
A Additional Experiments

A.1 Regression

Figure 4 shows the results of a linear model in the regression setting. Figure 5 shows the performance
of Tanh MLP in the regression setting. The complete posterior collapse is well predicted by our
theory.
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Figure 4: Training loss L and σi versus β for linear regression. The theoretical prediction is plotted
as vertical dashed lines.
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Figure 5: Training loss L and σi versus β for MLP encoder and decoder with Tanh activation
function. The theoretical prediction is plotted as vertical dashed lines.
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B Effect of Bias

Here, we study a general linear encoding and decoding model equipped with a bias term. Following
the previous notation, the encoder is z = W ⊺x + be + ϵ and the decoded distribution is p(y∣z) =
N (Uz + bd, η2decI). Then, the objective of general VAE reads

LVAE(W,U, be, bd,Σ) =
1

2η2dec
Ex,ϵ [∥U(W ⊺x + be + ϵ) + bd − y∥2 + β

η2dec
η2enc
∥W ⊺x + be∥2] (20)

+
d1

∑
i=1

β

2
( σ2

i

η2enc
− 1 − log σ2

i

η2enc
) . (21)

One can show that at optima, the learned biases must take the following form.
Proposition 4. The optimal biases are b∗e = −W ⊺Ex[x] and b∗d = Ex[y].

Proof. The gradient of LVAE with respect to be and bd are zero when be and bd are optimal. That is,

∂LVAE

∂be
= 1

η2dec
Ex,ϵ [U⊺(U(W ⊺x + be + ϵ) + bd − y) + β

η2dec
η2enc
(W ⊺x + be)] (22)

= 1

η2dec
[(U⊺U + β η

2
dec

η2enc
I)(W ⊺Exx + be) +U⊺(bd −Exy)] = 0, (23)

and,

∂LVAE

∂bd
= 1

η2dec
Ex,ϵ(U(W ⊺x + be + ϵ) + bd − y) (24)

= 1

η2dec
[U(W ⊺Exx + be) + (bd −Exy)] = 0. (25)

Those condition holds if and only if b∗e = −W ⊺Exx and b∗d = Exy.

In particular, this means that the effect of a learnable encoder bias is the same as a data-preprocessing
scheme of making x zero-mean. The effect of a learnable decoder bias is the same as a data-
preprocessing scheme of making y zero-mean.

C Case of a Data-Dependent Encoding Variance

For completeness, we extend the result in Section 4.3 and consider the case when the learnable
variance of the latent variable z is x-dependent, which is common in practice. Meanwhile, one
might also consider the case when the variance in the decoder is learned: for concision, we do not
consider this case because it is rather rare in practice.

In the same spirit, we consider the simplest case of a data-dependent variance, where the standard
derivation of z linearly depends on x. We will see that in this case, the system is no longer analyti-
cally solvable. The standard deviation is

σ(x) = diag(∣Cx + f ∣) ∶= diag(σ1(x), ..., σd1(x)), (26)

where C ∈ Rd1×d0 and f ∈ Rd1 are the learnable parameters. The latent variable z is thus generated
by

z =Wx + σ(x)ϵ =Wx + diag(Cx + f)ϵ, (27)

where ϵ ∼ N (0, Id1). To emphasize the important terms, we further assume that x is zero-mean:
E[x] = 0.2

2As we have shown, this can be precisely achieved when the encoder and encoder have a learnable bias.
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Using this definition of σ in Eq. (4), one obtains the following objective with Data-Dependent (en-
coding) Variance (DDV):

LDDV
VAE (U,W,C, f) (28)

= 1

2η2dec
Ex,ϵ[∥(UW ⊺x − y) +Uσ(x)ϵ∥2 + β η

2
dec

η2enc
∥W ⊺x∥2]

+ β

2

d1

∑
i=1

Ex (
σ2
i (x)
η2enc

− 1 − log σ2
i (x)
η2enc

) (29)

= 1

2η2dec
Ex,ϵ[∥UW ⊺x − y∥2 +Tr(Uσ(x)ϵϵ⊺σ(x)U⊺) + 2Tr(U(W ⊺x − y)ϵ⊺σ(x)U⊺)

+ β η
2
dec

η2enc
∥W ⊺x∥2] + β

2

d1

∑
i=1

Ex (
σ2
i (x)
η2enc

− 1 − log σ2
i (x)
η2enc

) . (30)

The relevant expectation values can be computed easily:

Exσ
2
i (x) = f2

i +Ci⋅AC⊺i⋅ ∶= ΣDDV
i (31)

Ex,ϵTr(Uσ(x)ϵϵ⊺σ(x)U⊺) = Tr(Udiag(Exσ
2
1(x),⋯,Exσ

2
d1
(x))U⊺) (32)

Ex,ϵTr(U(W ⊺x − y)ϵ⊺σ(x)U⊺) = ExTr(U(W ⊺x − y)Eϵϵ
⊺σ(x)U⊺) = 0, (33)

where µx is the mean vector of input variable x, and fiCi⋅µx is the inner product of the i-th row of
C and µx multiplied by a scalar fi. This corollary means that the loss function can be written in the
following form:

LDDV
VAE (U,W,C, f) = 1

2η2dec
Ex,ϵ[∥UW ⊺x − y∥2 +Tr(UΣDDVU⊺) + β η

2
dec

η2enc
∥W ⊺x∥2]

+ β

2

d1

∑
i=1

Ex (
σ2
i (x)
η2enc

− 1 − log σ2
i (x)
η2enc

) . (34)

What makes the problem analytical intractable is the term Ex log(σ2
i (x)). However, we can still

obtain some very insightful qualitative results from it.

The following lemma will help us show that it is always better to have C = 0.
Lemma 1. For any C, f , there exists f ′ such that Exσ

2
i (x;C, f) = Exσ

2
i (x;C = 0, f ′).3.

Proof. By definition,
Exσ

2
i (x;C, f) = f2

i +Ci⋅AC⊺i⋅ , (35)
and

Exσ
2
i (x;C = 0, f ′) = (f ′i)2. (36)

Now, setting

f ′i =
√

f2
i +Ci⋅AC⊺i⋅ (37)

is sufficient to make the two equal. ◻
We can now prove that it is always better to have C = 0.
Proposition 5. For any U, W, C, f, there exists f ′ such that

LDDV
VAE (U,W,C, f) ≥ LDDV

VAE (U,W,0, f ′). (38)

Proof. Throughout, we let f ′ equal to the form given by Lemma 1.

By Eq. (31), the loss function can be written as the sum of a term L0 that depends only on U, W
and ΣDDV and the logarithmic term:

LDDV
VAE (U,W,C, f) = L1(U,W,ΣDDV) − β

2
Ex logσ

2
i (x). (39)

3Note that we have now explicitly written out C and f to emphasize that σ is also a function of C and f
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However, by Lemma (1), we have

LDDV
VAE (U,W,0, f ′) = L1(U,W,ΣDDV) − β

2
logExσ

2
i (x). (40)

Noting that − logσ2
i (x) is convex, we have, for any C and f ,

−Ex logσ
2
i (x) ≥ − logExσ

2
i (x). (41)

This implies that

LDDV
VAE (U,W,C, f) −LDDV

VAE (U,W,0, f ′) = −Ex logσ
2
i (x) + logExσ

2
i (x) ≥ 0. (42)

This completes the proof. ◻
When C = 0, the encoder variance becomes data-independent, and the global minimum is thus,
again, given by the main results in the main text. This result shows that a learnable data-dependent
encoder variance does not have any quantitative difference at the global minimum when compared
with the case of a data-independent encoder variance. This result is directly supported by our numer-
ical results in Section 5, where the experiments are done for the case where the encoder variances
are actually learned.

D Case of Learnable Decoding Variance η2dec

We first give an explicit form of the loss function at the global minimum found in Theorem 2. Using
the optimal U∗,W ∗,Σ∗, the analytical formulation of the minimal LVAE can be obtained.
Corollary 2. The minimal value of the objective function LVAE is

min
U,W,Σ

LVAE(U,W,Σ) = 1

2η2dec

⎡⎢⎢⎢⎢⎣

d∗

∑
i=1

ζ2i −
d1

∑
i∶ζ2

i >βη2
dec

ζ2i (1 +
βη2dec
ζ2i
(log βη2dec

ζ2i
− 1))

⎤⎥⎥⎥⎥⎦
, (43)

where ζ2i are sorted in non-increasing order. For convenience, we let ζ2i = 0 for d∗ ≤ i ≤ d1 when
d1 > d∗.

Corollary 2 gives the global minimum of the objective for a fixed decoding variance η2dec. The first
summation considers all eigenvalues ζ2i while the second summation considers non-zero first d1
eigenvalues.

Here, we discuss the VAE with a Learnable Decoding Variance (LDV) η2dec. For shorthand, we
denote η2dec ∶= s ∈ (0,∞). When we want to optimize over s, we also need to include the partition
function, d2

2
log s, of the decoder in the loss LLDV

VAE . We note that this partition function has been
ignored in the main text because s has been treated as a constant for LVAE. The loss function LLDV

VAE
with the optimal U∗, W ∗, and Σ∗ is thus given by combining Eq. (43) and the partition function
d2

2
log s:

G(s) ∶= LLDV
VAE(U = U∗,W =W ∗,Σ = Σ∗, η2dec = s)

= 1

2s

d∗

∑
i=1

ζ2i −
1

2

d1

∑
i∶ζ2

i >βs
[ζ

2
i

s
+ β (log βs

ζ2i
− 1)] + d2

2
log s. (44)

Next, we investigate how β affects the learnable decoding variance s and identify the optimal s∗
under various conditions. Then, we show that, even with a learnable η2dec, the specific choice of β
can lead to or avoid the posterior collapse.

Moreover, for clarity, let d̂∗ be the number of non-zero ζ2i for 1 ≤ i ≤ d∗, and d̂1 be the number of
non-zero ζ2i for 1 ≤ i ≤ d1. It is easy to see that d̂1 ≤ d̂∗. The loss is

G(s) = 1

2s

d̂∗

∑
i=1

ζ2i −
1

2

d̂1

∑
i

Fi(s) +
d2
2

log s, (45)

where

Fi(s) ∶=
⎧⎪⎪⎨⎪⎪⎩

ζ2
i

s
+ β (log βs

ζ2
i
− 1) when s < ζ2

i

β
,

0 otherwise.
(46)
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Lemma 2. G(s) is differentiable.

Proof. It suffices to check that Fi(s) is differentiable on (0,∞) for all i. By definition, Fi(s) is
differentiable except at ζ2i = βs, and thus it suffices to check its differentiability at ζ2i /β.

First of all, F is continuous:
lim

s→(ζ2
i /β)−

F (s) = 0 = lim
s→(ζ2

i /β)+
F (s). (47)

Then, F is differentiable:

lim
s→(ζ2

i /β)−
F ′i (s) = lim

s→(ζ2
i /β)−

β

s2
(s − ζ2i /β) = 0 = lim

s→(ζ2
i /β)+

F ′i (s). (48)

This finishes the proof.

Therefore, we only need to check the stationary points and the right limit of G(s) at 0 and the left
limit at∞. We proceed by first considering the monotonicity over intervals defined by the piecewise
function and then narrowing down the solution of G′(s) = 0 into a specific interval.

Let sp ∶= 1
β
ζ2p for p = 1,⋯, d̂1. We define sd̂1+1 = 0 and s0 = ∞. Because the ζi are listed in non-

increasing order, we have 0 = sd̂1+1 < sd̂1
≤ ⋯ ≤ s1 < s0 = +∞. Then (0,+∞) = ⋃d̂1

p=0[sp+1, sp) −
{0} can be decomposed into the union of a set of intervals. For each interval [sp+1, sp),

G′(s) = 1

2s2

⎡⎢⎢⎢⎢⎣
(d2 − βp)s −

d∗

∑
i=p+1

ζ2i

⎤⎥⎥⎥⎥⎦
, (49)

where we implicitly define ∑d̂∗

i=p+1 ζ
2
i ∶= 0 when p ≥ d̂∗.

The following lemma states the number of stationary point of G(s) in an interval [sp+1, sp).
Lemma 3. At each interval [sp+1, sp),0 ≤ p ≤ d̂1, G′(s) has at most one stationary point when
(d2 − βd̂1) ≠ 0 or infinite stationary points when (d2 − βd̂1) = 0 and p = d̂1 = d̂∗.

Proof. The existence of stationary points requires G′(s) = 0, which is equivalent to (d2 − βp)s =
∑d∗

i=p+1 ζ
2
i . When p < d̂1, ∑d∗

i=p+1 ζ
2
i > 0 holds. Therefore, G′(s) = 0 has at most one solution.

When p = d̂1 = d̂∗, G′(s) = 0 holds only if (d2 − βd̂1) = 0. Then, ∀s ∈ (0, sd̂1
) is the stationary

point.

Moreover, by Eq. (49), we have the following corollary.
Corollary 3. If there is a unique stationary point at [sp+1, sp), G′(sp)G′(sp+1) ≤ 0.

The derivative at the endpoints can be computed as

G′(sp) =
β2

2ζ4p

⎡⎢⎢⎢⎢⎣
(d2
β
− (p − 1)) ζ2p −

d̂∗

∑
i=p

ζ2i

⎤⎥⎥⎥⎥⎦
= β2

2ζ4p

⎡⎢⎢⎢⎢⎣
(d2
β
− p) ζ2p −

d̂∗

∑
i=p+1

ζ2i

⎤⎥⎥⎥⎥⎦
. (50)

Furthermore, once G′(sp) is non-negative at some endpoint sp, G′(s) > 0 holds over (sp,∞).
Lemma 4. Let p, t be such that p ≤ d2/β and t > sp. Then, t2G′(t) > s2pG′(sp).

Proof. Let t ∈ (sq+1, sq] such that q+1 ≤ p. We thus have t > sq+1 ≥ ⋯ ≥ sp. Because d2

β
−(p−1) > 0,

we have

G′(t) = 1

2t2

⎡⎢⎢⎢⎢⎣
(d2 − βq)t −

d̂∗

∑
i=q+1

ζ2i

⎤⎥⎥⎥⎥⎦
= 1

2t2

⎡⎢⎢⎢⎢⎣
(d2 − β(p − 1))t −

q

∑
i=p

βt −
d̂∗

∑
i=p

ζ2i

⎤⎥⎥⎥⎥⎦
(51)

> 1

2t2

⎡⎢⎢⎢⎢⎣
(d2 − β(p − 1))t −

d̂∗

∑
i=p

ζ2i

⎤⎥⎥⎥⎥⎦
=
s2p

t2
G′(sp). (52)
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Proposition 6. G(s) has at most one stationary point over (0,∞) when (d2 − βd̂1) ≠ 0.

Proof. We prove this by contradiction. Let sa < sb are two stationary points. Lemma 3 implies
these two stationary points are located in two intervals [spa+1, spa) and [spb+1, spb

) with pa > pb.
By Corollary 3 there exists sl ∈ {spa+1, spa} such that G′(sl) ≥ 0, and sr ∈ {spb+1, spb

} such
that G′(sr) ≤ 0. Noticing that spa+1 < spa ≤ spb+1 < spb

, we conclude that sl ≤ sr. If sl < sr,
it contradicts to Lemma 4. If sl = sr = spa , then there is no stationary points in the interval
[spa+1, spa), which contradicts to the assumption.

Now, we check whether 0 and∞ are minima. For s+ = s1 +∑d̂∗

i=1 ζ
2
i ∈ [s1,+∞), we have

G′(s+) =
1

2s2+

⎡⎢⎢⎢⎢⎣
d2s+ −

d̂∗

∑
i=1

ζ2i

⎤⎥⎥⎥⎥⎦
= 1

2s2+

⎡⎢⎢⎢⎢⎣
d2s1 + (d2 − 1)

d̂∗

∑
i=1

ζ2i

⎤⎥⎥⎥⎥⎦
> 0, (53)

which implies that the∞ is not a minimum.

The behavior of G′(s) in (0, sd̂1
) is more complicated.

G′(s) = 1

2s2

⎡⎢⎢⎢⎢⎣
(d2
β
− d̂1) s −

d̂∗

∑
i=d̂1+1

ζ2i

⎤⎥⎥⎥⎥⎦
, (54)

the sign of which is different for the following three different cases:

1. d̂1 = d̂∗ and d2/β − d̂1 > 0;

2. d̂1 = d̂∗ and d2/β − d̂1 = 0;

3. d̂1 < d̂∗ or d2/β − d̂1 < 0.

Case 1: d̂1 = d̂∗ and d2/β − d̂1 > 0. When d̂1 = d̂∗ and d2/β − d̂ > 0,∑d̂∗

i=d̂+1 ζ
2
i = 0 and thus G′(s) >

0 in (0, sd̂1
]. By Lemma 4, G′(s) > 0 for s > sd̂1

. Therefore, G′(s) > 0 for s ∈ (0,+∞). Then,
there is no global minima for s ∈ (0,+∞). The loss function LLDV

VAE is ill-posed. Even though s∗ is
converged to 0, the model is deterministic.

Case 2: d̂1 = d̂∗ and d2/β − d̂1 = 0. When d̂1 = d̂∗ and d2/β − d̂ = 0, we have∑d∗

i=d̂+1 ζ
2
i = 0 and thus

G′(sd̂) = 0 for all s ∈ (0, sd̂1
). G′(sd̂) = 0 also holds by the continuity of G′(s). For any s > sd̂1

,
G′(s) > 0 by Lemma 4. Then the global minima for of G(s) is the entire set of (0, sd̂1

]. In such a
case, no posterior collapse happens.

Case 3: d̂1 < d̂∗ or d2/β − d̂1 < 0.4 The following proposition shows that the global minimum of
G′(s) is unique.

Proposition 7. When d̂1 < d̂∗ or d2/β − d̂1 < 0, G(s) has a unique global minimum, which is the
unique stationary point.

Proof. We first prove the existence. Let s− =min{sd̂1
,∑d∗

i=d̂1+1 ζ
2
i / (d2

β
− d̂1)}. Then,

G′(s) = 1

2s2

⎡⎢⎢⎢⎢⎣
(d2
β
− d̂1) s −

d∗

∑
i=d̂1+1

ζ2i

⎤⎥⎥⎥⎥⎦
< 0 (55)

holds in (0, s−). Recall that G′(s+) > 0 in Eq. (53). Then,

G′(s) = 1

2s2

⎡⎢⎢⎢⎢⎣

d2
β
s −

d∗

∑
i=d̂1+1

ζ2i

⎤⎥⎥⎥⎥⎦
> 1

2s2

⎡⎢⎢⎢⎢⎣

d2
β
s+ −

d∗

∑
i=d̂1+1

ζ2i

⎤⎥⎥⎥⎥⎦
> 0 (56)

4The case where d̂1 < d̂∗ and β = 1 is the case discussed in Lucas et al. (2019) and a variant of the case
considered in (Nakajima et al., 2015)
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holds in (s+,∞). Meanwhile, the continuous function G has minima in the closed interval [s−, s+].
Then, there exists global minima of G(s) in (0,∞).
We prove the uniqueness by contradiction. Suppose there are two different global minima such that
s∗a < s∗b . On the one hand, if there are two pa < pb such that s∗a ∈ [spa+1, spa) and s∗b ∈ [spb+1, spb

),
we have G′(spa+1) > 0. At the same time, s∗b is the global minimum implies G′(spb+1) ≤ 0, which
contradicts to the Lemma 4. On the other hand, if there is a unique pa such that s∗a, s

∗
b ∈ [spa+1, spa),

G′(s∗a) = G′(s∗b) = 0, that is (d2/β− p̂a)s∗a = (d2/β− p̂a)s∗b . This implies d2/β− p̂a = 0. Therefore,
G′(s∗b) = − 1

2s∗2
b
∑d∗

i=p̂a+1 ζ
2
i = 0, which contradicts the proposition assumption.

By Proposition 6, the global minimum of differentiable function G is also the stationary point.

Now, we are ready to find the optimal s∗.

Theorem 4. When d̂1 < d̂∗ or d2/β − d̂1 < 0,

• The optimal decoding variance is η∗2dec =
∑d̂∗

i=d̂1+1
ζ2
i

d2−βd̂1
∈ (0, sd̂1

) if and only if

β <
d2ζ

2
d̂1

d1ζ2
d̂1
+∑d̂∗

i=d̂1+1 ζ
2
i

. (57)

• The optimal decoding variance is η∗2dec =
∑d̂∗

i=p+1 ζ2
i

d2−βp ∈ (sp+1, sp), for 1 ≤ p < d̂1 if and only if

d2ζ
2
p+1

∑d̂∗

i=p+2 ζ
2
i + (p + 1)ζ2p+1

≤ β <
d2ζ

2
p

∑d̂∗

i=p+1 ζ
2
i + pζ2p

. (58)

• The optimal decoding variance is η∗2dec = 1
d2
∑d̂∗

i=1 ζ
2
i ∈ (s1,∞) if and only if

β ≥ d2ζ
2
1

∑d̂∗

i=1 ζ
2
i

. (59)

Proof. To ensure s∗ ∈ (0, sd̂1
), then the condition for β can be derived by letting G′(sd̂1

) > 0, that
is

(d2
β
− d̂1)ζ2d̂1

−
d̂∗

∑
i=d̂1+1

ζ2i > 0. (60)

The optimal s is solved by G′(s) = 0, that is

(d2 − βd̂1)s −
d̂∗

∑
i=d̂1+1

ζ2i = 0. (61)

To ensure s∗ ∈ [sp+1, sp), then the condition for β can be derived by letting G′(sp) > 0 ≥ G′(sp+1),
that is

(d2
β
− p)ζ2p −

d∗

∑
i=p+1

ζ2i > 0 ≥ (
d2
β
− (p + 1))ζ2p+1 −

d∗

∑
i=p+2

ζ2i . (62)

Then the optimal s∗ is solved by G′(s) = 0, that is

(d2 − βp)s −
d̂∗

∑
i=p+1

ζ2i = 0. (63)

To ensure s∗ ∈ [s1,+∞), that is, G′(s1) ≤ 0. The condition for β can be derived by solving

d2
β
ζ21 −

d∗

∑
i=1

ζ2i ≤ 0. (64)
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Table 1: The effect of β for posterior collapse with learnable decoding variance

Dimension β Range Posterior Collapse η∗2dec

d̂1 = d̂∗ (0, d2/d̂1) NA NA
d̂1 = d̂∗ {d2/d̂1} No collapse or ζ2

d̂1
only (0, sd̂1

]

d̂1 < d̂∗ (0,
d2ζ

2

d̂1

d1ζ2

d̂1
+∑d̂∗

i=d̂1+1
ζ2
i

) No collapse
∑d̂∗

i=d̂1+1
ζ2
i

d2−βd̂1

d̂1 ≤ d̂∗ [ d2ζ
2
p+1

∑d̂1
i=p+2 ζ2

i +(p+1)ζ2
p+1

,
d2ζ

2
p

∑d̂1
i=p+1 ζ2

i +pζ2
p

) Partial collapse except the
first p modes, 1 ≤ p < d̂1

∑d̂∗

i=p+1 ζ2
i

d2−βp

d̂1 ≤ d̂∗ [ d2ζ
2
1

∑d̂∗

i=1 ζ2
i

,+∞) Complete collapse 1
d2
∑d̂∗

i=1 ζ
2
i

Optimal s∗ can be found by solving G′(s) = 0, that is

d2s
∗ −

d̂∗

∑
i=1

ζ2i = 0. (65)

Remark. By Theorem 2, the posterior collapse for an eigenvalue ζ2i happens when βη2dec ≥ ζ2i ,
which is equivalent to s ≥ sp for 1 ≤ p ≤ d̂1. Therefore, different types of posterior collapse are
related to the following conditions of s∗

• No collapse: s ∈ (0, sd̂1
);

• Partial collapse: s ∈ [sp+1, sp) for 1 ≤ p ≤ d̂1;
• Complete collapse: s ∈ [s1,∞).

Notably, our result shows that the linear VAE with learnable decoding variance does not suffice
to lead to no collapse. For an arbitrary choice of ζ2i , the condition for no posterior collapse is
β ∈ (0, d2/d̂∗). When d2 = d0 = d∗, d1 = d̂1, and β = 1, the third case reduces to the result of
Lucas et al. (2019). However, posterior collapse also happens in this case. For example, when
ζ21 = ... = ζ2d̂∗ , the condition for the complete collapse of the model in Lucas et al. (2019) is [1,∞),
which covers the current choice of β = 1.

To summarize, Table 1 concludes five situations for posterior collapse under various conditions.
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E Proofs

E.1 Proof of Proposition 1

Proof. Minimizing LVAE(U,W ) in Eq. (5) is equivalent to the following minimization problem

min
U,W

Ex∥UW ⊺x − y∥2 +Tr(UΣU⊺) + β η
2
dec

η2enc
Tr(W ⊺AW ). (66)

It is assumed that x̃ ∶= Φ− 1
2P ⊺Ax, and x ∶= PAΦ

1
2 x̃. By defining V ∶= Φ 1

2P ⊺AW , we obtain

Ex∥UW ⊺x − y∥2 +Tr(UΣU⊺) + β η
2
dec

η2enc
Tr(W ⊺AW ) (67)

=Ex∥UW ⊺PAΦ
1
2 x̃ − y∥2 +Tr(UΣU⊺) + β η

2
dec

η2enc
Tr(W ⊺PAΦP

⊺
AW ) (68)

=Ex∥UV x̃ − y∥2 +Tr(UΣU⊺) + β η
2
dec

η2enc
∥V ∥2F (69)

=Tr(U⊺UV ⊺V − 2U⊺ZV ) +Ex̃[y⊺y] +Tr(UΣU⊺) + β η
2
dec

η2enc
Tr(V ⊺V ) (70)

=∥UV ⊺ −Z∥2F +Tr(UΣU⊺) + β η
2
dec

η2enc
∥V ∥2F − ∥Z∥2F +Ex̃[y⊺y] (71)

=∥UV ⊺ −Z∥2F +Tr(UΣU⊺) + β η
2
dec

η2enc
∥V ∥2F , (72)

where we have used the relation E[x̃x̃T ] = I and ∥Z∥2F = Ex̃[y⊺y]. Thus, the desired (U,V ) can be

obtained from minimizing L(U,V ) = ∥U⊺V − Z∥2F + Tr(UΣU⊺) + β η2
dec

η2
enc
∥V ∥2F . This finishes the

proof.

E.2 Proof of Proposition 2

Proof. One of the necessary conditions for the global minimum is the zero gradient of L(U,V ). We
then find the global minimum under the zero gradient condition. Consider

1

2

∂L(U,V )
∂V

= V U⊺U −Z⊺U + β η
2
dec

η2enc
V = 0, (73)

which implies

V = Z⊺U [β η
2
dec

η2enc
I +U⊺U]

−1

. (74)

Plugging Eq. (74) into the objective in Eq. (6), we have

L(U,V ) =Tr [(U⊺U + β η
2
dec

η2enc
I)V ⊺V − 2U⊺ZV ] +Tr(UΣU⊺) + ∥Z∥2F (75)

=Tr(UΣU⊺) −Tr(U⊺ZV ) + ∥Z∥2F (76)

=Tr(UΣU⊺) −Tr
⎡⎢⎢⎢⎢⎣
U⊺ZZ⊺U (β η

2
dec

η2enc
I +U⊺U)

−1⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=J

+∥Z∥2F . (77)

Consider the SVD of matrix U = QΛP where Q ∈ Rd2×d2 and P ∈ Rd1×d1 are orthogonal matrices,
Λ ∈ Rd2×d1 is the rectangular diagonal matrix. Meanwhile, consider

(β η
2
dec

η2enc
I + P ⊺Λ⊺ΛP)

−1

= P ⊺ (β η
2
dec

η2enc
I +Λ⊺Λ)

−1

P. (78)
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Let diagonal matrix Γ = β η2
dec

η2
enc

I+Λ⊺Λ. Recall the SVD of Z = FΣZG, then the Eq. (77) is rewritten
as

J = Tr [Λ⊺ΛΣ] −Tr [(QΛΓ−1Λ⊺Q⊺)(FΣZΣ
⊺
ZF

⊺)] . (79)

We note that ΛΓΛ⊺ and ΣZΣ
⊺
Z are square diagonal matrices in Rd2×d2 . Since ΣZ ∈ Rd2×d0 and

there are only min(d0, d2) non-zero values, i.e., ζi, i = 1, ...,min(d0, d2). We denote ζi = 0 for
min(d0, d2) < i ≤ d1 if d1 > min(d0, d2) for convenience. By von Neumann’s Trace Inequal-
ity (Von Neumann, 1962), the trace of the product of two real symmetric matrices is upper bounded
by the sum of the product of their decreasing eigenvalues, specifically,

Tr [(QΛΓ−1Λ⊺Q⊺)(FΣZΣ
⊺
ZF

⊺)] ≤ Tr [ΛΓ−1Λ⊺ΣZΣ
⊺
Z] . (80)

The equality holds if and only if Q = F . Then the lower bound of J is achieved when optimal
Q∗ = F .

J ≥ Tr [Λ⊺ΛΣ] −Tr [ΛΓ−1Λ⊺ΣZΣ
⊺
Z] =

d1

∑
i=1

σ2
i λ

2
i −

ζ2i η
2
encλ

2
i

βη2dec + η2encλ2
i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=JQ∗

. (81)

JQ∗ can be further minimized over all λi. The optimal λ∗i can be determined by setting the corre-
sponding gradients to zero. Consider ti = λ2

i ≥ 0,

∂JQ∗

∂ti
= ∂

∂ti
[σ2

i ti −
ζ2i η

2
encti

βη2dec + η2encti
] (82)

=σ2
i −

ζ2i η
2
enc(βη2dec + η2encti) − η2encζ2i η2encti

(βη2dec + η2encti)2
(83)

=σ2
i −

ζ2i η
2
encβη

2
dec

(βη2dec + η2encti)2
(84)

=σ
2
i (βη2dec + η2encti)2 − ζ2i η2encβη2dec

(βη2dec + η2encti)2
= 0. (85)

Two solutions of the Eq. (85) are

t
(1)
i =

√
βηdec

σiηenc
(ζi −

√
βσiηdec
ηenc

) , (86)

t
(2)
i =

√
βηdec

σiηenc
(−ζi −

√
βσiηdec
ηenc

) . (87)

We see that ti ≥ 0 > t(2)i , then the monotonicity of J∗Q with respect to ti over (0,+∞) only depends

on t
(1)
i . Here are two situations: (1) t(1)i ≤ 0: ∂JQ∗

∂ti
≥ 0, then J∗Q increases monotonically with ti.

Then the optimal t∗i = 0. (1) t(1)i > 0: ∂JQ∗

∂ti
> 0 when ti > t(1)i and ∂JQ∗

∂ti
< 0 when ti < t(1)i . Then the

optimal t∗i = t
(1)
i . Therefore, optimal λ∗i is summarized by the two situations above with λ∗2i = t∗i

λ∗i =
¿
ÁÁÀmax(0,

√
βηdec

σiηenc
(ζi −

√
βσiηdec
ηenc

)), i = 1, ..., d1. (88)

As a result, U = Q∗Λ∗P where P is an arbitrary orthogonal matrix in Rd1×d1 . The optimal V ∗ can
also be determined by Eq. (74)

V ∗ = ḠΘP, (89)

where Ḡ = [g1, ..., gd1], Θ = diag(θ1, ..., θd1) where θi =
√

max(0, σiηenc√
βηdec

(ζi −
√

βσiηdec

ηenc
)).
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E.3 Proof of Corollary 1

Proof. The minimum value can be obtained by plugging in the optimal

λ∗i =
¿
ÁÁÀmax(0,

√
βηdec

σiηenc
(ζi −

√
βσiηdec
ηenc

)), (90)

into the lower bound of L(u, v), i.e.,

L(U,V ) ≥min
U,V

L(U,V ) = ∥Z∥2F + JQ∗ =
d1

∑
i=1

ζ2i + σ2
i λ
∗2
i −

ζ2i η
2
encλ

∗2
i

βη2dec + η2encλ∗2i
. (91)

E.4 Proof of Proposition 3

Proof. The optimal σi can be determined by

σ∗i = argmin
σ>0

li(σ) = argmin
σ>0

ζ2i − (ζi −
√
βσiηdec
ηenc

)
2

1
ζi>

√

βσiηdec
ηenc

+ βη2dec (
σ2
i

η2enc
− 1 − log σ2

i

η2enc
) .

(92)

The gradient of li(σ) reads,

l′i(σ) = 1ζi>
√

βηdec
ηenc

σ
(ζi −

√
βηdec
ηenc

σ)
√
βηdec
ηenc

+ βη2dec
η2enc

(σ − η2enc
σ
) (93)

Since l′(σ) is a increasing function, l′(σ−) < 0 when σ− = 1
2
min( ζiηenc√

βηdec
,
√

βηencηdec

ζi
), and l′(σ+) >

0 when σ− = 2max( ζiηenc√
βηdec

,2ηenc). Then the minimal value of l(⋅) is determined when l′(σ) = 0,

that is,

1σ<ζi ηenc
√

βηdec

√
βηdec
ηenc

ζi + [1 − 1σ<ζi ηenc
√

βηdec

] βη
2
dec

η2enc
σ = βη2dec

σ
. (94)

The LHS of Equation (94) is a non-decreasing function while the RHS is decreasing function. Then
we claim there is a unique solution σ∗ of Equation (94). The solution breaks down into two situations

Case 1: σ∗ < ζi ηenc√
βηdec

In this case, we have √
βηdecζi
ηenc

= βη2dec
σ

. (95)

Then

σ∗ =
√
βηdecηenc

ζi
. (96)

This solution holds if and only if the following condition holds√
βηdecηenc

ζi
< ζi

ηenc√
βηdec

⇔ βη2dec < ζ2i . (97)

Case 2: σ∗ ≥ ζi ηenc√
βηdec

In this case, we have
βη2dec
η2enc

σ = βη2dec
σ

. (98)

Then
σ∗ = ηenc. (99)

This solution holds when
ηenc > ζi

ηenc√
βηdec

⇔ βη2dec ≥ ζ2i . (100)

It is easy to check that the two cases above cover all solutions.
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E.5 Proof of Theorem 3

Proof. The first-order derivatives of L are

∂L(U,V )
∂U

= 2 (UV ⊺V −ZV +UΣ) (101)

∂L(U,V )
∂V

= 2(V U⊺U −Z⊺U + β η
2
dec

η2enc
V ) (102)

Then the second-order derivatives of L are

∂2L(U,V )
∂Urs∂Upq

= 2δpr (
d0

∑
k=1

VksVkq + δqsσ2
q) (103)

∂2L(U,V )
∂Vrs∂Upq

= 2
⎡⎢⎢⎢⎢⎣
UpsVrq +

⎛
⎝

d1

∑
j=1

UpjVrj −Zpr

⎞
⎠
δqs

⎤⎥⎥⎥⎥⎦
(104)

∂2L(U,V )
∂Urs∂Vpq

= 2
⎡⎢⎢⎢⎢⎣
VpsUrq +

⎛
⎝

d1

∑
j=1

UrjVpj −Zrp

⎞
⎠
δqs

⎤⎥⎥⎥⎥⎦
(105)

∂2L(U,V )
∂Vrs∂Vpq

= 2δpr (
d2

∑
i=1

UisUiq + β
η2dec
η2enc

δqs) . (106)

Letting U = 0 and V = 0

∂2L(U,V )
∂Urs∂Upq

∣
U=0,V =0

= 2δprδqsσ2
q (107)

∂2L(U,V )
∂Vrs∂Upq

∣
U=0,V =0

= −2Zprδqs (108)

∂2L(U,V )
∂Urs∂Vpq

∣
U=0,V =0

= −2Zrpδqs (109)

∂2L(U,V )
∂Vrs∂Vpq

∣
U=0,V =0

= 2β η
2
dec

η2enc
δprδqs. (110)

Then we consider the quadratic form at U = 0, V = 0. Consider ∆U and ∆V as the perturbation of
U and V . Then the quadratic form reads

LQ(∆U,∆V ) =
⎡⎢⎢⎢⎢⎣
∑
pqrs

∂2L(U,V )
∂Urs∂Upq

∣
U=0,V =0

∆Urs∆Upq + ∑
pqrs

∂2L(U,V )
∂Vrs∂Upq

∣
U=0,V =0

∆Vrs∆Upq

(111)

+ ∑
pqrs

∂2L(U,V )
∂Urs∂Vpq

∣
U=0,V =0

∆Urs∆Vpq + ∑
pqrs

∂2L(U,V )
∂Vrs∂Vpq

∣
U=0,V =0

∆Vrs∆Vpq

⎤⎥⎥⎥⎥⎦
(112)

=2∑
pq

σ2
q∆U2

pq − 2∑
pqr

Zpr∆Upq∆Vrq − 2∑
pqr

Zrp∆Urq∆Vpq +∑
pq

2β
η2dec
η2enc

∆V 2
pq

(113)

=2 [Tr(∆UΣ(∆U)⊺) − 2Tr(Z∆V (∆U)⊺) + β η
2
dec

η2enc
Tr(∆V (∆V )⊺)] (114)
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It suffices to consider the case ∥X∥2F = 1. Let α2 = ∥∆U∥2F and ∥∆V ∥2F = 1 − α2. Then let
u =∆U/α and v =∆V /

√
1 − α2 be the normalized matrix. Plugging in, we obtain

LQ(∆U,∆V )∝ σ2∣∣U ∣∣2 − 2Tr(ZV U⊺) + β η
2
dec

η2enc
∣∣V ∣∣2 (115)

= σ2α2 − 2
√
α2(1 − α2)Tr(u⊺Zv) + β η

2
dec

η2enc
(1 − α2), (116)

where we assume Σ = σI , according to the Theorem 2. Apparently, for any fixed α, the middle term
is minimized if u is the left eigenvector of Z corresponding to the largest singular value of Z, and v
is the corresponding right eigenvector. This choice gives

LQ(∆U,∆V )∝ σ2α2 − 2
√
α2(1 − α2)ζmax + β

η2dec
η2enc
(1 − α2). (117)

Minimizing over α shows that

min
α

LQ(∆U,∆V )∝ σ2 + β η
2
dec

η2enc
−

¿
ÁÁÀ(σ2 − β

η2dec
η2enc
)
2

+ 4ζ2max (118)

which is nonnegative if and only if ζ2max ≥ σ2β
η2
dec

η2
enc

. Namely, σ2β
η2
dec

η2
enc
− ζ2max < 0 implies that the

origin is a saddle point. Meanwhile, σ2β
η2
dec

η2
enc
− ζ2max > 0 implies that the origin is a local minimum.

Notice that this condition coincides with the condition that the origin is a global minimum. There-
fore, the origin is the global minimum if and only if the Hessian at the origin is PSD. This finishes
the proof.
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