that from (23), one can have KL(p̂t∥pt) ≲ |ϱα(B, B̂)|L1 . Combining with (20),
KL(p̂t∥pt) ≲ supt∈[0,T] KL(B̂t∥B)θ.

Discussion In Theorem 1, we make an assumption that ϱ is greater than 1/2H because of the
following observations. Compared to the covariance of Bt, that of B̂t in (18) is subtracted with a
positive term. Therefore, it is reasonable to assume that E[(B̂t − B̂t+τ)

2] is smaller than E[(Bt −
Bt+τ)

2] = |τ |2H . This also means than we can find ϱ such that E[(B̂t − B̂t+τ)
2] ≤ L|τ |1/ϱ < |τ |2H .

In other words, ϱ is greater than 1/2H. As B̂t tries to approximate Bt, we believe ϱ is slightly greater
than 1/2H. Also, we can understand that B̂t comes from the covariance with truncated spectral
information, therefore it is less varying and ϱ tends to bigger.

B.3 Spectral properties of fBm covariance matrix

We empirically compute the eigenvalues of fBm covariance matrices when H = 0.3, 0.5, 0.8. The
covariance matrices are computed for finite data points in range [0, 2]. In Figure 8, we can see that
the eigenvalues rapidly decay.

C Experiment results
C.1 Set up

We run experiment on a server equipped with Nvidia Tesla P40 GPU. The number of inducing points
is 70. In practice, this parameter is less sensitive in training GP when the number of data points
(steps) are not too big.

21

Figure 8: Eigenvalues of covariance matrices. The last column is the plot of eigenvalue of squared
exponential function which is one of the studied kernels in [8].

C.2 Sampling mBm

In the experiment in §5.1, the baseline for sampling mBm is based on [65].

To sample mBm given a Hurst function h(t), [65] uses the integral approximation over a discretization
of time t0 < t1 < · · · < tN ,

Bt =
1

Γ(h(t) + 1/2)

∫ t

0

(t− s)h(t)−
1/2dWs ≈

1

Γ(h(t) + 1/2)

N−1∑
i=0

∫ ti+1

ti

(ti+1 − s)h(ti+1)+1/2dWs.

Each component in the sum can be expressed analytically, we have the mBm samples over the time
mesh as

Bti =

i∑
j=1

wi−j+1ξj , (24)

wk =
1

Γ(h(tk) + 1/2)

[
t
2h(tk)
k − (tk−1)

2h(tk)

2h(tk)

]1/2

, k ≥ 1. (25)

Here, ξj are standard Gaussian random variables. Note that our procedure sampling paths for Bt

needs only one Gaussian random variable at a time step (see Eq. (11)) while using [65] requires all
Gaussian random variables in the sum in Eq. (24). The number of such variables increases as we
increase the mesh size. In the experiment, we used the implementation in [25] to get mBm samples.

Estimating Hurst from data Here, we provide a brief description of how to estimate Hurst from
data according to [27]. Motivating from the following property

E[|Xt −Xs|k] =
2k/2Γ(k+1

2)

Γ(12)
σk|t− s|kh(t), (26)

the estimation is based on the ratio of two statistics

Mk(t) =
1

W

W−1∑
i=0

|Xt−i/N −Xt−(i+1)/N |k, (27)

M ′
k(t) =

2

W

W/2−1∑
i=0

|Xt−2i/N −Xt−2(i+1)/N |k, (28)

where W is a window size. The second statistic has a halved resolution. From [27], the estimation
ĥ(t) = 1

2 log2

(
M ′

2(t)
M2(t)

)
as the coefficient in Eq. (26) vanishes, remaining Hurst exponent values. This

converges a.s. to h(t).

In our experiments, we set the windows size, W = 10.

C.3 Synthetic data

Figure 9 shows the log-likelihood of the model when the number of data points N =
100, 200, 300, 400. As all the settings have similar average log-likelihoods, the model can fit well
data in such settings.

22

Figure 9: Log likelihood when varying the number of data points in the experiment with synthetic
data

Fr
om

[2
7]

O
ur

s

(a) 1 path (b) 2 paths (c) 3 paths (d) 5 paths

Figure 10: Learned Hurst exponent vs. true Hurst exponent h(t) = 0.3 + 0.5sigmoid(7(1 − t)).
The first row contains the Hurst estimations computed from [27] (the dashed lines is the estimation
for each sample while the solid line is the mean). The second row contain our learned Hurst functions.
Our Hurst exponent gets closer to the true one as the sample paths in the training are added. Our
approach gives better estimations of Hurst for high values, while slightly overestimates those with
small values.

Additional experiments We consider the true Hurst functions including h(t) = 0.3 +
0.5sigmoid(7(1− t)) and h(t) = 0.3 + 0.5sigmoid(7(t− 1)).
Figures 10 and 11 show the comparisons between our learned Hurst functions and the true one when
we increase the number sample paths in the training. The more sample paths are added, the closer our
learned Hurst functions are to the true one. This observation is similar to the results of [27] of which
the plots are placed in the first row of Figure 10 and 11.
We observe that choosing small step sizes helps training better, especially for the case H < 1/2.

C.4 Financial data

Figure 12 contains the negative log-likelihoods of stock data on the training data. Figures 13 and 14
show the negative log-likelihoods and root mean square errors on the test data. The posterior plot of
these stocks are in Figure 16(APPL), 15(AMZN), 17(GOOGL), and 18(MSFT).

C.5 Hurst exponent in score-based generative models

Recent work [77] on generative model based on score functions and SDEs presents impressive results
on par with generative adversarial networks (GAN). The main idea is to learn a score function
∇ log p(x) of data. which is the gradient of log likelihood of data via a process of gradually adding
perturbation to data up to the point the result is unrecognizable compared to the original data, similar
to random noise. This process models by a SDE

dXt = −1

2
β(t)Xtdt+

√
β(t)dWt.

As perturbing data along the time interval, it is possible to compute analytically the distribution
of perturbed data Xt at time t given input data X0, p(Xt|X0). During the sampling phase, such
information and the input data X0 will both not be available. [77] uses a neural network s(Xt) to
approximate ∇ log p(Xt|X0).

23

Fr
om

[2
7]

O
ur

s

(a) 1 path (b) 2 paths (c) 3 paths (d) 5 paths

Figure 11: Learned Hurst exponent vs. true Hurst exponent h(t) = 0.3+ 0.5sigmoid(7(t− 1)) (see
more description in Figure 11). Our Hurst exponent gets closer to the true one as the sample paths in
the training are added. Our model can capture the global dynamic, however, overestimates the Hurst
having small value.

APPL AMZN GOOGL MSFT

Figure 12: Train negative log likelihoods of four stocks (smaller is better). Our model consistently
has the best performance in this measure as it can flexibly learn neural SDEs parameters as well as
noise parameters

Perturbation with noise from Bt We consider the case of perturbation in data under a new SDE,
dXt = − 1

2β(t)Xtdt+
√
β(t)dBt where Bt =

∫ t

0
f(t, s)dWs. Our approach leads to a new form

dXt = [−1

2
β(t)Xt +

√
β(t)ν(t;u, Z)]dt+

√
β(t)ς(t;Z)dWt.

The analytic solution of p(Xt|X0) according to this SDE is rather complicated. Therefore, we resort
a similar form of

dXt = [−1

2
β(t)ς2(t)Xt +

√
β(t)ν(t;u, Z)]dt+

√
β(t)ς(t;Z)dWt.

We can get a similar p(Xt|X0) but depended on β(t) and ς(t;Z). Note that ς(t;Z) is the variance
produced by sparse GP and ν(t;u, Z) is vanished because its expectation E[ν(t;u, Z)] = 0.

Forward vs backward Figures 19 and 20 show how our model adds noise noise during forward
phases and how images are reconstructed during backward phases. These figures are of two settings:
decreasing Hurst and increasing Hurst. The first case having better negative log-likelihood (better than
the baseline H = 0.5) demonstrates that noise perturbation with more dependency at the beginning
is preferable.
With a similar setup, we can test the performance on the FashionMNIST data set between“decreasing
Hurst” and baseline “H = 0.5”. We included the NLL plot in Figure 21 where “decreasing Hurst"
remains having better NLLs.
Based on the empirical evaluation on MNIST and FashionMNIST, we found that it is better to inject
correlated noise (long-range dependent H > 1/2) at the beginning time of perturbation. At the end
of perturbation, there is no need for such correlated noise but irregular one (H < 1/2).
With t close to 0 (close to real images), p(Xt) is very complex, requiring a careful perturbation in
which correlated noise (H > 1/2) is a good choice because it retains dependency between two time
steps. On the other hand, with t close to the terminal time T , p(Xt) becomes close to a Gaussian
distribution so that we can accelerate the perturbation by adding even more irregular noise (H < 1/2).

24

APPL AMZN GOOGL MSFT

Figure 13: Test root mean square error

APPL AMZN GOOGL MSFT

Figure 14: Test negative log likelihood

Figure 15: Model fit of AMZN

Figure 16: Model fit of APPL

25

Figure 17: Model fit of GOOGL

Figure 18: Model fit of MSFT

forward

backward
Figure 19: Decreasing Hurst: the Hurst exponent linearly decreases from 0.8 to 0.3.

26

forward

backward
Figure 20: Increasing Hurst: The Hurst exponent linearly increases from 0.3 to 0.5

Figure 21: NLL over a batch during training score-based generative models on FashionMNIST data
set. The setting decreasing Hurst is better than baseline H = 1/2 in terms of NLLs

forward

backward
Figure 22: Forward and backward of FashionMNIST dataset for the case of decreasing Hurst.

27

